Author's Accepted Manuscript
Preparation of porous Sr2MgSi2O7:Eu2 þ ,Dy3 þ energy storage carriers via sol-Hydrothermal synthesis Xiaoli Wei, Yi Shen, Guifu Zuo, Luyao Hou, YanZhi Meng, Fengfeng Li
www.elsevier.com/locate/ceramint
PII: DOI: Reference:
S0272-8842(15)01285-7 http://dx.doi.org/10.1016/j.ceramint.2015.06.144 CERI10883
To appear in:
Ceramics International
Received date: Revised date: Accepted date:
30 April 2015 17 June 2015 30 June 2015
Cite this article as: Xiaoli Wei, Yi Shen, Guifu Zuo, Luyao Hou, YanZhi Meng, Fengfeng Li, Preparation of porous Sr2MgSi2O7:Eu2 þ ,Dy3 þ energy storage carriers via sol-Hydrothermal synthesis, Ceramics International, http://dx.doi.org/10.1016/j.ceramint.2015.06.144 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
!
(
! " " #$%##&' )
! " " #$%###' *
"# "
$"
! # %&'&&(()*% + )% ,,% )- .% ,*,%&))%% ,'(,)%*%%% &% % "
$"
%,)%%,(%% &%/%(&% ( ! # -0 ( "
$"
&,(%),&%&%% ( ! # ,('/)1+)&% &&%,&&()%,&%,&&(-% , % ,&&1 *' /)$#( %,&&& 2&%%),(&%-0 (%&%&(1% % ,('*%%)1%)% ( %,&&)&&* ' & *)% %% %' %,% ()&%&)1,(*)1(%,/% %,)%,(%-
"
$"
$% ! # +(& (% +&,& (%&((%
&
'
&% ' & &))%1(,+%',&%,% 2 1%, 2&%((% -- )& ,&%1% '%%& %*%+)%%1%
1 %)%'%,3 +45-+%'&%( ( *() )*(,%*% (%')&)3 65 )')))%37+ 5- %& +3 5% /)1 !" #$"( ( 1&,1% + ,% )'% )% ,% ),)%'%,,% - + 3 $5((), !" #$"( ( %/% +,% ) )'1% &&)&% %%,(%1,%88 "
9-'* % *'
$"
%)% 1&%( ! # *+ )% ,% -
&,% *&*),& %%%,& (*% ')3 :5- ;&% (%&%)& & ,%')((), )% -- 2& )(%)(%-0 % ,%,(%% &&%%)&%%&% &%%)%3 < 45-.%% )% 778= +3 5% /))),(&,%>)%) ;.+ % 1&@ &(,%&%+)&%%-
"
$"
A% %) ,&% ! # 1&&(()%/% +
)% ,,% )-0 1%),% '))& ,&%1%)%)% ,&&,%*,%-% , %&1(()%&,(%*' %,(%)% % 1&%(&,&%+&%-A))% '1&%) ( !" #$"%&(%%( ' & ')2&%+
2
%(,& ),&&)%'%, ' & ),%%)% %( "
$"
! # ,%1(,&))%%&,,&+%&-
!
