Prostanglandin D2 modulates human neutrophil intracellular calcium flux and inhibits superoxide release via its ring carbonyl

Prostanglandin D2 modulates human neutrophil intracellular calcium flux and inhibits superoxide release via its ring carbonyl

Life Sciences, Vol. 46, pp. 793-801 Printed in the U.S.A. Pergamon Press P R O S T A N G L A N D I N D2 M O D U L A T E S H U M A N N E U T R O P H ...

424KB Sizes 2 Downloads 68 Views

Life Sciences, Vol. 46, pp. 793-801 Printed in the U.S.A.

Pergamon Press

P R O S T A N G L A N D I N D2 M O D U L A T E S H U M A N N E U T R O P H I L I N T R A C E L L U L A R C A L C I U M F L U X A N D INHIBITS S U P E R O X I D E R E L E A S E V I A ITS R I N G CARBONYL C u t h b e r t O. S i m p k i n s ! * , Denise L. Mazorow*#, Sione T. A l a i l i m a * , E l i n A. Tate*, W i l l i a m Sweatt*, Mark Johnson*, K h a r e e m S h a r i f f * and D a v i d B. Millar*" *Naval M e d i c a l R e s e a r c h I n s t i t u t e Bethesda, M a r y l a n d 20814-5055 ~ D i s t r i c t of C o l u m b i a General H o s p i t a l W a s h i n g t o n , D.C. 20003 (Received in final form January 17, 1990) Summary We c o m p a r e d the effects of p r o s t a g l a n d i n D 2 (PGD2), p r o s t a g l a n d i n F 2 alpha (PGF2) and v a r i o u s k e t o n e s on s u p e r o x i d e (OX) r e l e a s e by h u m a n n e u t r o p h i l s , w h i c h h a d been stimulated by N-formyl methionyl leucyl p h e n y l a l a n i n e (FMLP). Our data s u g g e s t e d that the r i n g carbonyl of PGD2 is e s s e n t i a l to its i n h i b i t o r y e f f e c t on OX release, but the carbonyl g r o u p as a ketone, alone is not sufficient. U s i n g the f l u o r e s c e n t Ca 2* probe, Fura-2AM, we found that PGD2 i n c r e a s e d the rate of d e c l i n e of FMLP s t i m u l a t e d i n t r a c e l l u l a r free Ca z+ (Ca)i, but that PGF2 had no effect, cAMP altered FMLP stimulated (Ca)i, in a pattern similar to PGD2. F u r t h e r m o r e , the ring c a r b o n y l of PGD2 is crucial to its e f f e c t on OX as well as on (Ca)i. P r o s t a g l a n d i n D2 (PGD2) is the p r o s t a n o i d w h i c h is m o s t a b u n d a n t l y r e l e a s e d by s t i m u l a t e d a l v e o l a r m a s t cells. (I). P r e v i o u s l y , we demonstrated that the r e l e a s e of OX by FMLP s t i m u l a t e d h u m a n n e u t r o p h i l s was i n h i b i t e d by PGD2. We found that PGD2 was m o r e p o t e n t t h a n PGF2, and s u g g e s t e d that the crucial d e t e r m i n a n t of p o t e n c y was the ring carbonyl group on PGD2. We also found t h a t PGD2 did not compete w i t h FMLP at the FMLP r e c e p t o r site (2). In this p r e s e n t c a r b o n y l g r o u p as also e x t e n d e d our by PGD2 t h r o u g h s t i m u l a t e d (Ca)i.

work, we t e s t e d the h y p o t h e s i s that o n l y the a k e t o n e was n e c e s s a r y for i n h i b i t i o n of OX. We u n d e r s t a n d i n g of the m e c h a n i s m of OX i n h i b i t i o n o b s e r v i n g the e f f e c t of PGD2 and cAMP on FMLP

C o r r e s p o n d e n c e should be a d d r e s s e d to C u t h b e r t O. Simpkins, M.D., Department of Surgery, D.C. General Hospital, 19th and M a s s a c h u s e t t s Avenue, S.E., W a s h i n g t o n , D.C. P r e s e n t addresses: # D e p a r t m e n t of Pathology, U n i f o r m e d S e r v i c e s U n i v e r s i t y of the H e a l t h Sciences, Bethesda, M a r y l a n d 20814 ~ a b o r a t o r y of B i o c h e m i c a l Genetics, N a t i o n a l I n s t i t u t e of M e n t a l Health, N e u r o s c i e n c e C e n t e r at St. Elizabeths, W a s h i n g t o n , D.C. 20032 0024-3205/90 $3.00 + .00 Copyright (c) 1990 Pergamon Press plc

