Forensic Science International 164 (2006) 257–265 www.elsevier.com/locate/forsciint
Announcement of Population Data
Population genetic study in two Transylvanian populations using forensically informative autosomal and Y-chromosomal STR markers Balazs Egyed *, Sandor Fu¨redi, Zsolt Padar Department of Haemogenetics, Institute for Forensic Sciences, P.O. Box 314/4, H-1903 Budapest, Hungary Received 17 August 2005; received in revised form 24 October 2005; accepted 24 October 2005 Available online 28 November 2005
Abstract Our study provides population genetic data on two population samples collected in a Hungarian speaking region of Transylvania, Romania. Allele frequency and profile databases were generated on 17 autosomal STR loci (D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11, VWA, FGA, TH01, TPOX, CSF1PO, Penta E and Penta D) as well as at the 12 European Y-STR extended haplotype loci (DYS19, DYS389-I/II, DYS390, DYS391, DYS392, DYS393, DYS385 loci, DYS437, DYS438 and DYS439). Data were compared to a Central Hungarian (Budapest region) population sample [B. Egyed, S. Fu¨redi, M. Angyal, L. Boutrand, A. Vandenberghe, J. Woller, Z. Padar, Analysis of eight STR loci in two Hungarian populations, Forensic Sci. Int. 113 (2000) 25–27] that was used as a reference group of the Hungarian population. Calculating the F ST indices and with the pairwise comparisons of interpopulation molecular variance (AMOVA) the two populations from Transylvania could be fit into the Hungarian population data showing less substructuring effects as compared to the previous findings in Hungary [B. Egyed, S. Fu¨redi, M. Angyal, L. Boutrand, A. Vandenberghe, J. Woller, Z. Padar, Analysis of eight STR loci in two Hungarian populations, Forensic Sci. Int. 113 (2000) 25–27; B. Egyed, S. Fu¨redi, M. Angyal, I. Balogh, L. Kalmar, Z. Padar, Analysis of the population heterogeneity in Hungary using fifteen forensically informative STR markers, Forensic Sci. Int. 158 (2005) 244–249]. # 2005 Elsevier Ireland Ltd. All rights reserved. Keywords: Short tandem repeat; Y-STR; Transylvanian population; Romanian population; Population substructure
Populations: The Szekler population sample (see Fig. 1) was collected from 257 unrelated Hungarian speaking individuals (89 males, 168 females) living in Csı´kszereda, Transylvania (Miercurea Ciuc, Romania). The Csango samples from Gyimes area were collected from 220 unrelated Hungarian speaking individuals (86 males, 134 females) in a relatively closed population residing in the mountain area of Gyimesfelso˝lok, Transylvania (Lunca de Sus, Romania).
* Corresponding author. Tel.: +36 1441 1475; fax: +36 1441 1473. E-mail address:
[email protected] (B. Egyed).
Extraction: Genomic DNA was isolated from blood samples applying Proteinase K digestion, organic extraction and Microcon-100 (Millipore) ultrafiltration. PCR: One to two nanograms template DNA in 25 ml reaction volume following in-house methods and manufacturer’s instructions (AmpFlSTR Identifiler PCR System, Applied Biosystems; GenePrint PowerPlex1 16 and PowerPlex1 Y Systems, Promega). Typing: ABI 3100 Genetic Analyzer (Applied Biosystems) using reference sequenced ladders and internal standards. Quality control: GEDNAP blind trial (Stain Commission of the German Society for Legal Medicine); Crime
0379-0738/$ – see front matter # 2005 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.forsciint.2005.10.020
258
B. Egyed et al. / Forensic Science International 164 (2006) 257–265
Fig. 1. Map showing the location and the size of the analysed population samples (dark fields surrounding Hungary represent the Hungarian speaking populations in the countries bordering Hungary).