"
$"
! # %&'((), >B$? >B$? !$ #$ $;$ )%%% % &%>0! ?%/% + )% ,,% )-.& ,& '%&)))&*)'% %% (&%-0 !"C#$",%' &%)% C- >B$? >B$? !$ )#$'%)*))*)B$>$8'%D? )% %,2%')%). ; 9 )# (&%*-B2% $;$')*) )%)'%))2,),%)&% ,%%,(%)% % (&))%)%=!=-% , &%,%0! ')*)% - .%') % %. ; 9 #)!',2)%% %% )%'&,(% ) % % ,2)%')*)% 0! C% %-E)&%,%&% % %%'1F% %)'%1% %8G9&%()%,% ()&% !" #$"-0 '% %)%% )% ,% &%))% 88G9: ) (%%%&%'% -0 ,(' % ))% 88G9 +) ')1(+%%(%488G9)% %%7<8% "
$"
88G9 %< '@)&%*%,( -0 ! # ,(' *%1%)%'% ,%%&)'%,%,(%% &-
.% ,*,%&))%% ,>0+#0.?'(,) 0.::7>B%/& ,?)%,( % %,(%,,%,(%% $88G9'% % %%%% 8G9,+ -+)&%>H#?(%%'&))% &
3
, 8%8G+)&%,%>H@#C+<88?(%'% 9IJ)% >KL8- <:84,?-.%% % ,('% *%%)1&&% ,&&(> ! %& ,%) M(? %,&%,&&(>0! M,%) M(? B%( (%>N%& ,A%,% .,&?)$#( %,&& -0 ,&&(&%'&))&&(&%,%>%& +888? F(()'% <8,(%(&%%8- ,-+%,)&&*' &)))% ,&)%'% &&&O$P-0 (%&%&(1%% ,('*%%)% ,+,&&),%>M+:. 9 ?%)%'% % EQ+<:,( 8,-
(
"
$"
- >? '% 0+#0.&*1%)% (&% ( ! # &)- >1? '% 0+#0.&*% (&%(+%%488G9-. ' - >? % ' %% (&%%)%4 <-4G9 )&%% )%%) B, >B$?$-0 )% ,&(@%7$6-6) 8-6G9%%1%)%% ,%) ,%% &%%&% (&%*-;&% , %% % (@ &,(%*%-9,()'% - >? ,(@,- >1? ' & ,% % % (+%(,%)% %%&,%(&)(*%)% )%% >B$?$% 488G9-% , % )% ,&(@% 8 -:)7$6-6
9)(() %% %%
1)*(%))% %,%(&% &%%&%$;$ 1 &,(%)-
4
Fig. 2 shows the XRD patterns recorded for the porous Sr2MgSi2O7:Eu2+,Dy3+ carriers after sintering at 950, 1000, 1050 and 1100 °C, respectively. When sintered at 950 °C the main crystalline phase in the samples was SrSiO3, with a small amount of Sr2MgSi2O7:Eu2+,Dy3+. When the sintering temperature was increased from 950 to 1000 °C, the Sr2MgSi2O7:Eu2+,Dy3+ fraction increased but exhibited a poor crystallinity. When the sintering temperature was increased to 1050 °C, the main crystalline phase was Sr2MgSi2O7 and the Sr2MgSi2O7 showed a high degree of crystallinity. However, the intensity of the diffraction peak associated with the Sr2MgSi2O7 phase decreased and a SiO2 phase appeared when the sintering temperature was eventually increased to 1100 °C, which may be attributed to the decomposition of Sr2MgSi2O7 at the higher temperature. "
$"
H(%%* !,&( % (&% ! # &,( %&&%% 8<8G9 '-$)%%,--$>? '% % & ),)% %-0 & )'%,%' % % %,'&)--$>1?*% % %% % /% & 1&,, ,&,()%% /% & 1*)%% )% ),%% & 1%88,- % %%,'&)%$)< &%( (()-!(&' % %%,'&)%< *+1&&))% ,%& *1-$>)?-0!,&( % ,(%@%%% 8<8G9 '-:--:>? %% ,(,&%&% )% ),%% ( 1%88,-;) %%)1% %0!, &/)))& %&%(() %% !" #$",(%%1&,%-
-<%%% (/)%1%% ( !" #$"%& %%% 8<8G9 -0 (/)%1%'&&%)&&)%% ;M,% ) 5
%)(%&*-0 &* '% %% (/), 8%<8,-0 / ,%('1%' 8) <,' & &%%'% % 0!%-0 , ('% /% , <%<) <%$8, ' & '% %% (/)%1% %,-% & F)%,(*% ,&%&%% ,(-