794

Prostaglandins and Neutrophils

Vol. 46, No. ii, 1990

Methods Isolation

of N e u t r o p h i l s

B l o o d w a s o b t a i n e d by v e n i p u n c t u r e f r o m h e a l t h y , m e d i c a t i o n - f r e e volunteers. P r e s e r v a t i v e - f r e e h e p a r i n (Gibco, G r a n d I s l a n d , N . Y . ) w a s u s e d at a c o n c e n t r a t i o n of 12.5 u n i t s p e r ml of b l o o d for a n t i c o a g u l a t i o n . E r y t h r o c y t e s w e r e r e m o v e d by g r a v i t y s e d i m e n t a t i o n through 2% d e x t r a n (Pharmacia, Upsala, Sweden) for 30 min. L y m p h o c y t e S e p a r a t i o n M e d i u m ( L i t t o n B i o n e t i c s , K e n s i n g t o n , MD) w a s l a y e r e d u n d e r the s u p e r n a t a n t a n d c e n t r i f u g e d at 300 x g, at r o o m temperature for I0 min. R e s i d u a l e r y t h r o c y t e s w e r e r e m o v e d by h y p o t o n i c l y s i s a n d the c e l l s w e r e c e n t r i f u g e d a g a i n at 150 x g. The neutrophil pellet was suspended in H a n k ' s Balanced Salt Solution (HBSS, Gibco, Grand Island, NY) to the desired concentration. T h i s p r o c e d u r e y i e l d e d 96% n e u t r o p h i l s by W r i g h t ' s stain with a viability of at l e a s t 95% by t r y p a n blue dye exclusion. Assay

of OX

The s u p e r o x i d e d i s m u t a s e - i n h i b i t a b l e r e d u c t i o n of c y t o c h r o m e C a s s a y of B a b i o r et. al, w a s e m p l o y e d w i t h o u t c y t o c h a l a s i n B. (3). Neutrophils were preincubated for 15 min. with various concentrations of t e s t reagents with HBSS as control. After preincubation 500 ml of n e u t r o p h i l s u s p e n s i o n w a s a d d e d to the r e a c t i o n m i x t u r e in 12 x 75 m m p o l y s t y r e n e t u b e s c o n t a i n i n g 1,500 ml HBSS, t e s t r e a g e n t s (250 ml) at v a r i o u s c o n c e n t r a t i o n s a n d 50 uM cytochrome C (Sigma, St. Louis, M0). The final cell c o n c e n t r a t i o n w a s Ixl0~/ml. A f t e r a d d i t i o n of 25 ul of F M L P at a final concentration of 10 .6 or 10 .7 M, or H B S S as c o n t r o l , the r e a c t a n t s w e r e m i x e d a n d a i ml a l i q u o t was p l a c e d i n t o 12 x 75 m m p l a s t i c t u b e s w h i c h c o n t a i n e d i0 ul s u p e r o x i d e d i s m u t a s e (SOD: B o e h r i n g e r M a n n h e i m , W. G e r m a n y ) at a f i n a l c o n c e n t r a t i o n of 50 mg/ml. B o t h the t u b e s to w h i c h SOD h a d b e e n a d d e d a n d t h o s e w i t h o u t S O D w e r e i n c u b a t e d at 37 ° for I0 min. At the e n d of the i n c u b a t i o n p e r i o d 15 ul of SOD, a l s o at a f i n a l c o n c e n t r a t i o n of 50 m g / m l , w a s a d d e d to the t u b e s to w h i c h S O D h a d n o t b e e n a d d e d initially. C e n t r i f u g a t i o n was at 150 x g a n d a b s o r b a n c e of the s u p e r n a t a n t at 550 nm was d e t e r m i n e d . OX r e l e a s e w a s c a l c u l a t e d as the d i f f e r e n c e in a b s o r b a n c e b e t w e e n the t u b e s w h i c h r e c e i v e d S O D at the b e g i n n i n g , d i v i d e d by an e x t i n c t i o n c o e f f i c i e n t of 2 1 , 0 0 0 M I. C e l l v i a b i l i t y at all c o n c e n t r a t i o n s of P G D 2 (SIGMA, St. L o u i s , MO) w a s 95% or g r e a t e r . A s s a y s w e r e p e r f o r m e d in d u p l i c a t e . T h e e f f e c t of P G D 2 u p o n the i n i t i a l r a t e of r e a c t i o n a n d the m a x i m u m OX r e l e a s e d w a s m e a s u r e d as f o l l o w s : The r e a c t i o n m i x t u r e c o n t a i n e d 3 x 106 c e l l s / m l a n d 50 u M c y t o c h r o m e C a n d H B S S in a t o t a l v o l u m e of 3 ml. P r e i n c u b a t i o n w a s in p l a s t i c c u v e t t e s at 37 ° for 15 min. w i t h v a r i o u s c o n c e n t r a t i o n s of t e s t r e a g e n t s . The cuvettes were then placed into a temperature-controlled (37~)5 d u a l beam spectrophotometer with a magnetic stirrer. F M L P at i0- or 10 .7 M or PMA at 4 x 10 .9 M or g r e a t e r was a d d e d to one c u v e t t e a n d c o n t r o l s o l u t i o n a d d e d to the other. The r e a c t i o n w a s m o n i t o r e d c o n t i n u o u s l y u n t i l a m a x i m u m w a s r e a c h e d , w h i c h for F M L P t o o k 5-8 min. a n d w i t h P M A t o o k as l o n g as 60 min., w h e n l o w c o n c e n t r a t i o n s (4 x 10 .9) w e r e used.