Laboratory Proficiency Testing Program (Collaborative Testing Services, Inc.). Analysis of data: Possible divergences from Hardy– Weinberg expectations (HWE) were determined using the exact test [3], population substructure was measured by calculating the unbiased single-locus ‘‘co-ancestry coefficient’’ F ST [4] and its F-statistic analogue FST in the analysis of molecular variance (AMOVA) [5] using the software ARLEQUIN version 2.000 (http://lgb.unige.ch/ arlequin) [6]. The allele frequency profile comparisons were performed by G-statistic test using a software dealing with R C contingency tables. Results: The allele frequency data and the forensically informative statistical values of the 17 autosomal STRs are presented in Table 1 following the recommendations of the journal [7]. The combined forensic efficiency values for the examined 17 autosomal markers observed in the Csango population sample [PM = 4.8 10 19; PE = 0.999999894, (PM = matching probability, PE = power of exclusion)] were slightly different to those found in the Szekler database [PM = 1.2 10 20; PE = 0.999999945]. In the analysed 175 male samples, altogether 134 different Y-STR haplotypes were detected which are presented in Table 2. Interestingly, only 6 haplotypes out of 134 were shared by both populations and 80 haplotypes from Szeklers, 48 from Csangos could not be detected in the other popula-
tion sample. 86 (81 unique) and 54 (39 unique) different haplotypes were found in the Szekler and the Csango population, respectively. Calculating Wright’s F ST indices and with the pairwise comparisons of interpopulation molecular variance (AMOVA) similar values (see Table 3) were found at most autosomal loci as compared to the previous observations in other European populations [8–10]. Our recent data show less substructuring effects than the experienced values in Hungary [1,2,11]. The observed genetic discrepancies between the population pairs are in good accordance with the G-statistic findings where the same autosomal loci showed significant differences in the allele frequency distribution. This is especially apparent at locus TPOX in population pairs with Csangos. In the Csango population at locus TPOX an obvious shift of the frequency of allele 8 to 11 can be observed. The F ST-values calculated for the examined Y-STR loci (see Table 3) showed significant genetic differences between population pairs with Csangos. This difference was reinforced at the molecular level in the Szekler/Csango pair by applying AMOVA. The genetic substructuring phenomenon can be explained by a genetic drift or by inbreeding effects in such a closed subpopulation as Csangos. Access to the data: Available on request:
[email protected].
B. Egyed et al. / Forensic Science International 164 (2006) 257–265
259
Table 1 Allele frequency and forensically informative statistical values on the analysed 17 autosomal STR loci in the Transylvanian Szekler (N = 257) and Csango (N = 220) population samples Allele
D8S1179
D21S11
Szekler
Csango
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22.2 23 23.2 24 24.2 25 25.2 26 27 28 29 29.2 30 30.2 31 31.2 32 32.2 33 33.2 34.2
0.021 0.008 0.070 0.066 0.146 0.338 0.200 0.097 0.048 0.004
0.007 0.014 0.043 0.039 0.166 0.350 0.241 0.102 0.039
Pexact Hobs PD PE
0.162 0.817 0.932 0.625
Csango
FGA
Szekler
Csango
0.002 0.008 0.008 0.128 0.121 0.204 0.161 0.121 0.095 0.045 0.062 0.014 0.010 0.014
0.005 0.007 0.145 0.093 0.220 0.143 0.141 0.109 0.059 0.055 0.014 0.007 0.002
0.004 0.004
Szekler
Szekler
