ATOMIC
DATA AND NUCLEAR
DATA TABLES
31,2X-297
ORBITAL AND WHOLE-ATOM AND SHELL CORRECTIONS
(1984)
PROTON STOPPING POWER FOR ATOMS WITH Z 4 36
JENS ODDERSHEDE Kemisk Institut, Odense Universitet 5230 Odense M, Denmark and JOHN
R. SABIN
Quantum Theory Project, Department of Physics University of Florida, Gainesville, Florida 326 1I
Stopping cross sections and shell corrections for atoms with 1 c Z d 36 have been evaluated using a technique based on Sigmund’s kinetic theory of electronic stopping. Results are tabulated for projectile velocities from 1 to 60 atomic units both for the whole atom and for the individual s&shells.
0092-640X/84 $3.00 Copyright 0 1984 by Academic Press, Inc. All rights of reproduction in any form reserved.
275
Atomic
Data and Nudear
Data Tabs.
Vol. 31, No. 2.3wtamtm
1934
J. ODDERSHEDE
and J. R. SABIN
Stopping Power and Shell Corrections
CONTENTS INTRODUCTION
........................................
276
Formalism ........................................... Accuracy of the Calculations ............................ Relation to Experiments ............................... EXPLANATION TABLE.
OF TABLE
276 277 279
...............................
281
Atomic Shell Corrections and Proton Stopping Cross Sections, 1 6 2 G 36 ............................ 282
INTRODUCTION
Formalism
v. Similarly the cross section can be related to the stopping number, L(v), by
The stopping of swift, charged particles has been of interest to experimentalists and theoreticians since the early work of Bethe’ and of Bohr2 and others. In the megavolt range of projectile energies, the stopping is primarily accomplished by elastic scattering of the projectile from target atom electrons having a particular velocity distribution, Early and successful introduction of quantum mechanics into the theory of Lindhard’ dealt with electronic stopping based on a linear response type of treatment of the electron gas. Recently Sigmund4 has treated stopping from the general point of view of momentum conservation. The theory is developed for an unspecified velocity distribution for the scatterers. In the present implementation we use a quantum mechanical atomic velocity distribution to compute stopping cross sections and shell corrections. We find’-’ that the stopping cross sections have large contributions from valence orbitals, while shell corrections are primarily determined by inner orbitals. Thus the tabulated cross sections are applicable to atomic-like systems, while the shell corrections are expected to have wider applicability. In the projectile energy range under consideration, we may ignore nuclear stopping and stripping (low-energy phenomena) and relativistic and density corrections (highenergy phenomena). Similarly, we shall, in this study, ignore the Barkas and Bloch corrections.4 In this case, one may write the stopping power or differential energy loss per unit length as
m)
=
4ae4Z:Z2 mv2
L(V)>
where Zr and Z2 are the projectile respectively, and e and m are the mass. It is conventional to consider to be composed of two terms, the the shell corrections,
(2)
and target charges, electron charge and the stopping number Bethe logarithm and
2mv2 C(v) L(v) = In -7- - - z2 , where I is the mean excitation energy obtained from the density of optical dipole oscillator strength per unit energy of excitation E above the ground state In I =
%lnE
dE
gf dE,
(4)
where $ indicates summation over discrete states and integration over continuum states. In the present implementation of Sigmund’s formalism5*’ we treat the atom on a shell-by-shell basis, so that W) = Iz Sk(v)
(5)
k
- dE/dx = nS(v),
(1) where n is the atom density and S(v) is the stopping cross section per atom as a function of the projectile velocity
and L(v)
276
Atomic
=
Data and Nuclear
z k
(6)
Uv)
Data Tables.
Vol. 31, No. 2. septm-bw
1334
J. ODDERSHEDE
4, s
where the summation L&l) = ?r
0
and J. R. SABIN
Stopping Power and Shell Corrections
where R is the Rydberg energy. From these, the Ok and Ik are determined as9
is over the atomic shells and
dvdvzdvz
nk
@k =
+
do)
2
(16)
and Ik = R Here the velocity distribution of the scatterers has been chosen as the kth shell electron velocity distribution, normalized as ml 47r p,,.(v2)v$dvz= 1. (8) s0
where nk are orbital occupation numbers fulfilling 2 nk = z2.
In order to generate the orbital velocity densities, we utilize a numerical Hartree-Fock wave function” produced on an exponential grid. As this is a numerical procedure, it should produce, within the limits of computational errors, the exact solution to the Hartree-Fock equations. As the Fourier-Dirac transformation of a Hartree-Fock wave function is isomorphic, we need only transform the orbitals, so that momentum space orbitals @‘&) may be obtained directly from the configuration space orbitals +‘,&) via
(9)
since Lg according to the Sigmund theory applies to target electrons at rest. Here, ak = (Ik/2m)“’
(10)
and the orbital weight factor, wk, is defined below. The Heaviside function, 6(v - (Yk), limits the range of integration to the range of validity of the Bethe formula. Thus, the shell corrections can be written on an orbital basis as
@‘,,(I?) = (-l)(i)“’
P&)
c
ok
In
cak=
nkfk
2-5.
The central quantities in the development of the theory outlined in the preceding section are the mean excitation energies, which were taken from the tabulation of Inokuti et al8 and thus are computed for atoms, The scattering cross sections depend critically upon the choice of the zk values, in particular at low velocities where S(v) is determined almost solely by the valence shell mean excitation energies. I3 Since the velocity distributions as well as the mean excitation energies are determined for atoms, the computed cross sections apply only to atoms or atomic-like systems where the valence velocity distribution is not much disturbed from the atomic case. We thus expect the cross sections presented here to apply to such systems as atomic gases, van der Waals and covalent
(13)
-
z do) k
(14)
and L(O) = Z2 In
cw
Accuracy of the Calculations
The orbital mean excitation energies and weight factors were derived from the Hartree-Slater calculations of orbital oscillator Stm@hSfk by Inokuti and coworkers.’ These authors calculated, for all atoms with Z G 36, the moments 2 k
d~dW.
Ik,
k
=
=
k
where the wk are orbital weight factors which, in a neutral atom, satisfy
s(o)
(19)
The machinery is now all in place and the orbital stopping numbers, cross sections, and shell corrections can be obtained directly from Eqs. (5)-(7) and (11) by numerical integration, Analyses of the numerical procedures utilized here, and their accuracy, have been presented elsewhere.7*‘2
In order to carry out the decomposition of L(v) into orbital terms [Eq. (a)] the mean excitation energy, I, must also be split into orbital terms. We have used the definition 2
% j@r)V,&)r2dr.
The transformations were carried out using the fast, accurate method of Talman. ” The momentum density is then simply obtained by
(11)
lnZ=+
(18)
k
For L&v) we use the Bethe formula 2mv2 Li (v) = 2 In 7 NV - ak) ( 1
eXp
(15)
277
Atomic
Data m3 Nucbaf
Data Tab!ss, Vol. 31. No. 2, Ss#embu
,334
J. ODDERSHEDE
and J. R. SABlN
Stopping Power and Shell Corrections
systems, and perhaps also, with prudent use of Bragg’s rule,14 to biological systems. On the other hand, for metallic systems, where the valence electrons are delocalized in bands, the valence I& are very different from the atomic val~es’~ that we have used here, and the present S(v) thus do not apply to solid metals. In fact, for metallic systems we expect to find a large gas/solid difference6 in 40) whereas one does not find such a difference for van der Waals solids such as argon. 16*17In order to estimate the accuracy of our calculated cross sections we have compared two sets of atomic-like data, namely, a calculation of McGuire et aLI8 for Al in Fig. 1, and in Fig. 2 to the experimental determination of S(u) for both gaseous” and solid” Ar. Both comparisons indicate that we obtain agreement to within a few percent. The disagreement is most pronounced at very low energy where we may be off by up to -25% (see also Table 2 of Ref. 6). In Fig. 1 we have included the semiempirical stopping power fit of Andersen and Ziegler” as well. Data points rather than curves are given in order to see the differences between the three sets of results. The present calculation and experimental gaseous proton stopping cross sections” for Ar are compared in Fig. 2. Besenbacher and co-workers have also measured S(u) for solid Ar16 and have found that for this atomic-like target, the gas/solid difference is small, in agreement with our expectations. However, the data for solid Ar are for stopping of He ions, and since for low velocities the factor (2:) in Eq. (2) actually must be viewed as a function of 11(see for example Fig. 23 of Ref. 17), the He data cannot be compared directly to our proton S(u) without properly scaling with (Z:). Nonetheless, it is expected that there would be only a small gas/solid difference for atomic-like targets and the present tabulation should thus apply to both gaseous and solid targets in such cases.
I
I
I-
.
Al
3
ff b
6 . 0 .
0 ‘? rFb b0 B
Q
O0
1
0
‘8
3
Ep(MeZV,
Figure I. Comparison of avemged experimental stopping cross sections for Al from Ref. 19 (squares) with calculated values from this work (open circles) and Ref. 18 (filled circles).
and the Walske results for the K-shell correction~O while our L-shell results am much larger than those of Wa.lske.*’ The origin ofthe latter discrepancy is that the hydrogenic approximation used by Walske works well only for the K shell. At large velocities the inner-shell contribution to the total shell correction dominates whereas at low velocities the penultimate shell gives a large fraction of C/Z2. Thus, our whole-atom shell corrections agree best with those of Walske at large velocities. The Bonderup C/Z2 cannot be split up in shellwise contributions and we can thus only compare whole-atom values. In most cases, we obtain good agreement with his results except at low velocities, where our values tend to be larger. Let us also point out that even though the mean excitation energy enters in the expression for the shell correction, we find that C/Z2 is almost invariant to the choice of total I provided that a reasonable decomposition into orbital Ik values is utilized. For instance, for Ne at u = 10 a.u. (EP = 2.5 MeV) the difference in C/Z2 is only 2% for a 10% variation in I. This variation decreases with increasing projectile velocity.
In contrast to S(u), the shell corrections C(u)/Zz are mainly dependent upon inner-shell mean excitation energies and velocity distributions,’ which do not vary much from atoms to molecules or solids. The present calculations should thus be applicable to any physical state of the stopping material. We have previously found that calculations with the present scheme yield shell corrections which compare favorably5*‘3 with both experimental gaseous and metallic data. Earlier theoretical estimates of C/Z* include work by Walske,20*2’ Bonderup, Khandelwak2’ Khandelwal and Merzbacher,24 and Bichse1. 25 These treatments are based upon either electron gas26 or hydrogenic models while our results are derived from Hartree-Fock atoms. Although there is some more recent work?‘*‘* most experimental workers are using the shell corrections by Walske and Bonderup and we have compared our calculations to Walske’s C/Z2 in Ref. 5 and to Bonderup’s results in Ref. 5 as well as in Ref. 13. We find, for Al, good agreement between our calculations 278
Alanic
Data andNuoiew Dam Teh~.
Vol. 31.
No.2.
Sqmmber
1284
J. ODDERSHEDE
Stopping Power and Shell Corrcction~
and J. R. SABIN
Ep (MeV) Figure 2. Comsuison of avuag#1 (Ref. 19. solid tine) and f@~eous (Ref. 17, dotsf experimental stopping values (da&d line).
-ions
with our calcu~ted
ulate further experimental investigations of the gas/solid difference for other types of systems. Finally, a consistent set of stoppiq cross sections for many atoms such as those presented here should be useful for investigating the validity of the Bragg rule.