Vol. 46, No. ii, 1990

Measurement

Prostaglandins and Neutrophils

of I n t r a c e l l u l a r

795

Calcium

5 x 106 cells w e r e l a b e l l e d w i t h the m e m b r a n e p e r m e a n t p r o b e F u r a 2AM ( C a l b i o c h e m La-Jolla, Calif.) at 37 o in a P e r k i n E l m e r M o d e l 44B s p e c t r o p h o t o f l u o r o m e t e r . The cells w e r e c o n t i n u a l l y s t i r r e d during measurement. A l t e r n a t i v e e ~ c i t a t i o n w a v e l e n g t h s of 335 nm and 362 nm (slit 4 nm) w e r e e m p l o y e d and e m i s s i o n was m e a s u r e d at 510 nm (slit 8 nm). C a l c i u m ion c o n c e n t r a t i o n s w e r e c a l c u l a t e d by the t e c h n i q u e of G r y n k i e w i c z et al. (4) u s i n g the c o n s t a n t s of M a r t e l l and S m i t h (5). FMLP control spectra w e r e r u n p r i o r to and a f t e r each e x p e r i m e n t a l scan. Since our r e s t i n g c a l c i u m l e v e l s determined with FURA-2AM were so m u c h lower, we i n v e s t i g a t e d w h e t h e r Q u i n - 2 A M gave us the same value for (Ca)i w i t h F U R A - 2 A M of 16- 20 nM, w i t h Q U I N - 2 A M we had r e s t i n g levels of (Ca)i from several i n d i v i d u a l s similar to those r e p o r t e d by o t h e r s of 100200nM. I n v e s t i g a t a t i o n w i t h o t h e r cell lines gave s i m i l a r r e s u l t s ( m a n u s c r i p t in p r e p a r a t i o n , D:L. M a z o r o w and D.B. Millar). DMSO at the c o n c e n t r a t i o n s u s e d had no e f f e c t on (Ca)i. Reagents All r e a g e n t s w e r e p r e p a r e d f r e s h l y each day. FMLP, p r o s t a g l a n d i n s , l i p o p h i l i c ketones, cAMP, cGMP, and phorbol m y r i s t a t e a c e t a t e (PMA) w e r e d i s s o l v e d in d i m e t h y l s u l f o x i d e (DMSO). Control solutions c o n t a i n e d equal amounts of DMSO. All of these r e a g e n t s w e r e o b t a i n e d from Sigma (St. Louis, MO.). The ketones, and a l c o h o l s w e r e o b t a i n e d from A l d r i c h (Milwaukee, Wis.). Statistical