Fig. 6 shows the results of the 3D photoluminescence scans performed on the porous Sr2MgSi2O7:Eu2+,Dy3+ samples. The 3D scan of the samples was performed to determine the excitation and emission peaks prior to the fluorescence analysis. The scan revealed that excitation wavelengths in the range from 332 to 448 nm can induce luminescence. The emission wavelength of the sample was found to be in the range from 437 to 530 nm, which is consistent with the data published by Ye et al. [18]. We determined the excitation wavelength of Sr2MgSi2O7:Eu2+,Dy3+ to 360 nm and the emission wavelength in the visible range to 473 nm, which provides a visible-light photocatalytic material with an optical wavelength suitable for the degradation of organic matter [19]. -&,(% 2&%%>?),>1?(&%% ( !" #$"& ,('% )%!"C#$"%%%% 8<8G9 -0 2&%%(&%' ,%)%,L:$,-.(&%%,1)1(%1)%)$48,-0 2&%%1)%$48,- <>? %1(%1)%%1%)%% '%%
6 1 7 8 4 f 5d → 4 f ( S7 / 2 ) 0 & &%%&,&%)'% #$")!$" ' & %
$"
$"
"
% %# %% ,&&&%)! 1&,(%)&)%! -0 , (&%'&))% ,8%:<8,%2&%%%$48,- &,(% ,(&%% ,('% )%!"C#$"% % %%% ,(@% :$,'%!"C#$"% C8- % #$"&&%%'&) % %%
6
% & &%%&!",&)-;%% %%% (@'!"C#$"% "
$"
$"
C % ! C# % C-0 ,11&% # %% &%*% ' ,((%)(% ),1%(,@% ,&&&%&%& )&,()'% &%&)% %-
"
$"
-6 '% ( %,&&)&&*% ( ! # &1%) %% %)%%,(%-0 %'%1 %',) % ,(%)%7<8G9 )% %1 %'&))%%% 8<8G9- 0 ,(%)%7<8G9 ')% %%)&)% &&%%% $ ,(%( )% ' &&%%- % %%,(%'&)% 888G9 % &&%% % ,(&)-'* % ,(%)% 8<8G9 ')%'%,)%* 1 %1&% )'% % !" #$"( ' & %),& 1%%(,&-0 ( (() %%% 88G9-0 ( ))%&%1%%% ,(=+%& (,& ' & &%%'% % H#%-0 2(,%%*)% % %%,(% 8<8
9)% 1%%' (( !" #$"*+
)% ,% -
Fig. 9 compares the photoluminescence decay curves of the porous Sr2MgSi2O7:Eu2+, Dy3+ carriers after calcination at 1050
C for different annealing times. The decay curves feature a fast fading component
and a slow fading component which can be modeled using the following formula:
I = I 1 e − t α 1 + I 2 e − t α 2 The short survival time of Eu2+ is responsible for the fast fading component, while the slow fading component is attributed to the trapping level of the Dy3+ ions [20]. After sintering at
7
2 h the brightness of the sample is high, and both the fast fading and the slow fading time are relatively long. In contrast, the photoluminescence behavior of the sample sintered for 1 h is poor due to the lower crystalline quality. Because a second crystal growth occurred after melting, the brightness of the sample annealed for 5 h is higher than the brightness of the sample sintered for 3 h. The analysis of the morphology and the energy storage performance of the samples suggests that a sintering time of 2 h yields the best results, which is consistent with the SEM results. )
*
!" #$"%&'&&(()*+ )% , % -;)% H# 0+#0.) !*%% (+%%488
9$8,
')1&%,%,(%)% &&% &&1%% 8<8
9
')%)% 1%%&&% ,&%&% ( &,(%) &%%% %,(-0 !)0!%)&%% %,%'% ( %&%%1((&%+%&'1%)%%% 8<8
9 1%% (/)%1%'%,-% & F)%,(*
% ,&%&%% ,%-.%% ,%, % 1%%1 %)%%' %,'1%)%%,(% 8<8
9)%%, *)1
% &&)% ,&&)&&*-% % ($#( %,&& & % 2&%%'*% ')%,)%$48, )% ,'*% ' )%,)%:$, ' & % ,2&%%),(&%-% , !"C#$" ,% C')%)% 1%+%1 *-
8
"+ % !
