Polarised neutron study of the magnetic excitations in single-Q chromium

Polarised neutron study of the magnetic excitations in single-Q chromium

(UO!S!A!a 'A.8 sJ~qs!Iqnd q1oq .IOJ pasn alaM S[r?lSh (1‘1‘1) la[snaH pasgauku parl.InD i(lle~g~ai\ ‘aJay paqil3sap sluaura.uwauI aql .10d ~u~~a%ur~~...

277KB Sizes 0 Downloads 27 Views

(UO!S!A!a

'A.8 sJ~qs!Iqnd q1oq .IOJ pasn alaM S[r?lSh (1‘1‘1) la[snaH pasgauku parl.InD i(lle~g~ai\ ‘aJay paqil3sap sluaura.uwauI aql .10d ~u~~a%ur~~-an~~~ InlpsuI aql le lalauro.wads s!xr?-aldg uollnau-pasgod OZNI aql %u!sn apew alaM siuawalnseaur %u!lai -ie~~s uowau aqL .aieis a-a@u!s 0th~ e a3npu! 01 play ~!lau%stu paqddr! a%~el e LI! “J qiholql pa1003 uaaq peq ‘t~3 ~‘1 amnloA 30 ‘p2ish s!qL ‘[p] ‘p2 ia aylna 30 siuarua.rnseaw aqi u! pasn it?,41 SBM pau!uIexa aidures ~eish a[%u!s aqL

%I!IJS![q”d

S3!Sh.jd

aDua!% Ja!AaslEl 0

PUEIIOH-q]lON)

OS“CO$/68/9ZSP-1Z60

-!ppe ue pahlasqo [z] or?la laqccud aseqd MasL aqi u! sa@aua .IaMol iv .aarsnpuo2u! uaaq aAk?q sa&aua laq%!q qDnw $12 Zupaiie~s aAeM -u!ds aAlasqo 01 slduralle alep 0~ .Aat.u op aluos 30 k&aua ue le aXaIeo3 rzaddr? put? .IolsaA aABM alvmsuaururo~ aqi spie~ol spiehw~ puaq uaqi pue isiy ie ii%aua uf L1pz!iiaa as!1 sapour asaqL ‘[E ‘z] suog!sod alqIales awnsuazuzuo~u~ aqi ~1013 %.I~wI~~~Jo ‘paAiasq0 uaaq aaaq saq3uciq aAIi?M-u!ds daals ~~aLuailxYJ ~sa.Inlea3 pXisnun IRIa -has sl!q!qxatunllDadsuogelpxa

slyqap Is]uamyadx~

.a 01 IaIIeled

-2

am

zyau%sw

sluatuour

aqL

aql ‘aseqd

(MaS7) anus @map ufds ]vu~pni~8uo] aql u! 3s~ Molaq fsaxe aqn3 p9uo8oyi.40 %uop2 aq Joi3aA

aql U! ‘x IZI 30 ds~ le uoyyml

s!ql isal 0~ wawh u!ds aql JO uogelpxa /Clew -uawala ue %u!aq ueqi laqiel ‘[s](suolinau aql

aAeM uo!lelnpow aqi ‘aseqd (MaSl)

qi!M un?aq uo.wau pasyyod -!lsaAu! laqlln3 IZ uayellapun

1? Bu$oIdwa uo!ie8 a,wq aM s!saqloddq

qi!M suo!i3elaiuy3!iau8ew aqi IZ!Auaas uouoyd zysno3r! ~~u!pn~~8uo~ aqi) Bu~~ar~v~ ~VUO~VA~~A -0iau8vzu u10.13 aso.n2 i! 31 poowapun aq pIno alnlea3 s!qi JO sa!lIadold Suqzznd aql 30 atuos igqi paisa%ns sloqine asaqi ‘uoyal!p [o‘o‘~] aql u! suouoqd D!lsno3e Iwupn$uol aql SI! icy -!301aA awes aqi peq saq3uelq asaqi a3urc;.Aaurp aAoqe SaqxIIxq aielnsuawuo3