Analysis

All e x p e r i m e n t s w e r e of p a i r e d design. The p a i r e d S t u d e n t ' s t - t e s t was employed. P< 0.05 was c o n s i d e r e d significant. Unstimulated O X r e l e a s e was s u b s t r a c t e d from all values. The d e r i v e d number, % of control, was u s e d b e c a u s e of the large v a r i a b i l i t y in F M L P r e s p o n s e among individuals. % of control was c a l c u l a t e d for e a c h e x p e r i m e n t as OX r e l e a s e w i t h test r e a g e n t s over OX r e l e a s e w i t h o u t test r e a g e n t times i00. S t a t i s t i c a l a n a l y s i s of data e x p r e s s e d as p e r c e n t a g e s was t r a n s f o r m e d b e c a u s e p e r c e n t a g e s are n o t n o r m a l l y distributed. The transformation used was a n g l e = A r c s i n ( p e r c e n t a g e ) 5. The rate of d e c r e a s e in i n t r a c e l l u l a r c a l c i u m was d e t e r m i n e d by m e a s u r i n g the d e c r e a s e that o c c u r e d as of one m i n u t e after the m a x i m u m F M L P - s t i m u l a t e d intracellular calcium had been attained. These data were expressed as percentages of control and transformed using the arcsin t r a n f o r m a t i o n as above. Results P r e v i o u s e x p e r i m e n t s showed no e f f e c t of PGD2 on the the r e l e a s e of OX g e n e r a t e d by a c e l l - f r e e x a n t h i n e - x a n t h i n e o x i d a s e s y s t e m (2). In six e x p e r i m e n t s performed with neutrophils from six i n d i v i d u a l s a b i p h a s i c dose r e s p o n s e curve of the i n h i b i t i o n of O X r e l e a s e by PGD2 was found (Fig. I). The first p h a s e o c c u r r e d b e t w e e n 10 .9 and I0 ~ M and showed an i n h i b i t o r y e f f e c t of up to 64%. In this c o n c e n t r a t i o n range PGD2 had no e f f e c t on FMLP binding (2). In the second phase, b e t w e e n 10 .5 and 10 .4 M, OX r e l e a s e was p r a c t i c a l l y e l i m i n a t e d . This phase c o r r e s p o n d s to the c o n c e n t r a t i o n at w h i c h PGD2 d e c r e a s e s FMLP binding.

796

Prostaglandins and Neutrophils

100

i

Vol. 46, No. Ii, 1990

I

7[

u3 90 +1 IJJ

'~ IJJ

8O 70 605o

O

30'

1,1.,

O o.e, 2 0 10I

I

I

-11 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 LOG PGD 2 CONCENTRATION (M)

-3

FIG.I C e l l s w e r e s t i m u l a t e d w i t h 10 .6 M FMLP. Results are expressed as the p e r c e n t of c o n t r o l O X r e l e a s e + S.E. in the a b s e n c e of PGD2. U n s t i m u l a t e d O X r e l e a s e is s u b t r a c t e d f r o m all v a l u e s . E a c h p o i n t is the a v e r a g e of six e x p e r i m e n t s performed with c e l l s f r o m six d i f f e r e n t i n d i v i d u a l s .

PGD2 is i d e n t i c a l to PGF2 e x c e p t t h a t PGF2 has an h y d r o x y l g r o u p i n s t e a d of a c a r b o n y l g r o u p at the Cll p o s i t i o n . The structures a r e s h o w n in Fig.2.

Vol. 46, No. ii, 1990

Prostaglandins and Neutrophils

797

HO

~ ~

POD2

0

COOH OH

HO

PGF2~ ~ HO

COOH OH

FIG.2 Comparative

Structures

of PGD2

and P G F 2

T h e i m p o r t a n c e of the r i n g c a r b o n y l w a s d e m o n s t r a t e d by d i r e c t l y c o m p a r i n g the e f f e c t of P G D 2 to t h a t of P G F 2 on O X r e l e a s e ( T a b l e i).

TABLE C o m p a r i s o n of the E f f e c t of in R e s p o n s e to F M L P ( i 0 ~ ) .