Relation to Experiments The mean excitation energy is the central material constant in the Bethe theory of stoppmg power. It determines the stopping at large velocities where C/Z* vanishes.However, at the energiesat which most experiments are performed (keV to a few MeV range) the shell corrections are sizable. Experimental determinations of I thus require knowledge of shell corrections obtained from theoretical calculations.Since,asdiscussedin the previous section,our C/& most likely can beused for any physical stateof the target material, the presenttabulations should be useful for determining experimental mean excitation energies for gaseousas we11as solid targets. From an experimental point of view, it may also be useful that we have included data for ah shells of all atoms with 2 4 36, a feature which is not the case for previous tabulations. The applicability of the theory to all energy ranges of the projectile is a special characteristic of the present approach. Our resultscan thus be compared to both lowenergy (keV) and intermediate-energy (several MeV) experiments. Our calculations6~29 indicate that there should be a large gas/solid di&rence in 4u) for metals, in particular for the alkali metals where there may be as much asan order of magnitude difference. This prediction lacks experimental confirmation at present since experiments on vapor so far have been restricted to gaseswhich in their solid state are atomic-like (nobk gases,” oxygen, nitrogen, etc.). Perhaps the present tabulation will stim-
Acknowledgments
One of us (J.R.S.) is grateful to NORDITA for support and to the Kemisk Snstitut,Odense Universitet, for hospitality during the period that this work was done. The work was supported in part by National Science Foundation Grant DMR 8218498. References
1. H. Bethe, Ann. Phys. (Leipzig) 5, 325 (1930) 2. N. Bohr, K. Dan. Vidensk. Selsk.Mat. Fys. Medd. 18, No. 8 (1948)
3, J. Lindh&, K. Dan. Vidensk. Selsk.Mat. Fys.Medd. 28, No. 8 (1954) 4. P. Sigmund, Phys. Rev. A 26, 2497 (1982) 5. J. R. Sabin and J. Oddershede,Phys.Rev. A 26,3209 (1982) 6. J. Oddershede, 3. R. Sabin, and P. Sigmund, Phys. Rev. Lett. 51, 1332 (1983) 7. J. Oddershedeand J. R. Sabin, Chem. Phys.71, 161 (1982) 279
Atomtc Data Ivy1 Nudear
Oata Tabl.35, Vol. 31. NO. 2. %p(aMa
1982
J. ODDERSHEDE and J. R. SABIN
StoppingPower and ShellCorrections
8. J. L. Dehmer, M. Inokuti, and R. P. Saxon, Phys. Rev. A 12, 102 (1975); M. Inokuti, T. Baer, and J. L. Dehmer, Phys. Rev. A 17, 1229 (1978); M. Inokuti, J. L. Dehmer, T. Baer, and J. D. Hanson, Phys. Rev. A 23,95 (198 1); M. Inokuti, private communication
18. E. J. McGuire, J. M. Peek, and L. C. Pitchford, Phys. Rev. A 26, 1318 (1982)
9. See Ref. 5 for details.
20. M. C. Walske, Phys. Rev. 88, 1283 ( 1952)
10. C. Froese-Fischer, Comput. Phys. Comm. (1978); 4, 107 (1972); 1, 151 (1969) 11. J. D. Talman,
J. Comput.
19. H. H. Andersen and J. F. Ziegler, Hydrogen Stopping Powers and Ranges in all Elements (Pergamon, New York, 1977)
14, 145
21. M. C. Walske, Phys. Rev. 101,940 22. E. Bonderup, K. Dan. Vidensk. Medd. 35, No. 17 (1967)
Phys. 29, 35 (1978)
12. M. M. Pant and J. D. Talman, 1819 (1978)
15. E. Shiles, T. Sasaki, M. Inokuti Phys. Rev. B 22, 16 12 (1980)
Selsk. Mat. Fys.
Phys. Rev. A 17,
13. J. R. Sabin and J. Oddershede, Phys. Rev. A 29,1757 (1984) 14. W. H. Bragg and R. Kleeman, (1905)
(1956)
Philos. Mag. 10,3 18
23. G. S. Khandelwal,
Nucl. Phys. A 116, 97 (1968)
24. G. S. Khandelwal 144, 349 (1966)
and E. Merzbacher,
Phys. Rev.
25. H. Bichsel, University of Southern California Report, USC-136-120 (1967)
and D. Y. Smith, 26. J. Lindhard and M. ScharfX K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 27, No. 15 (1953)
16. F. Besenbacher, J. B&tiger, 0. Graversen, J. L. Hansen, and H. Sorensen, Nucl. Instrum. and Methods 188,657 (1981)
27. G. S. Khandelwal,
Phys. Rev. A 26, 2983 (1982)
28. H. Bichsel, Phys. Rev. A 28, 1147 (1983)
17. F. Besenbacher, H. H. Andersen, P. Hvelplund, and H. Knudsen, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 40, No. 3 (1979)
29. P. Sigmund, published.
280
J. R. Sabin, and J. Oddershede, to be
J. ODDERSHEDE and J. R. SABIN
Stopping Power and Shdl Corrections
EXPLANATION TABLE.
OF TABLE
Atomic Shell Corrections and Proton Stopping Cross Sections, 1 d Z d 36 Data are arranged in sets in order of increasing atomic number 2. In each set, the first line contains the atomic symbol and Z value, the orbital configuration used to form the Hartree-Fock determinant, and the LS configuration to which this corresponds. Beyond Ar, the completed orbital configuration of the n = 2 shell is abbreviated as (NE). Thus, (NE)3S2/3P6: IS refers to the ( ls)2(2s)2(2p)6(3s)2(3~)6 ‘S ground state of Ar. Within each set, atomic shell corrections and stopping cross sections for the whole atom and each orbital are arranged in blocks and listed as a function of the projectile velocity. The orbital designation and other relevant parameters are placed over each data block. ORBITAL W 1 W) ALPHA V C/Z S
(AU)
Heading designating either the whole atom or the individual orbital Orbital weight factors [wk in Eq. ( 16)] Orbital mean excitation energy Zk, in eV [Eq. ( 17)] Velocity parameter corresponding to Zk, in atomic units [Eq. (lo)]; 1 a.u. = arc = 2.19 X IO8 cm s-r. Projectile velocity in atomic units Shell correction for the whole atom and for each orbital [Eq. { 1 l)]. The latter sum to the whole atom value. Electronic stopping cross section in units of IO-” eV cm* for the whole atom and for the individual orbitals; the latter sum to the whole-atom value according to Eq. (5). The cross sections are evaluated for proton projectiles [Eq. (2), for ZI = 1J. The proton energy is given by Ep (keV) = 24.98 X V* (a.u.).
281
Atank
Oata m-d Nudur
Oata Tnbbs.
Vol. 31. No. 2. &@mbwr
1334
J. ODDERSHEDE and J. R. SABIN
Stopping Power and ShellCormtions
TABLE. Atomic Shell Corrections and Proton Stopping Cross Sections, 1 < Z G 36 See page 281 for Explanation of Table n
(Z=l
J
:
IS1
WHOLE
OREiITAL
--14.99 0.525
I(:“,
ALPHA(AJJ ” 1. 2. 3. 4. 5. 6. 7. a. 9. 2: I%: . E: 30. 35. 40. 45. 2:: 60.
c/z
S
I-",% . 0.136
5.677 7.270 3.565
0.072 0.044 0.030 oo'oo:I
:-:;o' 1:aes 1.008 0.813
0:013 0.010 0.007 0.005 0.004 0.003 0.003 0.002
0.670 0.563 0.416 0.321
2::: 0:001 0.000 0.000 0.000 0.000
0.066 0.052 0.042 0.035 0.029 0.02s
lfO500 14.99 0.525 C/Z
IS.2
1z=2
“E
2s
ATOM
ORBITAL
0.304 0.530
5.677 7.270
0.022
0.813 I .ooa
00'8:s 0:oio 0.007 0.005 0.004 0.003 0.003 X'%
0.670 0.563 0.416 0.321 0.255 0.209 0.174 0.118
0:001 0.001 0.000 0.000 0.000 0.000
8'::t. 0.052 0.042 0.03s 0.029 0.025
IS Y”CLE
It:“, ALPHACAU
---
ATOM
2!$00 38.83 0.845
38.83 0.645
” I. 2.
4.186 5.663 4.b17
2: 5. 6. 7.
8.
PXfX 0:021
::: 14. . :si.
20. 25. ii. 45.
. .
2: 60.
LX
3.455 2.615 2.034
0.097 0.069 0.052
9.
0.015 0.012 ;-x8':
0.547 0.439 0.361
0:005 0.003 ",'",",9 0:001 0.001 0.001 0.001
I
ItEVJ ALPHA(AU
---
s
4.188 5.663 4.617 3.455
0.069 2:;; . 0.052
"2-z: 1.626 1.330
0.040 0.032 0.021 0.015
i-E 0:703 :'5,*3 01361
z:: 0:152
8% 0:003
0.303 0.207 0.152
8' - :tx 0.075 0.063 0.053 0.045
E%: do01
0.092 0.,,6
8% 0:001
0.045 0:053
: WHOLE
C/Z
0.119 0.541 0.365 0.224
",%.
lS2/2Sl
(2=3) ORBITAL
S
8%
2s
ATOM
2!Zoo 109.32 1.417
J
,207 3.29 0.246
S
.0.410 0.260 0.374 ",*;:z . 0.170 0.126 8'82 . 0.059 0.040 0.028 0.021 0.016 0.013 o.ooe :'xooo $882' . ",-E. 0.001
25.295 11.464
-EE .
0.351
s-x:: . 3.972 3.099 2.483 2.035
z2: 0:164 0.122 0.093 0.072 0.057 0.039 0.028 0.021 0.016 0.013 0.008
:*:t': 1:077 0.838 0.673 0.553 0.463 00*X:27 0:178 0.141 0.115 0.095 0.081 0.069
0.087 0.04s 0.023 0.013 0.008 0.005 0.004
2.071 1.94s 1.673 1.404 1.177 0.994 0.560 0.443
0.000 0.000 0.000 0.000 o*oao 0.000 0.000 0.000
0.055 0.046 0.040
282
Atcmk
Data and Nudear
‘t%
5:24@
1.041 ;-;g. :'%:. 0.312 0.254 0.211 0.142 0.102 0.07R 0.061 0.049 0.041 0.034 0.029
Data Tab!m. Vol. 31. No. 2. SspMnba
1984
J. ODDERSHEDE
and J. R. SABIN
Stopping Power and Shell Corrections
TABLE. Atomic Shell Corrections and Proton Stopping Cross Sections, 1 < 2 Q 36 Seepage281 for Explanation of Table BE
<2=41
OYTM
I(EVJ ALPHA( AU)
152,252 UHDLE ATOM --C/Z
0.315 0.278 0.226 0.178 0.141 0.1*2 0.091 a.061 0.044 0.033 0.02s 0.020 0.012 0.008 0.006 0.00s 0.004 0.003
zx: 60.
C2=5)
C/L -0.383 0.025 0.200 0.272
2: 60.
C
lZ=6) ORBITAL
I. 2. 3. 4. 5. 6. 7. 8. 9. ::: ::: 18. 2 30. 35. 40.
22: tz..
ATOM
s 22.183 17.249 11.052 7.723 5.787 4.539
0O'fG 0:214 0.178 0.147 0.122 o.ofls 0.062 0.046
Xf 2:sse 2.185 1.651 1.294 1.043 0.061 0.723 0.498 0.36s 0.281
:*:i% 0:017 0.012 0.009 0.006 0.00s 0.004 0.003 0.003
:':f2. 0.151 :*::x .
152/252/2P2
5 0.364 0.723 0.997 1.101 1.077 0.986 0.A77 0.77r 0.678 0.597 0.470 0.379 0.311 0.261 0.222 0.156 0.116 0.090 0.072 0.059 0.050 0.042 0.037
s
C/Z
30.680 lS.158 8.618 5.603 3.954 2.951 P.293 1.838 I .509 1.264 0.927 0.711 0.565 0.460 0.3R3 0.259 0.187 0.143 0.112 0.091 0.075 0.063 0.054
0.202 ",*::7 8::;; . 0.021 0.015 0.01t O.O@A 0.006 0.004 z%: 0:oor 0.001 0.001 0.001 0.000 0.000 0.000 0.000 ?%t .