0.002 0.002 0.010 0.064 0.119 0.152 0.191 0.014 0.136 0.173 0.002 0.099 0.002 0.029 0.004 0.002
0.002 0.025 0.144 0.228 0.002 0.261 0.033 0.062 0.088 0.012 0.093 0.004 0.041 0.006
0.002 0.014 0.132 0.245 0.002 0.289 0.039 0.070 0.075 0.007 0.064
0.087 0.782 0.914 0.577
0.566 0.844 0.952 0.679
0.031 0.773 0.943 0.654
0.208 0.903 0.964 0.741
Csango
Szekler
Csango
Szekler
0.078
0.123
0.158 0.006
0.010 0.245 0.126 0.161 0.195
0.002 0.318 0.120 0.191 0.102
0.160
0.139
D19S433
2.2 5 6 7 8 9 10 11 12 12.2 13 13.2
Szekler
D18S51
D2S1338 Csango
Szekler
Csango
0.031 0.230 0.095 0.099 0.119 0.045 0.029
0.055 0.211 0.102 0.091 0.086 0.034 0.025
0.105
0.143
0.105
0.120
0.064
0.126
0.125
0.011 0.002
0.012 0.004
0.005 0.002
0.322 0.845 0.955 0.693
0.859 0.844 0.970 0.745
0.658 0.863 0.968 0.746
Csango
Szekler
0.002 0.014 0.059 0.139 0.159 0.209 0.009 0.202 0.005 0.125
0.048 0.014
Penta E
0.163 0.877 0.958 0.724
0.220 0.871 0.962 0.723
Csango
Szekler
Penta D
D3S1358
VWA Csango
0.002 0.004
0.070 0.002 0.259 0.021
0.002 0.007 0.055
0.103 0.097 0.152
0.143 0.007 0.007 0.052 0.080 0.189
0.245 0.020
0.101
0.139
0.002
0.002
0.005
260
B. Egyed et al. / Forensic Science International 164 (2006) 257–265
Table 1 (Continued ) D19S433
Penta E
Penta D
D3S1358
VWA
Szekler
Csango
Szekler
Csango
Szekler
Csango
Szekler
Csango
Szekler
Csango
14 14.2 15 15.2 16 16.2 17 17.2 18 18.2 19 20 21 22 24
0.340 0.018 0.202 0.039 0.035 0.010 0.004
0.377 0.016 0.193 0.020 0.034 0.018
0.068
0.043
0.060
0.093
0.113
0.123
0.099
0.075
0.072
0.075
0.027
0.032
0.241
0.218
0.086
0.157
0.058
0.027
0.010
0.002
0.290
0.225
0.169
0.175
0.031
0.016
0.220
0.166
0.309
0.259
0.041
0.080
0.130
0.216
0.249
0.250
0.023
0.016 0.002
0.006
0.048
0.076 0.010 0.002
0.070 0.009
Pexact Hobs PD PE
0.393 0.755 0.910 0.559
0.223 0.790 0.910 0.566
0.518 0.804 0.933 0.619
0.484 0.794 0.924 0.594
0.435 0.759 0.935 0.613
0.005 0.007
0.092 0.782 0.890 0.544
TH01
0.004 0.004 0.004
0.002
0.190 0.903 0.977 0.796
0.357 0.814 0.974 0.769
TPOX
Szekler
Csango
5 6 7 8 9 9.3 10 11 12 13 14 15
0.002 0.216 0.138 0.107 0.228 0.292 0.018
0.245 0.120 0.086 0.198 0.336 0.014
Pexact Hobs PD PE
0.731 0.790 0.919 0.578
0.122 0.809 0.900 0.548
0.481 0.840 0.946 0.660
0.610 0.773 0.938 0.629
D5S818
D13S317
D7S820
Szekler
Csango
Szekler
Csango
Szekler
Csango
Szekler
Csango
0.004 0.560 0.105
0.009 0.459 0.132
0.002
0.002 0.002 0.052
0.002 0.152 0.101
0.132 0.098
0.021 0.163 0.169
0.002 0.195 0.145
0.054 0.232 0.045
0.055 0.325 0.020
0.064 0.323 0.393 0.173 0.006 0.002
0.075 0.291 0.391 0.173 0.014
0.072 0.319 0.243 0.080 0.031
0.041 0.361 0.289 0.064 0.016
0.288 0.175 0.154 0.029
0.275 0.175 0.184 0.023
0.105 0.634 0.800 0.382
0.465 0.618 0.837 0.406
0.074 0.685 0.859 0.458
0.033 0.723 0.867 0.489
0.279 0.762 0.927 0.602
0.632 0.741 0.905 0.539
0.234 0.821 0.931 0.616
0.342 0.836 0.925 0.601
0.037
D16S539
CSF1PO
Szekler
Csango
Szekler
Csango
8 9 10 11 12 13 14 15
0.018 0.109 0.064 0.276 0.319 0.195 0.018 0.002
0.009 0.068 0.109 0.261 0.284 0.252 0.014 0.002
0.008 0.043 0.280 0.272 0.298 0.084 0.016
0.023 0.034 0.270 0.336 0.291 0.041 0.005
Pexact Hobs PD PE
0.349 0.766 0.908 0.553
0.944 0.764 0.908 0.553
0.491 0.786 0.887 0.517
0.323 0.782 0.862 0.479
Szekler: Hungarian speaking population sample from Csı´kszereda, Transylvania (Miercurea Ciuc, Romania); Csango: Hungarian speaking population sample from Gyimesfelso˝lok, Transylvania (Lunca de Sus, Romania); Pexact: Hardy–Weinberg equilibrium (probability of exact test based on 1.000.000 total permutations); Hobs: observed heterozygosity; PD: power of discrimination; PE: power of exclusion.