Mean P<

Subject A B C D E + S.E.

0.005

for

1 0 7 M PGD2 a n d 1 0 7 M PGF2 on O X R e l e a s e E x p r e s s e d as % of C o n t r o l

PGD2 50.0 51.0 8.1 46.6 39.8 39.1+7.3 significant

1

difference

PGF2 86.4 98.5 91.5 94. 1 69.8 88.1+4.5 of P G D 2

Ratio 0 0 0 0 0 0

PGPD2/PGF2 58 52 089 50 57 46+0.094

from PGF2

P< 0 . 0 0 5 for d i f f e r e n c e s b e t w e e n P G F 2 and c o n t r o l a n d P G D 2 a n d control. Both PGD2 and PGF2 inhibited OX release but the i n h i b i t o r y e f f e c t of P G D 2 w a s g r e a t e r . These results suggest that a m a j o r d e t e r m i n a n t of the i n h i b i t i o n of O X r e l e a s e by P G D 2 is t h e c a r b o n y l g r o u p s i n c e the o n l y d i f f e r e n c e b e t w e e n P G D 2 a n d P G F 2 is a Cll c a r b o n y l and h y d r o x y l g r o u p , r e s p e c t i v e l y . N o n e of the k e t o n e s or a l c o h o l s c a u s e d a m a r k e d d e c r e a s e in OX r e l e a s e .

798

Prostaglandins and Neutrophils

TABLE Effect

of K e t o n e s

2

and A l c o h o l s

Reagent (i0~) Cyclopentanone Cyclopentanol 2,4 D i m e t h y l c y c l o p e n t a n o n e Methanol Acetone PGD2 PGF2

Vol. 46, No. ii, 1990

on O X R e l e a s e

% of C o n t r o l 9 8 . 4 ~ 6.0 8 8 . 5 ~ 5.1 7 4 . 6 ~ 7.8* 81.5+ 4.0* 87.7+ 6.8 54.5+ 3.3* 74.2+ 5.3*

+ S.E.

*= s i g n i f i c a n t l y d i f f e r e n t f r o m OX r e l e a s e in the a b s e n c e of a n y test reagent with p<0.05.10~ F M L P was u s e d to s t i m u l a t e the cells. A l s o i n c l u d e d w i t h e a c h e x p e r i m e n t w e r e P G D 2 a n d P G F 2 at I 0 ~ as positive controls. We c o n c l u d e f r o m t h e s e e x p e r i m e n t s t h a t the c a r b o n y l g r o u p a l o n e as a k e t o n e is n o t s u f f i c i e n t to i n h i b i t OX r e l e a s e to a l a r g e d e g r e e . 2,4 d i m e t h y l c y c l o p e n t a n o n e is m o r e lipophilic than cyclopentanone and decreased OX release s i g n i f i c a n t l y w h i l e c y c l o p e n t a n o n e d i d not. This result suggests that lipophilicity is a f a c t o r in the i n h i b i t o r y e f f e c t of a ketone. It is a l s o of i n t e r e s t t h a t in m o s t c a s e s PGD2 i n h i b i t e d OX r e l e a s e by a p p r o x i m a t e l y 50% r e g a r d l e s s of w h e t h e r P G D 2 a n d F M L P w e r e u s e d at I 0 ~ or I0 ~ . For u n k n o w n r e a s o n s s u b j e c t C f r o m T a b l e 1 w a s m u c h m o r e s e n s i t i v e to P G D 2 t h a n o t h e r i n d i v i d u a l s t e s t e d . We f o u n d t h a t P G D 2 d e c r e a s e d b o t h the i n i t i a l r a t e a n d the m a x i m u m q u a n i t y of OX r e l e a s e (Table 111). P G D 2 a l o n e c a u s e d no c h a n g e in OX o v e r 15 min. p r e i n c u b a t i o n p e r i o d (data n o t shown). TABLE Effect

of P G D 2

Release

(I0~)

on the

Stimulated

Subject A B C D E F M e a n + S.E.

by

i0~

3 Initial

FMLP

Initial Rate 85.1 74.5 73.6 77.9 66.7 55.0 72.1+4.21"