2!:19 320.21 2.426
lTZ4S 16.33 0.548
C/Z
5
-0.720 -0.187 0.071 0.186 0.219 0.210 0.184 0.156
i-:3: . 0.537 0.652 0.700 0.694 0.656 0.604 0.549 0.496 0.404
Oo*t3: 0:076 0.055 0.042 0.032
0.332 0.277 0.234 0.201 0.143 O.IOR 0.084 0.068 0.056
0.026
0.016 0.011 0.008 0.006 0.005 0.004 0.003 0.003
8%. 0.034
lfF35 11.55 0.461
C/7
s
C/7
S
0.152 0.103 0.080 0.060 0.043 0.030 0.022 0.016 0.013 0.0‘0 0.006 0.004
13.966 10.204 6.249 4.21,
O.lP4 0.109 0.049 0.026 0.016 0.010 0.007 0.006 0.004 0.004 O.OOP 0.007
8.037 6.674 4.265 2.860 2.044 I.536 1.200 0.966 0.795 0.667 0.491 0.378
o,% 0:oor 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0O*z:: . 0.205 0.139 0.101 0.077 0.001 0.049 0.041 0.034 0.078
0:002 E83
?%F" . 1.915 1.468 1.214 1.02, 0.755 0.583 0.46S 0.380
0.001 0.001 0.001 :*",::
:*2":: 0:157 0.120 0.095
0:ooo 0.000 0.000
XX. 0.054 0.046
>
3P V”DLE
ATOM --61.95 1.067
It:,, ALPHAtAUI ”
C/Z -0.670 -0.042 0.205 O.PbI 0.24b 0.205 0.164 0.130 0.10. 0.084 0.057 0.041 0.031 0.024 0.019 0.012 0.008 0.006 0.004 0.003 0.003 0.002 0.002
50.22 0.961
1. 2. 3. 4. S. 6. 7. 8. 9.
2: 40. 45.
7f500 7.32 0.367
2P UHDLE
V
:,":
:* z: 0:721 0.605 0.415 0.304 0.233
I.54 ‘/252/2Pl
oRe:TAL
:"o: 2s.
I.060 1.397
:*::2.
I(EV) ALPHA(AUl
:20:
2fLl
203.78 1.935
s
-:‘E 0:zen
1:: 12. 14. 16. 18. 20. 25. 30. 3s. 40. 4s.
B
LS
38.62 0.842
V 1. 2. 3. 4. 5. 6. 7. 8.
:
C/Z
-PXg’f 0.188 . 0.242
00*:x: . 0.226 0.198 0.170
5
I!iYSS
c/z
S
c/z
S
8':E 0:314
0.080 0.102 0.078
7.291 7.570 5.100 x3
0.217 0.242 0.133 0.04s 0.074
8.073 8.938 6.582 3.440 4.679
2:011 L.599
0.030 0.021 0.016 0.012 0.010 0.007 0.005 0.004 9.003 0.002 0.001
2.62R 2.074 1.632 1.3q-4 1.174 0.570 0.673 0.538 0.44, 0.36A 0.251
Il.996 0.620
-0.691 -0.252 -0.022 0.104
5.113 6.503
8-E 0:176
Ez 0.472 0:474
f ' ::9" 2:904
0.160 0.141 0.122 0.090 0.067 0.051 0.039 0.031
0.454 0.427 0.396 0.33s 0.2A2 0.239 0.205 0.177
X*%E 0:009
0.097 0.128
:x’% *
0.14s 0.105 0.078
:**,",9" . 1.486 1.202
0:036 8'8:: 0.022 0.015
0.837 0.994 O.STB 0.425
0.006 0.005
0.212 0.177
:*x::.
t-:2": .
2P 2.217 20.91 0.621
I%28 27.57 0.712
451.34 2.880
8'82 o:os1 0.043 0.036 0.032
283
C/Z
5
0.000 0.000
0.072
0.001 0.001 0.000 0.000
2::: 0:111 0.090 0.075
:%ioo .
?858 0:043
0.000
0.054 0.063
Atomic
Data and Nwlee~
Dms Tablee. Vol. 31. NO. 2. sep(cVnb~
1994
J. ODDERSHEDE and J. R. SABIN
TABLE. N
Atomic
Shell Corrections and Proton Stopping Cross Sections, 1 Q Z 4 36 See page 281 for Explanation of Table
‘252/2P3
tz=7
:
C/Z
I. 2. 3. 4. 5. 6. 7.
-0.509 0.160
8. :20: 14.
8. EX 0:019 0.013 0.010
z'x: .
tz=BJ
1,IE”J ALPHAIAU
.
y:
OhOPAL IIEVJ ALPHA{ AU J ”
2: ::: ::: 20. iE: 2: 55. 60.
s 6.449 10.536 10.847 9.27' 7.573 6.191 5.::t 3:6.92 3.182 2.451 1.951 I.592
0.041 0.027 0.019
:':2f 0:7ea 0.580 0.448
"0'::: . 0.009 0.007 0.006
X*Z*G 0:245 0.206 0.179
7.009 9.240 7.7% 5.916
",-:i: 0:oas
:%i: . 0.314 0.26: 0.181 0.132 a.102 0.0831 0.066 0.055 0.046 0.040
C/L
0.097 0.144 0.188 0.224 0.251 0.267 0.274
0.059 0.042 0.031 0.024 O.Ol9 0.013 0.009 0.007 0.005 0.004
f .%S
0.003 0.002 0.00'
"o-321 . 0.197
FE5 1:903 1.611 1.202 0.934 0.749 0.615 0.515
o.oai 0.066 0.054 0.045 8-E 0:020
4fL3 46.64 0.926 s 2.336 3.R3R 3.362 2.491 1.903 1.500 1 r215 1.005
I 0;oss
-:-“,:z
"0% o.o,a 0:025 0.014
x*s:,' . 0.547
0.004 0.003 0.002 0.001
0.240 0.165 0.122 0.093
8%: 0:oor 0.000 0.000
"0% 0:oF.o 0.043 0.037
c/7
s
::%I
5.RFR
0:334 :-:3 0:100
"8%1: . 6.659 5.250 4.175
0.071
3.379
0.052 0.040 :-:2": 0:ots 0.01' 0.009
:*'3:3 L:PA7 I.402 1.165 0.937 0.772
0.001 :-:o": .
:-:a: 0.386 .
0.002
0.250
0.001
0.098
,ft27 74.04 1.166
I!:63 861.33 3.976
111.31 1.430 CIZ
f
0.137 0.347
2P
WHOLE _-- ATOM
1. 2. 3. 4. 5. 6. 7. 8.
C12
3.96’ 5.403 42% 2:214 I.726
0.049
0.265 0.272 0.242 0.215 O.lR9 0.166 0.146 0.108
:*x:x o:or3 0.010 0.007 0.006 0.005 0.004
:
JS2/252/2PS
I
1292 56.86 I.022 s
-0:111 0.003 0.075 0.116 0.136 O.t42 0.138 0.130 0.107 0.085 0.068 0.054 0.044
00*x:': o:*ro 0.327
0.016 0.012
(219)
1.1295 729.41 3.661 c/z
xx. 2.281 I.809 1.472 I.223 1.034
0.01 0.096 0.072 0.062 0.053 0.043 0.034 0.027 0.022 0.017 0.012 0.008 0.006
3P
18-g;:
2:::. 0.142 0.110
.
3::
X-E, 0:034 0.030
5
::-2:: 9:337 7.377 5.925 4.660 4.064
0:205 0.264 0.310 0.339 0.351 0.350 0.339 0.323 0.284 0.246 0.212 0.184 0.160
8'88," . 0.004 0.004
8.275
0:290 0.283 0.272 0.260 0.2-4 0.224
Oo’Et
s
C/2
S
8% 0:071 0.057
ATOM
c/z -g.
3%6 32.68 0.775
41.24 0.671
x:: 0:ooe
93.20 1.309
J
it: le.
JZ:
",'X,'f .
: “HDLC
1. 2. 3. 4. 5. 6. 7. 8.
F
:*xX8 l 0.480
152/252/2P4
Y
g:
0.100 0.077 0.060 0.047
:-:3: .
ORBITAL
$:
:*:5'5" 1:343 1.113
:-x 0:2*0 0.200
x:: 60.
0
0.044 0.114 0. I48
:-5536: 3:772 3.195 2.745
:-:;," . 0.057
:;:
l
-O.O?P
'f-Et 7:opo
:*;:x 0:1e9 0.165 0.125
9.
c/z :pgjg
11.039 14.781
t* zzxx 0:256 0.251
1559
l!Z25 590.00 3.293
76.79 I.lBA
V
1,".
45
WHOLE --- ATOM
oWB:TAL I(EVJ ALPHACAU
35":
Stopping Power and Shell Corrections
C/Z
s
-0.572 -0.208
.0.073 O.Obl3
x*8",: . 0.027 0.023
1.488 2.744 2.659 2.116 1.652 1.316 1.074 0.895 0.757 0.650
",-"0:; 0:ooe 0.006
:-3Ei 0:316 0.261
8-Z 0:oo: 0.001 0.00' 0.001 0.00, 0.001 0.000
"0%~ 0:112
Et: 0:047 0.042 2::: 0:126 0.189
0.015 0.011 X'% 0:006 0.005
.5&O 62.86 I.075
0.042 i?% 0:027
8%: 0:056 0.047 0.040 0.034
c/2 -;
. :*oz a:413 :-:z 0:1so 0.107 0.080 0.061 0.04R 0.032 0.023 0.017 0.013 0.01' 0.007 0.005 0.003 0.003 0.002 0.002 0.00, 0.001
S 4.925 7.719
3.046 iJ'$iE . 2.31? :':z 13107 0.914 ?Z% 0:390 lx:. :-::t 0:137 0.116
J. ODDERSHEDE and J. R. SABIN
TABLE. I2=10)
NE
lS2/2
Atomic Shell Corrections and Ptoton Stopping Cross Sections, 1 G 2 < 36 See page 28 1 for Explanation of Table
!52/2P6 WHOLE
OREkTAL
130.
I(EV) ALPHA
1. 2. 3.
tX. xx. 60.
NA
.
. .
(z=ll)
5
0:390 0.392 0.352
5.173 6.643 9.885 8.990 7.617
:* . E': 0.1*3
5'56"; . 2.696 2.081 1.703 1.422 1.206 0.644
"0-K o:r10 0.095 0.079 0.065 0.054 0.035 0.023
C/Z
1:: 12. 14.
::. .
t;:
. :*:2"3 0.102 0.084 0.054 0.036 0.026 0.019 0.014 0.011
ZX:
:-x:3 .
fk?: 38: 40.
(2=121
S
ORBiTAL I(EV) ALPHA4
1.
2. 3. 4. 5. 6. 7. 6. 9. ::: it: ia. 5:: 2: .
-1.177 -0.167 0.240 EXS 0:3se 0.326 0.296 0.269 0.244 L?::; 0:138 0.114 0.096 0.061 0.041 0.030 0.022 0.017 0.013
0.011 0.009
0.167 0.152 8'E 0:osr 0.074 0.059 0.046 0.040 kxt o:oes
0.080 0.014
0.052 0.044 0.037 0.032
C/7
s 4.133 6.791 7.660 7.075
-Ef . 0.466 0.383 0.284
“5’
E
4.209 l 3.543
:*:s: .
0.113 0.087
3.014
0.06R 0.045 0.037 0.024 0.019 0.015
2.593 1.976 1.558
1.262 1.044 O.RdO 0.609 0.449 0.346 0.276
:%z 0:oos 0.004 0.003 0.007 0.002 0.002
2s 1.613 119.24 1.480
c/z
s
-0.496 -0.270 -0.l40 -0.053 O.OOR 0.051 0.080 0.099 0.109 0.112 0.108 0.097 0.083 0.070 0.059 0.036 0.026 0.019 0.014 0.011 0.000
0.023 0.046 0.068
c/7 -0.122 0.034 0.060 0.052 0.04s 0.042 0.036 0.035 0.03, 0.028 0.021 0.016 0.012 0.009
0.089 0.108 0.124 :*:i; 0:154
0.157 0.156 0.148 0.137
X%2 0:159 0.137
0:oor 0.001 0.001 0.001 0.001 0.001
8%: 0:02e 0.025
s
c/z
S
-0.515 0.182 0.396 Cl.390 0.319 0.245 0.186 0.142 0.111 O.OAR 0.05R 0.041 0.031 0.024
2.312 3.990 4.930 5.065 4.665 4.091 3.527 3.034 2.621 2.280 1.764 1.404 1.145 0.952 0.806 0.562 0.416 0.322 0.957 0.210 0.176 0.149 0.128
0.56l 0.434 0.346 0.2R2 0.235 0.199 0.139 0.103
i’%3
T? 1.021 1.4C P..?,-?