B. Egyed et al. / Forensic Science International 164 (2006) 257–265
261
Table 2 Y-STR haplotypes observed in the two examined Transylvanian population samples (134 different haplotypes altogether) Haplotypes DYS19 DYS389-I DYS389-II DYS390 DYS391 DYS392 DYS393 DYS385 DYS437 DYS438 DYS439 Szeklera Csangoa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
12 12 13 13 13 13 13 13 13 13 13 14 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14
29 29 28 28 28 28 30 30 30 30 32 31 28 28 28 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 31 29 29 30 30 30 30 30 30 30 31 31
24 24 24 24 24 24 24 24 24 24 25 22 22 22 22 22 22 23 23 23 24 24 24 22 22 23 23 23 23 23 24 24 24 24 24 24 25 25 25 24 24 24 24 24 24 24 23 23 23 23 23 23 23 24 25 23 23
10 10 10 10 10 10 10 10 10 10 10 8 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 10 11 11 11 11 11 10 11 11 10 11 11 11 11 11 10 10 10
11 11 14 16 17 17 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 13 13 11 11 11 11 13 13 13 13 13 14 11 12 13 11 13 13 13 13 13 13 14 14 11 13 16 14 13 13 14 14 13 13 11 11
13 13 13 13 13 13 13 13 13 14 13 13 12 13 13 13 14 11 12 13 12 12 13 12 13 12 12 13 13 13 13 13 12 13 13 13 12 13 13 13 12 13 13 12 12 12 13 15 14 13 13 14 14 12 12 12 12
15–15 16–18 13–16 13–16 13–16 13–16 16–16 16–17 16–18 16–18 17–18 12–15 13–14 13–15 14–14 14–15 13–15 14–18 13–16 14–14 14–17 11–14 11–14 12–12 13–14 11–17 13–18 11–14 11–14 11–14 11–14 11–14 11–14 11–14 11–14 10–14 13–15 11–13 11–15 11–14 11–14 11–15 11–16 11–13 11–15 16–18 11–14 11–13 11–14 12–12 12–14 10–13 11–13 11–14 11–15 13–16 14–16
14 14 14 14 14 14 14 14 14 14 14 14 16 15 16 16 16 15 15 16 16 15 15 14 16 15 14 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 14 15 14 14 15 15 14 14 15 14 14 14
10 10 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 9 9 10 9 12 12 9 10 9 9 12 12 12 11 12 12 12 12 12 9 12 12 12 12 12 12 12 12 10 12 11 10 12 12 10 10 12 12 9 9
12 12 12 12 11 12 13 12 12 12 11 13 11 12 11 11 11 12 11 11 12 12 12 11 12 12 11 11 12 13 13 12 12 12 12 13 11 12 12 11 12 12 12 11 12 13 11 10 10 13 13 10 10 12 12 11 11
1 1 – – 1 – 1 1 – 1 1 2 1 1 1 – 1 1 – 1 1 1 1 – 1 1 – 1 1 1 1 1 1 – – 1 2 1 1 1 1 – – – 1 1 1 1 1 – 2 1 2 1 1 1 –
– – 1 1 – 1 – – 3 – – – – – – 1 1 – 3 – 1 – – 1 – – 2 – – – – – – 1 4 – – – – – – 1 1 1 – – – – – 1 – – – – – – 1
262
B. Egyed et al. / Forensic Science International 164 (2006) 257–265
Table 2 (Continued ) Haplotypes DYS19 DYS389-I DYS389-II DYS390 DYS391 DYS392 DYS393 DYS385 DYS437 DYS438 DYS439 Szeklera Csangoa 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
28 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 31 31 31 31 30 30 31 29 30 29 29 29 29 29 29 29 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31
22 22 23 23 24 24 24 24 25 21 22 22 22 23 24 23 23 23 23 23 25 25 25 25 23 24 24 25 24 24 25 25 22 23 25 24 22 23 23 23 24 24 24 25 22 22 24 25 25 25 23 24 24 24 24 24 24 25 25