Rate

and Emax

of OX

(as % of c o n t r o l ) Emax 46.1 79.5 56.2 48.6 50.3 41.4 53.7+5.5*

* = P < 0 . 0 5 c o n t r o l . I n i t i a l r a t e was 2.82 to 9.33 n M / M i n / l . 5 x 107 cells. D a t a are p r e s e n t e d as p e r c e n t of c o n t r o l OX. Control Emax w a s f r o m 5.43 to 2 7 . 9 9 n M o l e s / l . 5 x 107 cells. These data were o b t a i n e d f r o m 6 d i f f e r e n t s u b j e c t s in six d i f f e r e n t e x p e r i m e n t s . The r e d u c t i o n of the i n i t i a l r a t e of O X r e l e a s e by P G D 2 s u g g e s t s t h a t P G D 2 a c t e d u p o n the r a t e l i m i t i n g e n z y m e N A D P H o x i d a s e . This e f f e c t m a y be d i r e c t or i n d i r e c t . In o r d e r to d i s t i n g u i s h b e t w e e n t h e s e two p o s s i b i l i t i e s , we d e t e r m i n e d t h a t e f f e c t of P G D 2 on O X r e l e a s e s t i m u l a t e d w i t h PMA. PMA activates NADPH oxidase via a

Vol. 46, No. ii, 1990

Prostaglandins and Neutrophils

799

p a t h w a y w h i c h is d i f f e r e n t from t h a t of FMLP. PMA directly a c t i v a t e s p r o t e i n k i n a s e C, t h e r e b y b y p a s s i n g the F M L P r e c e p t o r and o t h e r e a r l y signal t r a n s d u c t i o n m e c h a n i s m s (6). We r e a s o n e d t h a t if PGD2 w e r e d i r e c t l y a c t i n g u p o n N A D P H o x i d a s e t h e n its i n h i b i t o r y e f f e c t on OX r e l e a s e s h o u l d be i n d e p e n d e n t of the p a t h w a y of N A D P H oxidase activation. We found that PGD2 had no e f f e c t on P M A s t i m u l a t e d OX r e l e a s e e v e n at PMA c o n c e n t r a t i o n s as low as 4 x I0~. L o w e r PMA c o n c e n t r a t i o n s did not s t i m u l a t e OX r e l e a s e (data not shown). T h e r e f o r e , PGD2 is not a c t i n g d i r e c t l y u p o n N A D P H oxidase. N e x t we e x a m i n e d the e f f e c t of PGD2 on (Ca)i u s i n g the f l u o r e s c e n t dye Fura2AM. PGD2 had no e f f e c t on the i n i t i a l r i s e in (Ca)i, a f t e r s t i m u l a t i o n by i x i 0 ~ FMLP. However, in the PGD2 t r e a t e d cells, the rate at w h i c h (Ca)i d e c r e a s e d a f t e r the i n i t i a l r i s e w a s more rapid than in c o n t r o l cells (Fig.3A) (p<0.05). Since p r o s t a g l a n d i n s h a v e b e e n shown to i n c r e a s e cAMP l e v e l s (7), we d e t e r m i n e d w h e t h e r cAMP m a y m e d i a t e the c h a n g e s in (Ca)i c a u s e d by PGD2. I n c u b a t i o n of cells w i t h d i b u t y r y l cAMP p r o d u c e d a c h a n g e in the r a t e of (Ca)i d e c l i n e s i m i l a r to that o b t a i n e d by u s i n g PGD2 (Fig. 3B). cAMP c a u s e d no c h a n g e in the rate of r e t u r n to b a s e l i n e (data not shown). DISCUSSION F a n t o n e and K i n n e s (8) d e m o n s t r a t e d t h a t p r o s t a g l a n d i n El a n d 12 i n h i b i t e d FMLP s t i m u l a t e d OX r e l e a s e in h u m a n n e u t r o p h i l s (8). T h e y found no e f f e c t of PGF2, w h i c h c o n t r a s t s w i t h our f i n d i n g s of a small effect. It is p o s s i b l e t h a t small d i f f e r e n c e s in t e c h n i q u e a c c o u n t for this d i s c r e p a n c y . By c o m p a r i n g two p r o s t a g l a n d i n s w h i c h d i f f e r e d in