0.702 1.439 1.124 I.575 1.313 1.079 0.897 0.648
0.007
0.046
7P 6.558 124.41 I.512
0.757
0.080
0.064 0.052 0.043 0.037 0.037
:*::;. 0.00.5 0.006 0.004 0.004 0.003 0.002 0.002
C/7
5
27.6?7 to .Ch5 5.63C -.5ee 3.4f.l 1 .a09 1 .TQP 1.107 0.003 O-75? 0.547 0.418 0.3?0 0.2-J?? 0.732 0.*4s O.lOR O.OA\ 9."64 0.052 0.043 0.036 0.011
A.075 0.011 0.004
0.002 0.001 0.001 0.001 0.001 0.000 9.000 o.olJo 0.000 0.000 -0.001 -9.601 -0.COl -0.001 -0.001 -0.001 -0.001 -9.00, -9.001 -0.001
1s
ATOM
1.490
c/z
8%: 0:01s 0.013 0.010 0.007 0.006 0.003 0.002 0.002 0.031 0.00, 0.001 0.001 0.000
:*:::. 0.1ao
0.006
:
1
0.178
0.007
:%: 0:215
--120.74 AU
V
:-"St; . 1.340 0.938 0.6% 0.539 0.431 0.353
“HOLE
0.153 0.166
1!Zo9 1110.36 4.517
30.b63 16.140 12.417 10.297 8.546 7.104 5.953 5.045 4.326 3.750 2.901 2.315
152/2S2/2P6/352
x: 0:134
1.011 1.995 2.140 1.604 1.444 1.164 0.957 0.801 0.6PZ 0.587 0.450 0.356 0.290 0.240 0.203 0.141 0.*04
25
ATOM
-1.106 -0.043 0.320 0.392 0.374 0.339 0.306 0.277 0.251 0.226 0.187
5
-0.093 0.051 0.060 0.049 0.044 0.040 0.036 0.032
0.057
0.012 0.010 0.008 0.006 0.005
X'3E 0:266 0.226 0.194
c/7
S
0.029
0.017
0.465
--123.14 1.504
1. 2. 3. 4. 5. 6. 7. 8.
X2
E-:3: . 4.523
:
V
60.
C/Z
-0.530 -0.276 -0.135 -0.04, 0.025
O-b27
Y”OLE
ALPHAtAUJ
2.
I. .x:1
152/2S2/2P6/35
OneiTAL I(EVl
NO
FP
6.606 e1.37 1.273
1'2:: 0:2se 0.234 0.212 0.173 0.140 0.113 0.091 0.075 0.047 0.032 0.023 0.017 0.013 0.011 0.009 0.007
,',:
2:
ATCW
-8%
4. 5. 6. 7. 8.
:8". 20. 25.
.-
C/Z
V
:::
Stopping Power and Shell Corrections
25
1.451 151.05 1.666
l!S90
1243.15 4.780 s
C/Z
0.019
-0.146
0.037 0.055 0.072 0.0% 0.102 0.114 0.123 0.129 0.134 0.135 0.131 0.123 0.114 0.105 0.063 0.066
0.014 0.055 0.054 0.047 S'E 0:037 0.034 0.031 0.024 0.019 0.014 0.011 O.OJ9 0.005 0.003
0.054 0.044 0.037 0.032
X%. 0.001 0.001
:-::a I
:-x:: .
285
7s
hPGl1 169.86 1.767 s 0.499 1.042 1.357 I.342 1.173 0.969 0.833 0.709 0.610 0.531 0.414 0.332 0.273 0.228 0.194 0.136 0.101 0.078 0.063 0.051 0.043 0.037 0.031
C/Z
-0.630 0.043 0.310 0.370 0.334 0.274 0.216 E-:3: 0:107 0.071 0.050 0,037 0.029 0.073 0.014 0.010 0.007 0.005 0.004 0.003 0.003 0.002
3.049 4.45 O.?P6 S 1.476 2.626 3.375 3.714 3.65, 3.360 2.996 2.637 2.316 :%2R . I.287 1.056 0.883 0.750 0.52b 0.391 0.303 0.243 ?:ziG 0:142 0.172
C/Z 0.065 O.O,S 0.01A 0.010 0.007 O.OOC 0.005 2x
l-l:003 0.003 0.001 0.001 0.000 0.000 0.000 0.000 -0.001 :;*g: -o:oo, -0.001 -0.00,
5
41.639 18.007 10.021 6.400 :%: e:sso 2.035 I.666 1.392 I.917 0.778 n.017 0 .s02 0.417 0.701 0.203 0.154 0.121 0.09P O.ORl 0.066 0 .OSR
286
J. ODDERSHEDE and J. R. SABIN
TABLE. AL
StoppingPower and ShellCorrections
Shell Corrections and Proton Stopping Cross Sections, 1 c 2 d 36 !3eepage 281 for Explanation of Table ,*2/2s2,*Pw3s2/3P, : 2P YWLE *ron --,573 I%77 6%5 123.67 1373.04 187.14 PZ1.15
tz=131
ORBITAL I,:“,
Atomic
ALPMA
1.507
5.023
” -0.4.0 -0.252 -0.144 -0.070 3%
1 Zlos 9.01 0.407
2.016
5
C/Z
I. 2. 3. a. 5. 6. 7. 8. 9.
1.654
2%;; . 8 I .060
C/Z
s
C,7
1.008 1.831
0.223
0.067 0.045 O.O2fJ
:-z,’ 0:291 0.240
x:: 6:OOS 0.007
I;-;:; .
I.125
. 0.053
‘,-z 03769
o:o9s 0.087 0.076 0.066
:-2: “,::;z
:-“0::. 0.027
2.298 2.054 I.R31 I..65 1.190 0.961 0.426 0.704
%F 40:
:-2: . 0.023 0.017
0:132 0.099 0.077 0.061 0.050
t-2: ;:“o”ot
“,-:‘7: 0:2a9
6.000 0.000 0.000
2:: 55. 60.
xi 0: 008 0.007
:-::; 0:031
:-“0% 0:003
0.231 0.190 0.159 0.136 0.117
“0-E:: 0:ooo 3.000 0.000
“0’ $
::: ‘1. it:
“O’BS ;g;
$2
ORB
,TAL
I,:“, ALPHA ”
5 19.364 x7”:: 3:soa :-‘Bxz I:413 L.129
C/Z 0.059 0.021 0.014 0.010 0.007 0.005 0.003
1. 2. 3. 4. 5. 6. 7. 6. 9.
8-8x: $WJ;
0.925
:x: 0:
001
:t!: i-o”:,” . 0.000 0.000 0.000 0.000 0.000 0.000
::: 3x 35: 2 59.
i?::: 0: 000
E:
51
(Z=l*l
,52/252,2P6/352/3P2
: WHOLE
--‘31.04 I.552
oRB:TAL TCE”, ALPHAl
C/Z
” 1. 2. 3. *. 5. 6. 7. 8. 9.
I;-;;: -0: -0.074
;- . i% 0.088 0.091 0.094
:z- .
:- :;a7 0: Obt) 0.048
:“,: . ::. 35.
:-2: o:o,s
2:
t::‘: 0:oos 0.007
2 60. ORBITAL 11:w ALPHAIAU
1 ” 1. 2. 3. . . 5. 6. 7. 8. 9.
:I? ‘4. :2 20. $3: .
2: 60.
113
-:-8:: 0:043
:20:
a:. 4s.
3P
ATOM
“,-tS$ 0:501 0.394
:-:2 . :-s: o:oa1
0:
005
0.001
s 79 .hB, ,3.L46 7.752 5.10a 3.6,o 3.705 3.106 : -s"g: . I.165 0.856 0.658 0 -52. O-.27 n -356 r).341 0.175 E-12* 0.085 0.070 0 -059 0.05,
J. ODDERSHEDE and J. R. SABIN
TABLE.
Atomic
287
StoppingPower and ShellCorrections
Shell Corrections and Proton Stopping Cross Sections, 1 G 2 4 36 See page 281 for Explanation of Table
P
t2=15, ORB
152/252/2P6/362/3P3
I TAL
I& ALPHA1
A”
:
l”oLE 1
--110.34 1.606
OS
ATOY *!:43 1616.33 6.453
”
C/Z
6
-0.394 1:.:::
1. 2. 3. 4. 5. 6. 7. 8. 9.
0.011 0.022 0.033
-0:077 -0.029
:-::3 0:062 0.070 0.077 0.003
:-“,x: 0:oss 0.070 0.080 0.091 0.09, 0.086 0.079 0.070 0.061 0.036 0.027 0.020
::: I$: . f2: 2: 2: 50.
: %3 0:094
i?::;: +‘,:
:%z 0: 0.33
I$;;:
0.215 0.152 0.664 :‘;E. 0.727 0.647 0.569 0.500 0.442 0.353 0.266 0.240
-0.796 -0.213 0.069 0.2PP 0.283 0.2Ob 0.263 :-:‘,: 0:162 0.1,3 0.06,
:‘:7”: 0:124 0.093 0.073 0.059 O.OQO 0.04, 0.035 0.030
;:,“o”z :*::7” 0: 048 0.040 0.031 0.029 0.025 0.022
“,‘Z 0:010 0.008
2;:
*
C/Z -0.102 -0.036 0.027 0.097 0.048 0.044 0.040 0.038 0.036
0:004 0.003 0.002 0.002 0.00, 0.00,
ORBITAL I,:“, UPHA ”
C/2
1. 2. 3. 4. 5. 6. 7. 8. 9.
6
0.157 0.096 0.060 0.0.7 0.036 0.027 0.02,
22.913 19.328 12. I.0 8.131 5.852 4.433 3..84 2.816
2% ;:ggt
:*z',: IL47
:,“: 0: 004 0.003
::: 4:: 5:: . i,“. :2 55. 60.
6
(Z=*6,
tl*. Ai::
2::: 0:001 0.001 0.001 0.000 0.000 0.000 0.000 0~000
:‘z’,: 0:4,2 0.299 0.228 0.180 0.1.6 0.12, 0.*02 0.088
L52/252/2P6/352/3PO
:
WHOLE
--151.26 1.667
oRB:TAL I(EV) ~LPHA~A”,
3P
ATOM
*!S30 1733.73 5.64.
”
c/z
1. 2. 3. 4. 5. 6. 7. 6. 9.
-0.3,O -0.225 I;‘;;: . 2’::: 0:027
::: 18.
:%z* :- ii:‘: 0:053 0.039
%: 30. 35. . 2. :“,: 60. ORBITAL ,I:“, ALPHA(A”, ” 1. 2. 3. 4. 5. 6. 7. 8. 1% 12. :2 IS. ::: :50: t:: 2 60.
:-:z. 0.017 0.013 0.0, 0.009
s
c/z
0.010 0.019 0.029 0.038 0.046
-0.186 -0.046 0.016 0.042 0.047 0.049 0.010
:‘E’: 0:067
:* :z 0: 073 0.086
:20:
17507 308.23 2.300
L
“,%L: o:oe2 O.OBO 0.084 0.081 0.07, 0.066 0.065 0.046 0.038 0.033 0.028 0.024 0.021
0.030 0.026 0.022
0.006 0.004 0.003 0.002 0.002 0.002 0.00,
5 0.*73 0.362 0.539 0.652 0.683 0.652 0.693 0.528 0.468 0.416 0.336 0.270 “0%:. 0.168 0.,20 0.09* 0.071 0.057 :*::z. 0.034 0.029
0.236
5.037 5.976 4.049 7 .R96 9.164 I.671 L .37R 1 .OR, O.R99 0.760 0.567 0.140 0.353 0.79” Z’:zi: a:121 0 .‘)?T 0.074 0.060 :-“,:z 0:0X
J. ODDERSHEDE
and J. R. SABIN
Stopping Power and Shell Corrections
TABLE. Atomic Shell Corrections and Proton Stopping Cross Sections, 1 d 2 4 36 Seepage281 for Explanation of Table
* 0.143 0.298 0.446 0.552 0.595 0.584 0.542 0.490 0.439 0.392 0.317 0.261 O.P?O 0.187 0.161 0.116 :-:,"z . 0.05b 0.046 0.039 0.033 0.029
C/Z
5
0.138 0.193
18.374 Zi.260
0:077 rz2” 0.063 0.050 cl.010 0.03, 0.025 0.016 O.OLL 0.006 0.005 0.006
::*“o:: 8.15. -
b.278 ..99.9 4;osi :-f&T 2:147
0.003 0.002
:*x8: ;: fJJF . 0.626 0.457
:-E 0:001 0.001 0.00, 0.000
0.350 0.277 0.225 0.187 0.158 0. L35
(NE,352/3P6 Y”oLE
*Tot4 --175.35 I.795 0.122 0.25, 0.377 0.474 0.522 0.525 0.497 0.456 0.412 0.370 0.301 ",'E;: 0:1eo 0.155 0.113 0.066 0.067 0.054 0.045 0.038 0.032 0. om
c/z ~:-sil~ -0:046
t-i:: .