lx~~ls~p 0~1 olu! lqds uor]ei!3xa s!qiieqi paiw!pu! [p] '1~la aylna

30 sa!pnls Iale? '[z] 3s~ saq3eoldde a_wwadwal aql se s.waddes!p pue [E] play ~!lau%ur paqdde ur? Aq papageun s! uo!ieir3xa s!qL .(o ‘0 ‘1) 101 -3aA aAeM am4nsuauru403 aqi uo palalua3 ;2aru p 30 ci%aua ue qi!M uoyel!3xa alalwp ~euog

pue No uaaMia8 aieinsuawwo~u! urds E 8upnpold

aqi

pue

~AVM

sluaruotu

&suap

.aAoqr! pauyap aqi qi!M (was)

~yau%w

u!ds asxmsuv.~

,,d!g-urds,, aql

6 .roiDaA aAeM ar\eM lCi!suap

IClq!qewy uolva[a uogDnpuo3

aAyallo3 e sinoAr dliauroa8 a3rgns !wlad 'alni -3nlis1eisO3 33.q aqi 30 sar.wpunoq auoz ieau palriasqo uaqi ale suoriDaga_t ai!jIaiGs Dyau8ew ‘50.0 Alawu!xoldde sr g alaqM ‘Oort) (g - 1) = a ‘lol3aa a3!1lr?I Iwoldr3al [o ‘0 ‘I] e ueql ssaI uogejnpotu e ql!M alni

iCpq%qs a 1013ailaAEM

-snlis 3~~au%~urolla~pue paleinpow

.Qep!osnu!s

IZseq urnywolq3 ‘x 11~ 30 alnleladural Ia?N sl! Molaa ‘[I] siuawala 3!iau?km aqi 30 %u~3eupse3 isoru aqi 30 au0 ICIureiia3 s! urnywolq3 aind

uo!pnpor)q

-I

707

W. G. Stirling et al. I Excitations in single-Q chromium

2

Q

4

f -a

40000 I

Ln

E

z >

:

20000

i

1

0.90

1

I

1.00 WAVEVECTOR

1

1.10

[l, 0,0]

Fig. 1. Elastic scattering scan with polarised neutrons through the magnetic satellites on the [loo] axis near (1, 0,O). SF = spin-flip scattering (open circles), NSF = non-spin-flip scattering (full circles). The lines are guides to the eye. ZOO-

monochromator and analyser. The instrument was operated with a fixed final energy of 14.7 meV and a pyrolytic graphite filter removed higher-order neutrons from the scattered beam. A spin flipper was placed in the incident beam and guide fields were mounted to preserve the neutron polarisation. With a small field on the sample directed parallel to the scattering vector, a “flipping ratio” in excess of 20 was obtained as is seen from fig. 1, where an elastic scan through a pair of satellite reflections in the TSDW phase is displayed. 3. Results and discussion Although a series of different magnetic field configurations was employed in this work we shall deal here only with those in which the magnetic field was applied parallel to the scattering vector. In this configuration the “flipper-on” intensity at (1, 0,O) is the sum of (010) and (001) direction spin fluctuation scattering plus background; we denote this as spin-flip (SF). With the spin flipper “off’ we measure coherent nuclear scattering plus background, denoted nonspin-flip (NSF). Fig. 2 demonstrates clearly the spin-flip nature of the low energy spin-wave peaks in the TSDW phase, as expected. Only

o_od . . . . . .*. . . . . . . 01

’ 0 90

o-e0 .

l

ie

,

l 1

110

100

WAVEVECTOR

0.

[l, 0,0]

Fig. 2. Constant energy scans at E = 2 and E = 3 meV. Points and lines as fig. 1.

very weak NSF scattering is observed which arises from the imperfect polarisation of the neutron beam. At 3 meV, however, a plateau of SF scattering is seen between the two spin-wave peaks, as observed by Burke et al. [4]. The commensurate excitation is clearly resolved between the spin-wave peaks in the SF crosssection at 4 meV (fig. 3), as is the “structure” at 6meV. Thus the spin-waves and commensurate excitation have identical polarisation character. Constant-Q measurements were also performed at the wave vectors (1, 0,O) and (3,0,0). The magneto-vibrational cross-section (5,6) contains a term