10 10 9 10 10 10 10 10 10 11 10 10 10 10 10 9 10 10 10 10 10 10 10 11 10 10 11 11 11 11 11 11 10 9 11 11 10 9 10 10 9 10 10 11 11 12 10 10 11 11 11 10 10 10 11 11 11 10 11
10 11 11 12 11 11 11 11 11 11 11 11 11 11 11 11 12 12 13 13 11 11 11 14 12 11 11 11 11 11 12 12 11 11 12 11 11 11 11 16 11 11 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
14 14 12 12 12 12 12 12 12 14 14 14 14 14 12 12 14 15 13 13 13 13 13 13 15 13 13 13 13 13 13 13 12 12 13 13 13 12 13 13 12 13 15 13 12 12 13 13 13 14 13 13 13 13 13 13 13 13 13
15–17 14–15 15–16 15–19 14–17 14–17 14–18 14–19 15–17 13–16 14–14 14–14 14–15 14–14 14–17 13–16 15–15 16–17 11–14 16–16 11–14 11–14 11–15 11–13 16–17 11–14 11–14 11–15 14–15 14–15 14–15 14–15 15–17 15–16 11–14 14–15 14.2–15 12–16 11–14 12–16 13–17 11–14 16–16 11–14 11–16 11–16 11–14 11–14 11–14 11–15 14–15 14–14 14–15 14–15 14–15 14–15 15–16 10–14 11–15
16 16 14 14 16 16 16 16 16 16 16 16 16 16 16 14 15 14 15 14 14 14 14 15 14 14 14 14 15 15 15 15 14 14 14 15 16 14 14 15 14 14 14 14 15 15 14 14 14 14 15 14 15 15 15 16 15 14 14
10 10 9 9 9 9 10 10 9 10 10 10 10 10 10 9 8 10 13 9 11 11 11 12 10 11 11 11 10 10 10 10 9 10 11 10 10 9 11 9 10 11 10 11 9 9 11 11 11 11 10 10 10 10 10 10 10 11 11
13 12 11 12 12 13 12 11 11 13 11 13 11 11 11 13 12 12 13 13 10 11 11 11 11 11 10 10 12 13 12 13 11 11 10 14 12 13 11 11 13 11 12 11 11 11 12 10 11 11 13 11 12 13 13 13 12 10 10
1 – 1 1 1 – – 1 1 – 1 1 1 – – 1 – 1 – 1 2 – 1 1 1 – – 1 – – – – – 1 1 1 1 1 1 1 1 1 1 1 1 – 1 1 1 – – – – – 1 1 1 – –
– 3 – – 1 1 1 – – 1 1 – – 1 3 – 1 – 1 – 6 1 – – – 1 1 – 3 2 2 2 1 – – – – – – – – – – – 3 2 – – – 1 1 1 1 1 – – – 1 1
B. Egyed et al. / Forensic Science International 164 (2006) 257–265
263
Table 2 (Continued ) Haplotypes DYS19 DYS389-I DYS389-II DYS390 DYS391 DYS392 DYS393 DYS385 DYS437 DYS438 DYS439 Szeklera Csangoa 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 18
13 13 13 13 13 14 14 14 13 13 13 13 13 13 13 14 14 13
31 31 31 32 32 31 31 32 26 29 30 30 30 31 32 31 32 32
25 25 26 22 24 25 25 25 24 25 24 25 25 24 24 23 25 24
11 11 10 10 11 10 11 11 11 11 10 10 11 11 10 11 10 10
11 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 14 13 13
14–15 14–15 14–16 13–15 14–15 11–14 11–15 11–14 14–15 11–14 10–14 10–14 14–15 14–15 14–15 11–14 10–14 14–15
15 15 15 14 14 14 14 14 15 14 14 14 15 15 15 14 14 15
10 10 10 9 10 11 11 11 10 11 11 11 10 10 10 11 11 10
13 12 13 12 13 11 10 10 12 11 10 10 13 13 13 10 10 13
– – 1 1 1 1 1 – 1 1 – 1 – – – 1 – –
1 1 – – – – – 1 – – 1 – 1 1 2 – 5 1
Szekler: Hungarian speaking population sample from Csı´kszereda, Transylvania (Miercurea Ciuc, Romania); Csango: Hungarian speaking population sample from Gyimesfelso˝lok, Transylvania (Lunca de Sus, Romania). a Individuals observed for each haplotype in the population sample.
Other remarks: The little evidence for association of alleles at the locus D21S11 and D5S818 in the Csango population sample could not be confirmed using the Bonferroni correction at the individual significance level of 0.003.