0.249 O.Pf3 O.?3R 0.213 :-:f:. 0.102 0.077 0.059 0.047 0.026 0.019 0.014 k%: 0:OOb 0.005 0.004
J. ODDERSHEDE
TABLE. Atomic
and J. R. SABIN
Shell Corrections and Proton Stopping Cross Sections, 1 G Z G 36 See page 281 for Explanation of Table : 25
WHOLE--- ATOM 168.20 1.758
l!X94
1% 429.39
2055.32 6.,46
2.809
C/Z
s
I",:::: -0.129 -0.079 -0.041 -0.012 0.012 0.030
:%: CL020 0.026 0.032 0.037 0.012
:*::: 0:072 0.079 0.080 0.078 0.073
0.062 0.056 0.018 0.041 0.035 0.030 0.026
i?oJ:z do34 0.026 0.020 0.016 0.0,3 0.011
:~% .
c/7
s
-0.194 -0.065 -0.004
s
0.105 O.Z,4 E-9”,: OhSO
L?::,' 0:041 0.039 0.037 0.034 0.033 0.030 0.028 0.029 0.022 0.019 0.013 0.009 0.006 0.004
C/Z
:*::'o 0:8X? 0.929 0.956 O.VSA 0.93e 0.859 0.762 0.66R 0.584 0.512 0.379 0.?90 :*:z.
0.47,
0.455 :*:;,’
0:350 0.2R7 0.239 ii?:“,: o:,so 0.10” 0.083 0.066
0.155 0.131 0.112 0.097
:e% 0:002 0.002
2:‘,8 0: 092 0.078
0.06s
: WHOLE. ATOM --163.52 1.733 5 6L.070
34.547 21.976 I8. ‘91 , . . 43. 0.310 1EJ-ZZ 0.349 . 0.36, 8.072 6.916 6.057 . . 7.4
0.*92
2.262 0.746
0.0..
0.033
i-2:: “,-2% 0:015
0.376 0:43s
3P 6.659 64.83 1.092
-:‘:x:
"0'2":: 0:24, 0.161 O.,ld 0.088 0.069 FE: 01039 0.033
1s
*!&I,
6.761
6:7,6 6.697
2.726
0:OOS
0.637 0:2tV
:-:E 0: 165 0.142
472.33
754.01 3.735
2.946
C/Z
s
-0.3*0 -0. ‘9. -0. L26 -0.079 -0.043 -0.0‘5 o.oo* 0.026 0.04, 0.052 0.066 0.075 0.078 0.077 0.073
z-:1”,” 0:ora 0.023 0.028 0.033 0.030 0.042 0.046 0.049 0.054 0.058 0.059
c/ 7
:-z o:os3
-0.182 -0.069 -0.010 0.021 0.036 0.040 0.039 0.037 0.014 0.037 0.030 0.028 0.025 0.022 0.019 0.013
2002 0:017
0.0.6 0.040 0.03. 0.029
:-ET 0:oos 0.004
0.0,. 0.01,
:-:z 0:020
Lx% 0:002
i?“,:,” o:oas
6233
I%,
2161.0, 6.302
0:223
0.062 0.052 0.036 0.025
:-“o!i: o:oo, 0.001
32.70, L2.182 6.364 3.955 2.718 L.992 1.528 1.213 0.988 0.822 0.596 0.454
:'5;6
::*:z? 5.510 :-t:: 3:175 0.018 :*::: :-:I% 0: 002 ET o:sS2
s
0.015 0.003 0.001 0.000 -0.001 -0.002 -0.002 -0.003 -0.003 -0.003 -0.003 :::;;4’ -0.001 -0.004 -0.004 1:’ !g: -0:oos ::-gi:. -0.005 -0.005
5 0.091 0. I.35 x,".
C/Z rp:zg -0:1CS -0.00, 0.101
s 0.165
0.320 0.456 OO’XX~ .
",'?E 0:4x< ",-2: 0:3x 0.274 0.229 0.194 0.167 0.145 0.106 0.081 0.064 0.052 0.0.3 0.036 0.03, 0.027
C/Z
0.202 0.390 0.552
1%8 L.60 0.17,
C/Z
289
Stopping Power and Shell Corrections
0.21, 0.199
0.164
O-L29 0.100
0.938
0.R32 O.,P, 0.705
-2’::; 4030
-
0.07, 0.027
1.016
0.012 0.010 :*:::. x:: $2," . 0.003 0.002 0.301 0.001 '3.001
0.000 0.000 0.000 0.000
290
J. ODDERSHEDE and J. R. SABIN
Stopping Power and ShellCorrections
TABLE. Atomic Shell Corrections and Proton Stopping Cross Sections, 1 s Z d 36 See page 281 for Explanation of Table :
t NE ,352,3P6/.62/3D‘
20
WHOLE--- *To* 171.63 L.776
11~78 2262.31 6..48
12L 5‘9.23 3.069
C‘Z
6
-0.296 IO”-:,“; -0: 075
EE 0.021 “:“‘a
::*g: 0:oos 0.022 0.037 0.048 0.“6. 0.072 0. “76 0.075 0.073 0.06‘
:-:5:. :*:3,’. 0.012 0.045 0.050 0.053 0.055 :‘:E 0:oso
EfS 0:OZP 0.023 0.0‘6 0.0‘5 0.012
0.044 0.038 0.033 0.029 0.025 0.022 0.019
1.192 * 5. ‘37 6.00, 6.675 7.595 6.165 4.983 4.095 3.426 ii-s’:: . I.922 1.521 1.235 L.02. 0.863 0.598 0.44, 0.340 0.270 0.22, 0.18. 0.156 0.13.
Es::; o:m* 0.3Rl 0.365 0.34,
0.032 0.030 0.026 0.026 0.023 0.020 0.014 0.0‘0 0.007 0.005 0.004 0.003 0.003 0.002
:*::2” a:220 0.167 0.161 0.**0 0.103 0.079 0.063 0.05‘ 0.012 0.036 0.03, 0.026
5 49.380 20.516 **.*3.
-0.002 -0.002
0.840 0.66. 0.5.0 0.4.e 0.30‘ 0.2‘7
-0.002 -0.002 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003
2::: o:*os 0.067 0.073 0.062
0.222 0.290 0.330
5
C/Z
54.290 31.798 24.173 16.991
-0.289 -0.16. -“.‘22 -0.079 -0.04, -0.02, 0.000 0.01,
:z-,“z 10:,,9 6.56. 7.371 6.43” 5.0.. 3.371 4.077
!i- :*,I? OZ3.5 0.31. is::: 0:209 0. ‘52 0. L30
2.63, 2.423 1.719
0.095 0.070 0.053 O.O.1 :-:I:
:*z: 0:aos 0. ‘62 0.565 0.172
0:020
0.407
“,-Es. “0% 0:001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5
:‘:z.:.
6% 933.1. 4.141 s
C/Z
I;';;: o:os* 0.120 ".,C. 0.1*7 0.196 0.193 0.170 0.140 0.1‘3 0.090 0.072 0.044 :%Y 01015 0.0‘2 O.O,O 0.008 0.007
45 :*:i5
2%7
56.3, 1.017
0:25.
s .6.99. 19.818 LO. 5.5 6.660 ..769 3.527 2.72. 2.,72 1.776 1..62 , .o*i 0.626
C/Z -O.!+‘@ -0.423
l?:;: o:o*a 0.023 0.027 0.030 0.034
2::: . 0.019
C/Z
:'K .
:%: 0:057 0.047 0.039 0.033 0.028
0.005
0.0‘9 “.“,6 0.013
0.039 0.0*9 0.009 0.006 0~004 0.002 0.001 0.000 0.00” -0.00, -0.001 -0.001
"0-K. 0.0“ 0.009
,285
ix; 0:o.s 0.048 0.050 0.050 0.050 0.04, 0.042 0.037 0.032 0.028
6%2
:*::: ":?nn 0.191 0.133 : *s: . 0.060 0.049 O.0.‘ 0.035 0.030
~%: 0:0.1 0.077
582.70 3.272
0.031 0.0.2 0.058 0.068 0.072 0.073 0.07, 0.“6, 0.0.9 0.039 0.030 0.02.
PO.43 L .289
:-::: ;:;g': . 0.166 0.135 0.107
1.60” 2.346 2.266 I *A?* 1.506 1.204 0.977 0.606 0.676 0.575 0.432 0.337 0.271 0.223
“,% . 0.007 0.005 0.004
6.666 C/Z
-?E C:‘42
5
C/Z 0.00, 0.05, 0.0.. 0.030 0.020
‘!;iS7, 2433.00
-1.465 -0..25 -0.043 0.122
0:2*0
5 1.007 I.993 2.07. ‘ .669 1.346 1.104 0.917 0.770 0.654 0.562 0.427
C/Z -0-P35 -0.419 -0.184
30 t .258 42.69 0.066
C/Z 0.041 0.016 0.009
l?K7
0.0,7 0.033 Cl.038 0.0311 0.036 0.034
221, 3.15 0.2.0
.%O 77.32
5
C/Z
-0.16, -0.073 -0.0‘5
C/Z
-0.015 0.089 0.09,
5
2.243 3..60
0.068
3.669 3.228
:*::: 0:02. 0.016
:‘E 11795 I .495
0.013 0.010 0.007
:‘E! o:s*a
0.005 0.00. 0.003 Z’“,K
“,‘X Or.26 0.358
-0.002
:‘E: 0:*.1 0.29,
Io0-g;: -cl:003 -0.003
:-:i: 0:128 0.103
o:oo* 0.00, 0.00, 0.000
;‘:E “:I39 0.11, 0.090 0.075
~~‘~0”: -0: “03
0.065 0.072 0.06,
:-::: 0:000
:‘:z:.
,265 91.65 1.?98 5
“,-::c
C/7
-:*“,z . L
0:329 0.415 0.486
0.031 0.030 0.027
2%.
0.0‘7 0.022
28:;. 0.661
0.0,. 0.0,‘ 0.010
“O-22” 0: 5.7 0.191
0~007 0.00.9 0.006 0.005 0.00. 0.003 0.001 0.001 0.00, 0.00, 0.00‘ 0.000 9.000
5 0 .RSQ I.740 I .R7R I .?‘I? 1.2’19 1.06.
0.141 “,-a:090 :z
0.R90 0.751 0.64‘ 0.551 0 ..22 0 -333 0.270 0.274 0.190 0.133 0.09, 0.0’5 t-23: o:o., 0.010.010
J. ODDERSHEDE
TABLE.
and J. R. SABIN
291
Stopping Power and Shell Corrections
Atomic Shell Corrections and Proton Stopping Cross Sections, 1 s 2 Q 36 See page 281 for Explanation of Table :
4F
lfZ66
,%7
2539.60 6.83, C/Z
s
-0.278 I;‘:;~
C/Z
s 0.060 0.121 0.,*2 0.23, O.Pe.0 0.30,
0.004 0.008 0.013
-0:079 -0.0.8 -0.023 -0.003 0.014 0.028
6%, 1011.46 4.3*3
625.00 3.3R9
0.034 0.034
0.055 0.039 O.Ob5 0.070 0.011
"0% 0:o.. 0.O.b 0.047
0.070 0.062 0.050 0.040 0.032 0.025 9.020 x:.