0 % %&@')% &((%,% B% &&)%1 *&>%-8 :878:?),0(+%& 0%E*%1 *&>%-;M8 :8$8?-
(
3 5-- -- - -- - - !&%% (&&%%;% ((%R;$R "+&,& 9,-A%- :8>8 :? ((- $87+ $ 8$-
"
350--; !F1)! ,&&1)( 1))1;$ 6 $ 6 )9$ 6 M-!&%& ,- &- <> 746? ((-$$R$6-
"
$"
3$5- -0 - 9--B,&&! )# &%*%)H$ 6+1)>HL9 ;?( ( M-.-9,()- $:6>88$? ((-4R7-
3:5- --B - M- - M-- M-,- 6>886? ((- 7
3<5-- % ),&&((% H
! ") 9
HL!" #$"
4
!$"35-886-
345-.-I .--@% .---92E%*%&&,%&%&%*%) '% )M-!&%& ,- &- 8:> 7<? ((-7$R 88-
9
35M- -I, .-I-I' --@ M-9-9 --@ -9-I,,&%)% ,((% +&,%%$ 6 !" ">L; 9?( ( ' %!# M-,- R $>88? ((-<6$R<64-
365-9 9-9- 9-- H- -H+% &%*%)%)( ( % ,&& )((&%% $>8 8? ((- R 7<-
375M- - -M-I, !&%1,,&%((% S2;2 : !"(%& 9,-A%- $7>8 $? ((-<<
[10] T. Maldiney, C. Richard, J.Sequin, et al. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice J. ACS nano., 5(2011), pp. 854-862. 3 5 -.1 I-E,% I-0) - %,&%((%)(%&( ( ; !" "M-.9,()- :86R: >884? ((-7 R7 :-
[12] B.S. Wang, J.J. Yuan, Synthesis of blue hydrothermal assisted sol-gel method of luminescent material Sr2MgSi2O7:Eu, Dy J. Rare Metal Mat Eng, 41(2012), pp. 467-470. [13] P.F. Sun, L.H. Shi, X.J. Liu, Sol-gel synthesis of blue long afterglow Materials Sr2MgSi2O7:Eu2+,Dy3+ and its luminescent properties J. The chemical enginee, 3(2008), pp. 6-8. 3 :5- - -9 -H - - (%(,%R&),&,& '% &%)(/1&%*%(+,%%-%%- 4>8 :? ((- $:7R$<-
10
3 <5!-9 * #-9 9-%1&%(1%% *'(&( ,%% 1,%)M- ,- &- 7>886? ((- $
3 45- - - -'&%(,%R&),&,&1&%M-%- &- 4>88 ? ((-$46R$47-
[17] D.Y. Zhao, J.L. Feng, Q.S. Huo, et al. Triblock copolymer syntheses of Mesoporous silica with periodic 50 to 300 angstrom pores J. Sci, 279(1998), pp. 548-552. 3 65- -M-# -0 -M- -- -- 1&%% .C !" #$" +(%%,&&&,(%11&%( M-(%-% $4>8 $? ((-:4$+ :44-
"
3 750--; !F1)! ,&&1)( 1))1;$ 6 $ 6 )9$ 6 M-!&%& ,- &- <> 746? ((-$$R$6-
385-#1 !% %:T:4<)%%!"&&,() M-,- 8:>88$? ((-$7R48-
11
,
,- &-./ 010" ! .#/ 01 0" 233 4*-
,- - 5(
! -
Fig. 3. SEM images of the porous Sr2MgSi2O7:Eu2+,Dy3+ carrier material after sintering at 1050 °C for different sintering times: (a) 1 h, (b) 2 h, (c)3 h and (d) 5 h. Fig. 4. Representative TEM micrographs of the sample sintered at 1050 °C for 2 h. Fig. 5. Pore size distribution of the sample sintered at 1050 °C for 2 h. Fig. 6. Results of the 3D photoluminescence scan performed on the porous Sr2MgSi2O7:Eu2+,Dy3+. ,- - ./ 6 .#/ !
!
&3)3 4*
7 -
,- 8- !
! -
,- 9- !
&3)3 4*
! -
12
Figure1.
Figure2.
Figure3.
Figure4.
Figure5.
Figure6.
Figure7.
Figure8.
Figure9.