By calculating G-statistic, allele frequencies were compared to available Romanian population data [12,13], to population data from Serbia, Vojvodina Province [14,15], and to a population from Turkey [16]. In the pairwise comparisons, significant differences were found at least
Table 3 Conventional F-statistic (FST) and AMOVA (FST) values for the analysed STR loci between the two Transylvanian (Szekler, Csango) and Budapest region (BuCa) population pairs Locus
D8S1179 D21S11 D18S51 FGA D2S1338 D19S433 Penta E Penta D D3S1358 VWA TH01 TPOX D5S818 D13S317 D7S820 D16S539 CSF1PO Overall autosomal STR loci Overall Y-STR loci
Szekler/Csango
Szekler/BuCa
Csango/BuCa
FST
FST
FST
FST
+
+ + +
+
+ + + +
FST
Overall populations FST +
+
+ + + + +
+
+ +
+
+
+ + NT 0.007+
0.040+
NT 0.000a
0.002a
+
+
+
+
+ + NT 0.009a+
0.005a
FST 0.002 0.002 0.002 0.003 0.000 0.001 0.004 0.007 0.004 0.003 0.000 0.013 0.001 0.000 0.001 0.002 0.002 0.003 0.010
FST 0.007 0.001 0.004 0.010+ 0.002 0.002 0.001 0.002 0.005 0.002 0.001 0.011+ 0.001 0.000 0.002 0.000 0.002 0.002 0.014+
+: The F-statistic value represents statistically significant difference at the P = 0.05 level; : the F-statistic value does not represent statistically significant difference at the P = 0.05 level; NT: not tested. a Tested at the European minimal Y-STR haplotype loci.
264
B. Egyed et al. / Forensic Science International 164 (2006) 257–265
Table 4 Twelve-locus Y-STR haplotype diversity values in the analysed Transylvanian populations (Szekler, Csango) as well as conventional F-statistic (FST) and AMOVA (FST) values for the European minimal Y-STR haplotypes calculated for the Transylvanian and neighbouring population pairs Szekler (0.9987 0.005)a
Szekler, Corund [17] Romanian, Bukarest [18] Bulgarian [19] Bulgarian Turks [19] Serbian [20]
Csango (0.9883 0.016)a
FSTb
FSTb
FSTb
FSTb
0.002c 0.000 0.003c 0.002 0.003c
0.051c 0.032c 0.022c 0.012 0.040c
0.011c 0.009c 0.010c 0.009c 0.012c
0.083c 0.011 0.020c 0.031c 0.000
[ ]: numbers in brackets are the same in references. a Haplotype diversity (S.E.). b Genetic structure. c The F-statistic value represents statistically significant difference at the P = 0.05 level.
two loci (D7S820 and D19S433, Szekler–Serbian pair). Significant differences at the most loci (D21S11, D3S1358, VWA, FGA, D8S1179, D13S317, D7S820, TH01, TPOX, D19S433 and D16S539) were observed between the Csango and the Turkish populations (data not shown). Comparing the Y-STR haplotypes presented here to previously published Szekler [17], Bukarest Romanian [18], Bulgarian and Bulgarian Turks [19], as well as Serbian [20] population data, significant differences were observed by calculating F ST-values and applying AMOVA (see Table 4). The analysis of the STR loci and the allelic designation was done according to the previously published international guidelines and recommendations [21–23].
References [1] B. Egyed, S. Fu¨redi, M. Angyal, L. Boutrand, A. Vandenberghe, J. Woller, Z. Padar, Analysis of eight STR loci in two Hungarian populations, Forensic Sci. Int. 113 (2000) 25–27. [2] B. Egyed, S. Fu¨redi, M. Angyal, I. Balogh, L. Kalmar, Z. Padar, Analysis of the population heterogeneity in Hungary using fifteen forensically informative STR markers, Forensic Sci. Int. 158 (2006) 244–249. [3] S.W. Guo, E.A. Thompson, Performing the exact test of Hardy–Weinberg proportion for multiple alleles, Biometrics 48 (1992) 361–372. [4] B.S. Weir, Genetic Data Analysis II, Sinauer Associates, Sunderland, MA, 1996. [5] Y. Michalakis, L. Excoffier, A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci, Genetics 142 (1996) 1061–1064. [6] S. Schneider, D. Roessli, L. Excoffier, Arlequin: a software for population genetics data analysis version 2.000, Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva. [7] P. Lincoln, A. Carracedo, Publication of population data of human polymorphisms – Editorial, Forensic Sci. Int. 110 (2000) 3–5. [8] I.W. Evett, P.D. Gill, J.A. Lambert, N. Oldroyd, R. Frazier, S. Watson, S. Panchal, A. Connolly, C. Kimpton, Statistical analysis of data for three British ethnic groups from a new STR multiplex, Int. J. Legal Med. 110 (1997) 5–9.