Xl 0:o.o 0.035 0.031 0.027 :*:;: o:o,s
0.026 0.02. 0.02,
0.17. 0.150 0.132
:?J:: 0:oos 0.006 0.005
E," 0:OSO 0.049 0.041
E% 0:002
0.03. 0.030 0.026
1 %o 102.2P L.371
s 0.,02
C/Z
-0.796 -0.422 -0.209
0.19s
0.286 0.36l
-:%: 0:101
0.485 0.478 0.?23 0.55, 0.58, 0.59. 0.590
z-:x. :*:88: 0:171 0.14. O.,lR 0.095 0.077 0.01, 0.031 0.022 0.016 0.013 0.010 0.008 0.007
-0.
to3 0.100
0.159 :*::: 0:09b 0.08b 0.078 :'::: 0: 0.5 0.033
5
5 2.::: .
6.095 5.813 4.978 ..13. s....
2*:2 3:.7.
:*::z 2:156 L.667
:-::: r:.sa 1.088 O.R,b O.b.6 0.525 0..36
2.685
0.001 0.00,
:':A;: o:oe7
0.00, 0.000 0.000
:%z 0:90.
EG 0:1s1 0.127
:%I: . 0.00. 0.00, 0.002 0.00, 0.00,
;*;:: 0:on 0.061
z*::: o:oo, 0.000
,!ZbO s 0.00. O.OOR 0.011
3.593 3.000 2.502 2.10. L.787 , .535 1 .lb, 0.919 :'I::. 0.517 0.357 :',':," . 0.161 0.13, 0.110 0.093 0.080
C/Z
s
-l? . % -0.03, 0.002
0:022 0.025 0.028
s-:,': 0:03.
0.024 0.035 0.051 0.062 0.06, 0.069 0.069
0.03, 0.033 0.037 0.040 0.043 0.044 0.0..
:*oo:: . 0.031
do.1
0.042 0.038 0.034
Z’:“,:
0.030 0.026 0.023 0.020 0.016
0.033
0.926 0.02,
:-x,',' 0:oes 0.024 0 .oz? 0.016 0.012 0.009 0.007 0.005 f?i%
C/Z
:*::: o:ooo -0.00,
-0.003
0.03. 0.029 0.025 6":., 65.38 1.096
0.24.
o.o** 0.007 0.002
0.640 0.040
0:003
lz.3 3.23
1051.66 4.454 0.051 0.104 0.,56 0.205 0.145 0.272 0.265 O..?RS 0.276 0.261 0.227 O.,Y. 0.16, 0.145 0.127 o.owi 0.07. 0.059
“0%~
-0"':::.
hfYA7
*IZ9* 692.8. 3.560
2652.59 6.982 C/Z
2.538 4.043 ..541 4.20.
0.031 0.02. 0.019 0.012 0.009
s 25.096 10.239 5.5b. 3.509 2.433 1.79b I.386 1.,05 0.903 0.753 0.549 0.419 0.332 0.269 0.22. :-:",fi o:oez 0.065 0.052 E2: 0:03,
C/Z
s
CIZ
x: 0:019 0.015 0.012 0.010
0. L65 0.13,
f
-0.05, 0.11. 0.135 o.**o 0.080 0.058 0.042
0:031 0.030
;'%: 0:006 0.005 0.005 0.003 0.00, 0.002
1.129
CIZ
-L?:::
k?",:s . 0.46. 0.417 0.320 ix .
3374 69.43 C/Z
t/7
5
-0.769
0.099
zJ*::: -0:07a 0.018 0.066 0.133 0.162 0.,,7
0.174 0.25, 0.3,R
",-:;: .
0.540
Z'Z. 0.099 0.00,
O..RO 0.51, 0.438 0.397
x3:.
0.712 0.30,
",-",:: 0:013 0.011 0.009 0.007
0.194 0.159 0.133 0.113 0.09, 0.085
i?.':," . 0.464
5 Ye::3 I:716 1 ..Q, ,.22R I .O?O 0.859 0.730 0.675 0.540 0.4,. 0.328 0.767 0.222 0.187 0.13, 0.097 ", *:rz 0:0.-2 0.04, 0 .osc 0.030
292
J. ODDERSHEDE and J. R. SABIN
TABLE.
Stopping Power and Shell Corrections
Shell Corrections and Proton Stopping Cross Sections, 1 d Z d 36
Atomic
See page 281 for .Explanation of Table MN
(2225)
:
6,s
OR8ITAL It:“, ALPHAi
AU)
5 O.O?P 00’:ii: 0:2az
C/7
”
-0.749 -0.Zl2 -0.219 -0.0.59 o.oo* 0.072 0.119 0.156 O.ICR 0.176 O.l?O 0.149
1. 2. 3. 4. 3. 6. 7. 8. 9. . :2”. it:
0.333 “,-::: 0:445 0.469 :-::z. 0.48, 0.451 0.415 0.37.3 0.296 0.234
0.126 0.10. 0.083
. ::. ‘J,“’ 35:
t-0”::. 0.025 0.018 0.010 0.01 0.009 O.OOB
. 2. 50. 28:
5%9
OYWITAL I
129.90 1.515
5 2.,14 x8: 4501 f-ES
0:021 9.017 3.014 0.0*2 0.009 O.OOR 0.007 O.“Orr Q.003 :-::: . 0.002 0.00, 0.001 “0-E 0:ooo
s 0.352 : -:2 1 :?I 1.124 0 .o*e 0.901 O.-.RP 0.593 0.51 0.401 “,-2;: o:n1c xi g:;:: o:oso 0.048 0.040 0.034 0.029
2:;90 4.57 0.290
* ::-::: . 10.153 6..?3 ..516 3.349
2:940 2.503
8. 9.
I
:-::z 0:1io 0.111 0.095 O-OR3
C/2 -0.051 “.OL!i 0.029 0.029 x’,:
EPI I :698
. ::. 1Q. 16. 0.425 0.286
:::
C/Z 2’:z
s 2.615 4.362 5.278 5.3,2 ..BJO ..206
0:202 o-*90 0. L53 O.ll? 0. ORR 0.067 0.051 0.040 0.02, :-%z 0:01 0.008
1-8:: 2:t&* 2.31 I.780
I
: .-::t 0.954 O.ROS 0.560
I
KE .
$9: 40. 45.
.
x-::: 0:124 0.100 0.003
2: 60.
:-,“z:.
:-::,”. 0.2s
:-::: “,:m:
XE . O-1.7 0.127
0:001 0.00‘
TS 1.691 792.34 3.816 C/Z -0.72. -0.404 -0.220
4. 5. 6. I. 8.
I:-$:: . 0.060 :-::o’ g::fz
9.
5 0.070 O-13(5
0.198 :-Ez. 0.339 0.374 0.402 :-1:;
.
“,k:
2.
. O.li?O 0.10, O.OA9 0.036 0.037 0.026 0.019
::: 18. f2 . $5”. 40.
:-::: 0:010 O.OOR
2%* ..92 0.301
Oh6 i?:::.
C/Z -0.036 0.010 0.027 O.O?P O-02? O.OP3 0.021 o.o,a 0.015 0.012 0.009 0.001) 0.007 0.006 3.005 0.00. :-:“,: 0:001 0.00, 0.001 0.001 0.00,
c: :-kx I :201 : -‘,:: 0:IW. 0 .,*7 0.662 g-2;: 0:3Ql “,-2:: . 8%:. 0.126 O.OQ4 0.073 0.05* :-2: 0:034 0.029
R
J. ODDERSHEDE and J. R. SABIN
TABLE.
293
Stopping Power and Shell Corrections
Atomic Shell Corrections and Proton Stopping Cross Sections, 1 c 2 Q 36 Se-epage 281 for Explanation of Table : .I= 3023.68
‘!L
,293 875.16
7.45. s
CIZ
s
43.270
-0.245 -0.16‘ -0.1‘1
xi,'
C/Z -1.6.9 -0.490 9.0‘8 :-‘,:z.
:x: ‘4.737 152 17:
“0’36: . 0.370
0:009 0.011
-0.077 -0.050
12.60‘ LO.796
2::: 0.019 * 0.02,
3’::: 0:003
i?::X 7: 133 5.65‘ 3.825 4.600
ii- . :,‘: 0.340 :*E. 0.2.. 0.2‘6 “0’ . E;: 0.09‘ 0.070
0.063
:* z5 1:.94
E%: 0:053 0.0.. 0.036 0.030 0.02. 0.020 0.017
9.65‘ 9.555 0.400
0.035 0.036 “0%: 0:030 0.027 0.02. 0.072 0.019 0.017
-0.174 -0.088 -0.040
0.036 0.071 0.109 0.145
-:-8E 0:023 0.029 0.031 0.031 0.03, 0.028
s
x%: 0:003 0.002 0.001 0.000 -0.00,
Et a:‘83 0.1.. 0.112 0.080 0.070 0.046 0.032 0.02.
::‘g: -0:003
3227.87
0.360
s
:z% .
2% 0:371 x:0
Es: 712.7 5.758 4.696
o:rs,
3.9‘0 3.3‘0 2.8.1
l?;::. 0. ‘6. 0.*2. 0.095 Lxx
0:O.b
:‘I%? 0:57, 0..9.
0.031 0.030
C/Z -0.200 -0. -0.11, -0.078
C/Z
:‘E:. 0.0‘0
:g*o”;: . -0.0,. 0.000 0.012
vi:: 0.017 * 0.019 0.02, 0.023 0.026
0.033 0.033
:*z:.
!.%I, 0:ona 0.023 0.02‘ 0.0‘9 0.017
0.0‘7
5z3. 163.22 1.732
-0.207 0.017 0.102 0.116 0.102
s 0.003
‘58
E:$. :’ Zf ,:200 0.967
:*:x 0:22, 0.179
“0%X 0:02cl 0.020 0.016 0.0‘2 0.010 O.OOR
2 :t: 0: 106 0.09‘ 0.079
s 2.462 4.25. 5.36. 5.736 5.500 ..9e, 4.396 3.8.. 3.359 2.9.5 2.30, 1.84, I .506 1.255 I.063 0.745 0.55‘ 0.426 0.34, 0.279 0.233 0.198 0.170
c/z
*
C/Z 0.031 0.010 0.009
S%S ,3*s.,s 4.916 5
-0.170 -0.007 -0.041 -0.011 i?E 0:ora 0.03, 0.031 0.030 0.028 0.026 0.025 0.023 0.022 0.0‘3
C/Z
0.034 0.069
-0.670 -0.380 -0.2*3 -0.099
0.10q 0.20. 0.212
-x% 0:09, o.,r. 0.146 o.*se
?I’::,”. 0.19, O.L6F 0. I.7 0.129 0.“.
i’:“,: 0:,34 0.1‘4 0.096
:*:::. 0.008
Ez: 0.055 0.0.5
:%: 0:029 0.02‘
:*:::. 0.00. 0.003
z-:3: 0:02tl 0.02.
:*::s o:o,, 0.009
2% 5.50 0.3‘8
1.37‘ 2.368 2.973 3.20. 3.07,
“,‘::: 01092
906.75 ..ORP
7.702
:‘,“,:f ‘I:513
:*;:: 0:310 0.342 0.370 0.392 0..09 0..25 0.421 O..“? 0.376
:*:,“:.
2s 1.694
‘ !L
.6. 2.LF.O
$5: 367
0.063 OS,24 0.180
I:‘;~;; -0:21.5 -0.097 -0.010 0.054 0.100 0.132
3l=
WHOLE--- *TOY
:’0:
“,‘::: 0:032 0.028 0.02.
z!:: 0:009 0.006 0.004 0.003 0.003 0.002 0.002 0.00,
$z”o; .