F’(Q) [Q - 4’ 5

(1)

where F(Q) is the magnetic form factor and e the phonon eigenvector; here Q is the wave vector transfer. Between (1, 0,O) and (3,0,0) this term implies a reduction in intensity of about 60 from F’(Q), somewhat compensated by the factor of 9

‘0.3

‘IEOP (IX61) PZ 8 ‘*atl ‘skqd ‘JosP”!M pue lalqaoy ‘3’~ ‘~00~ ‘~‘8 ‘IIo.tsu!a1s ‘0 ‘($7861 ‘P.IO3XO ‘uopuaJe~~) Z ‘10‘4 ‘called pasuap uol$naN 30 h.~oaq~ ‘hasaAo7 ‘M’S

-UO~~110134u!ra)leas ‘9.f

pue

Taaqay

‘P6P (E861) IS ‘$,a7 ‘*aa ‘skqd ‘qloofl yyy ‘8uqgs ‘t)‘M ‘ayIn ‘x’s

8 .,+\a8 ‘“hqd ‘JawaM

‘V’S pue aue.uqs

‘2682 (5861) IC ‘t) ‘Ja!Jr;> ‘H.8 ‘ZlEl (1861)

$J .haa

‘shqd

0~) .shqd

~1~1

‘POW

aql

pasyod

‘JaUJaM

‘V’S

PUF! XJEJ!qS

.,+\a8 ‘Jlaarned

f!ursn

apem

(Gaul z > YJ)

‘f)

‘JaqXJ!d

aql

alnin3

30

v

wauwa.~~

lI!M S1InSa.I

pue

uo!~vlpxa

01

leyl

afi

ale

ale 2unawDs

%l!MOllr! _w~y.I!S harl

aM

leql

‘raAaMoq

aJaqM (0 ‘0 ‘c) wzlInsal uoylpxa uaql

apl

‘aiou

wgspeis

le Aaur p le slsyad lnq

‘(0 ‘0 ‘I)

awnsuaunuo~

111~ uogDnpal

aql

8uyunoD &?N

t,a

103

pue dfj

%!lalleDs

ie uaas

@eajs

‘L 10 9 inoqe

IpzlaAo aql

as seM aq

uIo13 %u+.Ie

osl”

ale1

I

%I!.Ia)leX [p] uog &!els

t 01 I 1

sfql

I

I

I

..‘..,*.

1

06-O1

I

2

0

l

O\

l

‘.raAaMoH

00I 1

1

O..*...

IClleDoAlnba

aM

iua.w33!p

pue

‘I 2%~ se sauq pue s$u!od i\aLu 9 = 3 pue p = TJ 1e sueas 68Jaua luelsuo~ ‘E ‘%d

uo.wau

laqyn3

adoq

l! leq) 9~

30 LI~~~.IOaql

ajqeun

apxuwuaururo~

aM ‘suoye&iyuo~

wo13

]lZa.l)

‘mn~uro.Iq3 30 s~~u.wu~p [zya~oaql

aSaIj1

syl

auy~aiap

svy uogvpxa

apnl3uoD laqlo

PZ

‘8’3

‘602 (886 I ) ‘3 aas fia!.4aJ )uaaaJ e JO~

syuawa.nwzaur

aqysap

kkW2-MO~

[I!M pUk? I!t?lap a_lOl.U U! UO!Jk?8!]SaAU! S!q] [I!M uogeyqnd u!ds -nW!ls

LUOJJsa+Ie

]euo!lelq!A-01au%l?UI

-sa%?ns _~ayJca Ino a~eu!uu~a iouuw le -un

d@u!ds

~.~~v~vy~

ayl ieql

-8eu1 put? lalamo.wads -seaLu

pIag q]!M

‘si[nsal

zyau

sluawa.In

asay]

uro~+~ .8tyal

-ws

puno&jDeq

qZ’!qM

aAoqe

(0 ‘0 ‘E)

IpXus haA

le

ajqcAlasq0

leU%!S

v 01 peal

pInoM

aq $0~ lqZ!lu

lI?UO!)WqyA-O)aU%XU aAoqe

(I)

~01~~3 aql

8OL