[9] I.W. Evett, J.A. Lambert, J.S. Buckleton, B.S. Weir, Statistical analysis of a large file of data from STR profiles of British Caucasians to support forensic casework, Int. J. Legal Med. 109 (1996) 173–177. [10] B. Budowle, R. Chakraborty, Population variation at the CODIS core short tandem repeat loci in Europeans, J. Legal Med. 3 (2001) 29–33. [11] S. Fu¨redi, J. Woller, Z. Pa´da´r, M. Angyal, Y-STR haplotyping in two Hungarian populations, Int. J. Legal Med. 113 (1999) 38–42. [12] A. Anghel, C. Marian, M. Pitulescu, A. Daba, I.O. Sirbu, V. Rusu, B. Budowle, Population genetic study of eight short tandem repeat loci CSF1PO, TPOX, TH01, F13A01, FESFPS, vWA, F13B and LPL in the Western Romanian population, Forensic Sci. Int. 131 (2003) 218–219. [13] L.E. Barbarii, B. Rolf, C. Constantinescu, C. Hohoff, P. Calistru, D. Dermengiu, Allele frequencies of 13 short tandem repeat (STR) loci in the Romanian population, Forensic Sci. Int. 141 (2004) 171–174. [14] I. Veselinovic´, M. Kubat, I. Furacˇ, J. Sˇkavic´, I. Martinovic´ Klaric´, M. Tasic´, Allele frequencies of the 15 AmpFlSTR Identifiler loci in the population of Vojvodina Province, Serbia and Montenegro, Int. J. Legal Med. 118 (2004) 184–186. [15] D. Keckarevic´, D. Savic´, M. Keckarevic´, M. Stevanovic´, A. Tarasjev, B. Cˇuljkovic´, A. Ðarmati, S. Vukosavic´, S. Romac, Population data on 14 STR loci from population of Serbia and Montenegro (new and renewed data), Forensic Sci. Int. 151 (2005) 315–316. [16] B.S. Akbasak, B. Budowle, D.J. Reeder, J. Redman, M.C. Kline, Turkish population data with the CODIS multiplex short tandem repeat loci, Forensic Sci. Int. 123 (2001) 227–229. [17] Z. Beer, K. Csete, T. Varga, Y-chromosome STR haplotype in Szekely population, Forensic Sci. Int. 139 (2004) 155–158. [18] L.E. Barbarii, B. Rolf, D. Dermengiu, Y-chromosomal STR haplotypes in a Romanian population sample, Int. J. Legal Med. 117 (2003) 312–315. [19] B. Zaharova, S. Andonova, A. Gilissen, J.J. Cassiman, R. Decorte, I. Kremensky, Y-chromosomal STR haplotypes in three major population groups in Bulgaria, Forensic Sci. Int. 124 (2001) 182–186. [20] L.B. Lauc, M. Pericic, I.M. Klaric, A. Sijacki, D. Popovic, B. Janicijevic, P. Rudan, Y chromosome STR polymorphisms in a Serbian population sample, Forensic Sci. Int. 150 (2005) 97– 101.
B. Egyed et al. / Forensic Science International 164 (2006) 257–265 [21] B. Olaisen, W. Ba¨r, B. Brinkmann, B. Budowle, A. Carracedo, P. Gill, P. Lincoln, W.R. Mayr, S. Rand, DNA recommendations 1997 of the International Society for Forensic Genetics, Vox Sang. 74 (1998) 61–63. [22] P. Gill, C. Brenner, B. Brinkmann, B. Budowle, A. Carracedo, M.A. Jobling, P. de Knijff, M. Kayser, M. Krawczak, W.R. Mayr, N. Morling, B. Olaisen, V. Pascali, M. Prinz, L. Roewer, P.M. Schneider, A. Sajantila, C. Tyler-Smith, DNA Commission of the International Society of Forensic Genetics: recom-
265
mendations on forensic analysis using Y-chromosome STRs, Forensic Sci. Int. 124 (2001) 5–10. [23] L. Gusmao, J.M. Butler, A. Carracedo, P. Gill, M. Kayser, W.R. Mayr, N. Morling, M. Prinz, L. Roewer, C. Tyler-Smith, P.M. Schneider, DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis, Forensic Sci. Int. 157 (2006) 187–197.