:
“0’::: 0:132 O*‘lC 0.088 0.069 0.055
C/Z -0.299 0.096 0.239
I;‘o”g +W:
24.592 41.596
“0% 0:,97
:-“,:t. 0.023 0.022 0.010 0.01. 0.0‘0 0.008 0.006 0.005 0.00. 0.003
0.032 0.0‘9 0.009
:pg: -0:002 -0.002
C/Z
ii*:3 o:21a 0.223
5
C/Z
30 9.783 L32.33 1.559
C/Z
:;‘gg 0: 0‘8
..a,9 5
C/Z
2% 5.17 0.308
25,
5%
“0’:~~ .
3.235
t- ~Z o:m
x5 0:035 0.028
1263.15
4.010
105:3, 149.45 , .h57 s :3%z . 9.659 t -::: 3:227
-0.00‘ I~‘~~~
1.006 0.6ll 0.770
-0:002
0..97 0.413 0.279
0.023 0.010
L .395 1.18.
-0.003 1;’ gj
:‘:z . 0.12,
0 .oo* 0.011 0.005 :*:::
:-x:: 0:471 0.382
-0:ooa -0.003 -0.003
po’oo9e~ 0:oas 0.058
0:003 0.002 0.002
00-z: 0:rea 0.19i
,233 151.33 1.706
294
J. ODDERSHEDE and J. R. SAMN
Stopping Power and Sheii Corrections
TABLE. Atomic Shell Corrections and Proton Stopping Cross !%c.tions,1 d 2 Q 36 See page 281 for Explanation of Table cu
(2=29)
: lHOLE
O”YTAL l(W) ALPHA(
20
&TOM
,4&s 1010.46 4.309
I!:29 3362.26 AU,
7.86.
”
C/Z
5744 1336.95 ..95,
:p:34’ . iK+:: -0.109 o:oo, ~o”‘~~2’ . -0.032 2K 0:014
1. 2. 3. :: 6. 7. 6. 9.
-0.634 -0.361 -6.204 -0.096
ix% 0:019 0.021 0.024 0.027
:::
“0’:::
0: 190 0.227 “o-5: 0:x1 0.33,
8’::: 0:153
:*z . 0.366 0.358 0.339 0.3I6 0.257 0.207
x2 0:13*
ii: .
0.052
-:-2x . 0.086
-0.016
-X*88X.
s
C/2
s
0.060
:*:J’: 0: 031
32: .9. 45.
x2: 0:oss 0.038 0.031
0.031 0.030 0.028 0.025 0.023
k?d:,’ 0:022 0.01r
“0’::: $;;g
::: 60.
:*oDx: 0:01a
:*o”:: 0:OlS
x: . 0.009
g:g;: .
i?Ki. 0.06.
2250:
JO 12.404
11z45
OAEIT~L
5.52 0.318
la:“, ALPHA v
0.013 0.00, 0.002 0.00, 0.000 -0.001 -0.001
2.103 2.649 2.674 :*3’,3” . 2.18. 1.69‘ 1.643 1.439 1.132 0.916
:::
::‘:xx. ?E. ?g”EX . 1 .Sll 1.209 0.99,
I;‘::,’ +“o:
l?BzoX 0:46S 0.366
-0:ooa
::: 5: 52: 1:: 5::
ZH
:
(2=3&J, YH0l.E
oRB:TAL l(EVI ALPHAI
iv
”
--278.64 2.264
t Cl.?
8%; 01005 i?,“::*
:-x:: 01474 0.389 0.325
SJ::.
Z’Z8.
IS
2s
I f&6
1.697
1.962 s
C/Z
1372.04 4.474
s 0.002
C/Z
,541 ,7p..a4 c.eta
52771
LOR9.16
3449.96
s.021
s
-0.170
0.076
-0.092 -0.04A
0.052 0.079
%Z o:o29 0.027
5.930 :*:t: 0:294 0.262
31:
:*::% .
35:
:*:x 0:oao
4450:
“,-go’
:I? 69.
0: 041 0.033
-0.616 I;‘:;;:.
“O-:3: a:179
:*:“5: 31444 2.962
:-:2’: 9:023 9.022
?fi-: I:260 1.0*, 0.639 0.705 0.602 0.520
0.007
0.019
0.016
FE . 0.004
:*:::. 0:135 0.120 0.106 0.96, 0.064 0.052 0.043 0.036 9.031 0.027 O.OP3
2% 6.,9 0.33,
LA, ALPHAlAUJ ”
C/Z
1. 2. 3. 4. 5. 6. 7. E. 9. ii: ii: .
:*:5”: cl:159
:*:“,9
ORBITAL
::: 60.
:*1:3 1:0x2
-0”‘::: a:oa, 0.113
.
2:
5*::3 4:00fS 3.155 2.536 2.ORO
:*::r; 0:072 0.051
0.048 0.094 0.137
-‘).a96
1%:
:::
zu . 0.2,. O.l-?l
:~*;:4’ -o:oo* -0.004
-0.227
:2:
2:
0.302 0.3.5
x:8 0:072 0.01.
ATOH
1. 2. 3. 4. 5. 6. 7. 6. 9.
s 2.993 5.315 6.602 7.359 7.148 6.556 5.854
-:*dz .
:g*:g . -0.004 -0.00.
I:‘;:: -0:oos
I,“:
C/Z
s
C/Z
1.213
1. 2. 3. . . 5. 6. 7. 6. 9.
144.29 1.620
s
-0.196 0.003 0.085
1.06, L.666 2.31,
:*Kz o:os* 0.073
:-255 2:369 2.093
Cf.?
s
C/Z
s
:*;E. x5T 0:037 :*::I:. 0.01. 0.011 0,009
“,‘Ei 0:240 0.2‘7 0.290 0.309 0.325 0.345 0.350 0.342 0.326 0.306 0.25, :*:z. 0.138 0.116 9.099 0.066 0.075
C/Z -“,*E 0: 022 0.026 0.026 0.025 :*:‘3: ;:z;g . O.OIl 0.009 0.00.3 0.007 0.006 0.005 “0% 0:ooe :*::: 0:001 0.001
5 0.315 6.693 0.947 0.994 0.905 O.-m, 0.691 0.504 :*,‘z 0:366 0.296 “0% 0:173 0.122 :*2: 0:057 0.047 0.039 0.033 0 .OP9
J. ODDERSHEDE and J. R. SABIN
295
Stopping Power and ShellCormtions
TABLE. Atomic Shell Corrections and Proton Stopping Cross Sections, 1 d Z G 36 See page 281 for Explanation of Table
,!235 3642.55 8.18, C/L -1.804
Io,‘f2,gz
:;-go" . 0.210
-O:tO6 -0.076 -0.053
0.363 0.41. o:.,e z-t:?
:;-z: 8.52. 9.65. -
0.405 0.373 0.338
1.569 6.073 ..982 4.16.
0: 2.1 22: 0.182
3.042 3.536
:-:E 0: 085 :-:t:
,:297 1.017 0.864
",-2: 01049
,9:95 1100.06 4.496
s “,-“,“,:
0:OOS 0.008 0.010 0.012 0.013 0.015 ix8 0:021 0.023 0.025
:-z:
0:045 0.037
2z: 0:536
C/Z
s
-0.L64 -0.oe9 -0.047 -O.OLS 0.001 0.0'. 0.022
t-t%: . 0.077 0.102 0.125 0.1.. O-L59
0.027 0.029 0.029 0.027 0.025 0.024
;-:E 0:174 O-L65 0.150 0.133
0.023 0.022 o-o*9
:-:A: 0: 080
",-",:: o:o,o 0.008 0.006 0.005 0.004
0.063 0.05, 0.0.3 0.036 0.031 0.02‘ 0.023
C/Z
5
5
0.249 0.553 0.402 O.ACI 0.829 0.733 0.640 0.562 0.496 0.44' 0.352
-0.595 -0.3.3
0.044
-0.,9R -0.098
O:,S,
0.1.. 8-:x:
2:2': 0:2.6 0.267 0.286 0.30, 0.329 0.322
0:,3a 0.121 i';:t
0.32. 0.31, 0.293 0.243
0:0.7 0.033 0. "24 0.919
:-::I: 0:oor O-O"6 0.005
:-:t: 0:'s O-l,.
it?::," o:o,o
:-::: 0:073
",-I%: 0:ooi 0.002 0.00, 0.001 1.00,
i?G,”
-0.066 -0.005 o-o,9 i-z:: 0:024 0.023 0.021 z-z::
a:012
i-:% . 0.,9* 0.169 0.119 O.OR9 0.070 0 .OSh 0.046 0.039 0.033 0.029
4s
L-939 9.67 0.42,
.%a
L99.95 I.917 s 0.93’ L-6.2 2. ‘05
C/Z
-0.206 -0.009 0.076 0.103 0.099 0.066 0.075 0.068 0.062 0.058 0.05, 0.013
:-,"9,7 2:225 1.993 1.755 1.140 1.357 L.076 0.875 0.728 0.615
z-E% . 0.023 0.013 0.009 0.006 0.004 0.003
C/Z -0.60. -0.018 0.173 0.283 0.306 0.285 0.2.7 :-:"7: 0:141 0.096 0.068 :- z::: 0:030 L?::; 0:009 :- E 0:004 0.004 0.003
;-::2" a:002
C/Z
-0.073 -0.051 -0.033 ::-o";s" 0:005 0.015 0.030 0.0.0 0.048 0.053 0.057 :- :x4" 0:0.7 0.0*1 "0%: 0:024 0.020 59, 225.58 2.036
0.002
0.798 1.422 1.841 2.09, 2.157 2.06, 1.878 1.672 , ,478 0.710 0.602 0.516 0.369 0.277 O-2,6 0.113 0.143 0. *to 0.102 o.o**
-0.663 -0.148 0.11, 0.240 0.286 0.282 0.25. 0.219
71652 5.060 3.590 2.689 2.097 1.687 1.390 1.167 o.e.59 0.661 0.525 0.429
:-,","z . 0.004 0.004 0.003 0.002 0.001 o.oo* 0.000 0.000 0.000 -o*oo* -0.001 -0.001 -0.001 -0.001 -0.00, -0.002 -0.002 -0.002
C/Z
5
0.026 0.009 0.006 0.004 0.002 0.002 0.001 0.001 0.001 6.001
19.845 10.124
0.001 0 -00, 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
:-2345;7 0:175 0.134 0.105 0.085 0.071 0.060 0.051
:-::: 0:OOS 0.005 0.009 0.0'1 o-o,, 0.01. 0.016 0.017 0.020 0.022 0.024 0.025 0.026 0.027 0.025 0.023 O.OPl "o-8:; 0:016
C/Z
5
-0.163 ::-:g -0:021 -0.002 0.011 0.020 0.025 0.027
0.0*3 O-O.6 0.069 0.091 O-L'2 O-l.30 0.144 0.15. 0.160 0.16,
:-2;.
z-:7: 0:129
:-::z 0:0.72 0.021 0.019 0.016 0.013 0.010 O.OOR 0.006 0.005 0.004
"0.:;: . 0. OTB 0.062 0.050 0.042 0.035 0.030 0.026 0.023 I':,, L3.0, 0.506
s L-180 2.175 2.9,6 3.453 3.778
0.076 0.056 0.043 0.034 0.020
3.282 3.003 2.487 2.063 1.728 1.465 ‘-25.6 0.896
"0'::: 0:oos 0.006
0.525 0.673 0.422 0.348
C/Z
*
15.166 v.4:: 10.105 o:o,. 6.257 0.007 0.009
: .5::
0.006 0.005 0.00. 0.003 0.002 0.00, 0.001
: -:x:: 1:452 1.200 I.010 0.147 0.576
0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 :pg: . -0.001
",-:5x . 0.3'3 O-2,3 0.155 0.118 0.093 00-00~s n:o53 0.045
:-ET . :-",-:z . 1.453 1.161 0.951 0.794 0.58, 0.4.5 0.352 0.287 0.836 0.16, 0.116 0.088 :-"0"5: 0:oaa 0.039 0.033
2P 5.602 1434.2. 5.13.
,‘,‘.a,
12%9 295.59 2.33, C/Z
0.015 0.009 0.006 0.005
0.021 0.012
1105.35 4.667 5
-0:103 :p:::
0.097 0.099 0.088
:-2: I:326 o-9.0 0.703 0.547 0.440 0.36, 0.363 0.258 0.223
5 ::-:I:
C/Z 0.030
,183, 3650.25 6.190
290.81 2.3'2
-0.220
5 L.55.
2.833 3.755 ..3*, 4.664 4.625 ..a79 4.038 3.672 3.3‘1 2.698 2.213
1.1e5 4.84 0.298
C/Z
5
0.0.”
I;-;:: -0:
,266 ?14.33 1 .a35
192
-0.095 -0.02. 0.030 0.072 0.103 O-,26 0.141 0.15. 0.151
0.079 0.,,6
:-::; O:?OS 0.230 0.350 :-:"Bt: 0: 304 0.312
:-::z a:107
0.310 0.299 0.283
0.0.9 0.072 0.03. 0.025 0.019 :-::x .
"0-E: 0:159 0.133 0.112 0.053 0.096
0.010
0.072
C/7 r;-$g “:o,R “.“P5 0.025 0.024 0.023 O-O?, 0.019 Z-,“i’ co,: o.oo* 0.007
0."06 0.005 0.00. 0.003 0.003 0.002 0.001 0.001 0.001
5 0.34, 0.573 0.756 0.94, O.-O* 0.714 0.626 0.550 0.4*7 0.,-T. 0.348 0 .PR. 0.235 0.lO-J 0.169 0.119 O.Or(9 0.070 :-Et o:ms 3 .",3 0.029
J. ODDERSHEDE
TABLE.
and J. R. SABIN
Stopping Power and Shell Corrections
Atomic Shell Corrections and Proton Stopping Cross Sections, 1 d 2 6 36 See page 281 for Explanation
~NE,352/3P6/30,0,452/4P3:
45
YHOLE
--300.39 2.3+9
1. 2. 3. 4. 5. 6. 7. 8. 9. :20: 14. :0: 20. $1: . 2: 2: 60.
of Table
ATOM
L%b 1202.15 4.700
I!:26 3852.74 &IL4
40.135 33.19‘ :;-z Is:ols 12.915 ‘~-Z a:771 ,.b.293 606 5.179 :-~~~ 3:160 2.292 :,:I01 -325
0.25, 6. L95 0.156 O-L16 ",- 2: ":061 0.050 0.042
0.002 0.003 0.005 0.00, kx;: 0:012 0.013 :';:B . "o-2: 0:072 :-,"ji: . 0.026 0.025 0.024 0.022 0.02" 0.019 0.017 0.015
0.910 0.7b.5 0.6.53 0.565
3P 4.946
11.79
219.60 2. **a ”
O-.66
C/Z
s
1. 2. 3. 4. 5. 6. 7. 8. 9.
O-b97
1.253 :-::s 1:971 1.920 1.777 ;-g; L:266
:2:
*
C/Z
. 0.056
z;-:g
Oo-:t; . 0.273 ",-z:!: 0.165 0: 195
L.016 :-t::
~-',~5' 0.063 .
0:591 0.506 0.364 0.214 0.214
0.0*5 0.030 0.023 0.015 0.011
2 ::: 0:119
0.007 0.008 0.005
0.101 0.056
E%:: .
:-:z. 1.929 1.626 I.387 1.194
::: :::
0.016 0.010 6.00, 0.605 0.00. 0.003 0.002 0.902
:2: 2: it:: 55. 60.
c2=34,
SE
~NE,352/3P6/3",0,452/4P4: W”OLE
--316.38 2.386
oRB:7*L I(W) ALPHAIAU)
::: :t: 16. 22:: 32:
C/L
0.294 0.355 0.436 O-.43 0.441 0.43, 0. a01 0.366 :-:x1 0: 263 0.200 0. ,!i5 ".L22
15.414 (3.152 :fJ-',::: CL692 7.920 6.394 6.269 3% 3:246
0.097 6.975 0."6.
b-t',: . 0.784
0.044 0.053
28% . 5x03 277.32 2.26,
-0.073 -0.052 -0.035 -0.021
0.002 0.003 0.065 0.006 0.008 0.009 0.011
-",-%': 0:010 0.024
0.012 0.013 o-o,5 O-Ok?
z-g; 0: 049
:-ET o:ata :-::a
!i*",:: . 0.9.l 0.035
0:024 0.023 0.021 0.020 0.018 0.016 0.015
0.022
2P
I%
C/Z
5
-0.156 -0.068 -0.049 -0.023
0.020 0.040 0.060 0.079
-"o-"0:: . ",-",::
Lx: 0:,27
0:025 0.02, 0.026 0.025 0.023 0."22 0.021 0.019 0.016 0.013 0.011 0.008 0.007 0.006 0.005
2::; 0:1r5 0.143 0.133 0.121 O.LOR 0.09, 0.075 0.059 0.04R 0.04" 0.034 KX 0:orr
C/I 0.015
6.725
:-::9 . 0.010 0.007 0.006 0.005 0.004
:-2:: 2:991 2.205 1.667 I.335 1.066
:-::: 0:oot 0.001 0.001 0.001 0.001 0.000
"O-4:: .
2: 36. :2 550:
:-i%: 0:""" 0.000 0.000 0.000
s
i-:4': 0:asa 0.29" 0.242 :-:t: 0.073 0:092 :-:z. 0.042 0.036
C/I -0.074 -0.014 0.01? 0.072
0.024 0.023 0.073 n-022 0.070 O.O,P 0.013 0.010 O.009 0.00, P-*07
“0’:z:
0.152
a:021 "-016
:-::I . 0.00' 0.001 :-Es 0:001 0.001
2:::.
15.21 0.529
1. 2. 3. 4. 5. 6. 7. 8. 9.
::15:
9
C/1
4763
,t:90 24.07 d-665
L23D362 4,5.65 2.76.
1% 264 .P7 2.106
5.502 1541.54 5.382
Y
:20:
%
:54”: 0:079 0.652 0.505 0.403 0.330 0.276 0. IRR 0.13, 0.104 0.063 0.06, 0.056 0.617 O-0.0
1286.55 4.662 s
-0.2"6
“5:. . 60.
I,:“, ALPHA,*“,
:-z:: ,:9as 1.551
ix: 0:002 0.001 0.00, 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.00,
If224 e022.64 6.596
:::
O”8ITAL
ix,' 0:s 05 0.407 0.336 0.262 0.241 0.206
0.02, 0.02" 0.0*5 0.010 0.00, 0.006 0.005 0.004
3P ATOM
” 1. 2. 3. *. 5. 6. 7. 6. 9.
0.92. 1.72" 2.329 2.764 3.101 3.263 3.246 3.125 2.939
5 ,0.*17 R-O** 5.153
C/Z
+ 0.171 0.376 0 -569 o.F1,4 0.67R 0.6?6 “.Sb!! n.997 0 444 0 .?-I?7
0.724 0 267 O.Y?PP O.IPP 0.16, 0.1!4 O-OR6 0.06, 0 -054 :-ES 0:033 0.02e
J. ODDERSHEDE and J. R. SABIN
297
StoppingPower and ShellCorrections
TABLE. Atomic Shell Corrections and Proton Stopping Cross Sections, 1 < 2 G 36 See page 281 for Explanation of Table
t/7 -0.074 -0.015 0.011 0.021 0.029 ?,"Z 0:022 0.020 0.018 0.0** O.O,l 0.009 0.00(1 0.007 0.006 0.001 0.003 0.003 "IOOZ 0.00% 0.001 0.001
C/Z -0..255 -“o-EEi . :-“,xs 0: 09, O.OE% 0.074 :- 2: 0: 056 0.049 0.043 0.036 0.030
s
5
0.516 0.949 1.260 I.473 L .595 1.614 L.547 *.*a,
0.60‘3 1.150
:-:% 0:9s, :-ET 0:564 0.487 0.353
:-::; 0: 008 0.006 0.005 0.004 0.003 0.00%
:-,‘“,x o:ra9 0.139 0.117 0.100 0. OBC
(NE)352/3P6/3”,0/QSZ/4Pd:
C/Z
:-E 2:177 2.356 2.442 :-22. 0.180 0. L36 0.100 0.07s 0.051 0.045 0.027 0.018 0.013 :-z 0:006 0.005 0.004
:-::: 2:x.* 1.97. 1.697 1.455 1.254 :-SE 0:bOO 0.472 0.382 0.3 Id 0.266 0.227 0.197
0.009 0.01, 0.014 0.010 0.007 0.006 0.005 0.005 0.004 0.003 2,“:: 0:001 0.001 0.001 0.00, :-:t% 0:ooo 0.000 0.000 0.000 0.000
5 0 -380 4 -922 3.451 8.491 I.863 I.437 1.113 0.933 0.778 0.660 0.993 0.381 0.308 0.253 0.112 0.145 0.106 0.08, 0.06. 0.052 0.043 0.037 0.032
s
CIZ 0.093 0.08, 0.057 0.044 0.032 0.023 0.018 0.014 0.012 0.011 0.009 0.00.9 0.006 0.005 0.004 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000
26.611 26.W, 18.200 ‘i?-:z 7: “56 5.582 ..5%9 3.152 3. ,63 :-“8:: 1:451 1.,*9 0.999 0.678 0.49. 0.377 0.899 0.m3 0.201 0.170 0.146
IS
WHOLE
--329.59
ATOM
2.46,
C/Z
s
-1.887
29.75,
1;-:;9” . z-l%:
34.514 26.222 20.028 LB.219
0: 355 0.415 0.4*, 0.448 0.043 0.*,7
C/Z
S
c/z -0.149 -0.oe5 -0.049 -0.024 -0.006 0.006 0.015 o.o.%* 0.024 0.026 0.026
13.664 11.789 190-:3203 8:138 6.586
0.382 0.346 0.31, 0.279
:-2% 3:903 3.371
z-:2 0: 130 0.101 0.089
:-;*,x 1:*57 I.,,9 0.975
0.069 OS, 0. 0.048
2%: 0:607
125YEO 564.7, 3.222 C/L -0.263
C/Z
* :-2: ,:,a3
-0.793 -0.333 -:-:;:o:,se
0.076 0.084 :-:“,I 057 0: 0.05,
: -:z: ,:2*7 1.130
0:0x :-::z
FE 016.7 0.55. 0.479
0.020 0:007 :-:A:
00-1:: 0: 208
:-::,” o:ooa 0.002
C/I
S 0.018 0.03, 0.055 0.07% O.OPR 0.103 0.115
E:: . 0.022 0.021 0.019 O-O,6
:-::;: 0:134 0.133 0.125 0.115 o., 04 0.093 O.OTB 0.057
“0-E: 0:009 0.007 0.00‘ 0.005
i-z 0:033 0.028 0.025 0.022
-0.508 -0.300 -0.,,9 4.096 -0.033 0.016 0.054 O.OR3 0.106 0.123 0.14, 0.145 0.140 0.120 0.115 0.081 0.05, 0.0.0 0.030
0.029 0.057 0. OR. 0.109 0.132 0.153 0.171 0.188 :-:E 0:236 0.248 0.252 ix: 0:209 0.176 0.147 0.123
:-z::.
262 0: 07R O.“BR
“02x.
.t:,s 23.R, 0.66,
s 0.486 0.924 L.281 1.79, * -568
0.216 0.232 0.216
1.959 2.063 2.096
0.062 0.049
:-z; , :790 1.561 1.352 1.173 1.023
O.OPO 0.029
i-E .
FE: 0:oos 0.007 0.005 0.005
EH,” 0:302 0.2 0.218 O-,89
55
-0.074 -0.016 0.010 0.*?Z, 0.021 0.023 0.023 0.022 O.OIl 0.019 0.01s 0.01, 0.009 :-Ef 0:ooa 0.005 :-::I: C+$ . 0.001 0.00,
9 0.15, 0 -374 0.489 0.590 :-?I:: 0:5t, 0.467 0.410 0.37, i-2: . 0.215 “.lRP 0.156 0.112 O-OR, 0 -066 0.053 0 .O.d 0.037 0.03, 0 -027