o n l y one s t r u c t u r a l aspect, we s h o w e d t h a t the c a r b o n y l g r o u p of PGD 2 was e s s e n t i a l to its i n h i b i t o r y effect. The fact t h a t a c a r b o n y l as a k e t o n e alone was not s u f f i c i e n t to i n h i b i t OX r e l e a s e was shown by the i n e f f e c t i v e n e s s of the ketones, i n c l u d i n g acetone. Lipophilicity of the ketone may be important in d e t e r m i n i n g potency, as d e m o n s t r a t e d by the i n c r e a s e d e f f e c t of 24 d i m e t h y l c y c l o p e n t a n o n e o v e r that of c y c l o p e n t a n o n e . Our p r e v i o u s e x p e r i m e n t s s h o w e d that c o n c e n t r a t i o n s equal to and less t h a n i0 ~ PDG2 had no e f f e c t on FMLP r e c e p t o r binding. Togni et al. s h o w e d t h a t 10 .3 cAMP c a u s e d a more r a p i d r e c o v e r y of (Ca)i l e v e l s b a c k to b a s e l i n e (9). Our r e s u l t s s u g g e s t t h a t PGD2 m a y i n h i b i t OX r e l e a s e via cAMP and (Ca)i. We f o u n d t h a t c A M P but not c G M P c a u s e s the same c h a n g e s in (Ca)i as does PGD2. Furthermore, PGF2, w h i c h had a s i g n i f i c a n t but small e f f e c t on OX r e l e a s e , h a d no e f f e c t on (Ca)i. The e x p e r i m e n t s w i t h PMA, in w h i c h PGD2 h a d no effect, e v e n at a PMA c o n c e n t r a t i o n as low as 4 x 10 .9 s h o w e d t h a t the PGD2 a c t i o n was l o c a l i z e d at a step e a r l i e r t h a n the a c t i v a t i o n of N A D P H oxidase. T h e r e f o r e , we s u g g e s t t h a t PGD2 i n t e r a c t s w i t h the n e u t r o p h i l in a c a r b o n y l - d e p e n d e n t m a n n e r to e f f e c t an i n c r e a s e in i n t r a c e l l u l a r cAMP w h i c h e n h a n c e s the i n i t i a l r a t e of d e c r e a s e in (Ca)i. It is also p o s s i b l e h o w e v e r t h a t PGD2 and cAMP a t t a i n s i m i l a r e f f e c t s t h r o u g h d i f f e r e n t m e c h a n i s m s . S i n c e p r o t e i n k i n a s e C and o t h e r k i n a s e s are Ca 2÷ d e p e n d e n t , it is p o s s i b l e that the d e c l i n e in (Ca)i c a u s e d by PGD2 leads to the i n h i b i t i o n of OX r e l e a s e (9). The l i p o p h i l i c i t y r e n d e r e d by the side c h a i n s of PGD2 m a y a l l o w the m o l e c u l e to e n t e r a c r i t i c a l a r e a of the cell m e m b r a n e . The h y d r o x y l g r o u p s at C9 and C15 m a y be i m p o r t a n t in a n c h o r i n g the p r o s t a g l a n d i n into an i m p o r t a n t p o s i t i o n

800

Prostaglandins and Neutrophils

Vol. 46, No. ii, 1990

/i hi U,I 0

-J I,I. I.M >

p-.

I.g w-

I 0

I 5

I 10 TIME

I 15

(rain)

W 0

I I

.........

0

I

i

I

5

10

15

i~ . . . . .

j

L- ..... I

0

J 2-D|BUTYRL c A M P ,

I

I

I

5

10

15

TIME (rain)

FIG.3 Effect of PGD2 Prostaglandins

and PGF2 = I0~.

on Intracellular Calcium. FMLP=IO~. cAMP = 10r~. Preincubation = 15 m i n .

Vol. 46, No. ii, 1990

Prostaglandlns and Neutrophils

by h y d r o g e n bonding. Further r e l a t i o n s h i p s of p r o s t a n g l a n d i n s needed.

801

w o r k on the s t r u c t u r e / f u n c t i o n and l i p o p h i l i c k e t o n e s is c l e a r l y

ACKNOWLEDGEMENTS This work was supported by the Naval Medical Research and D e v e l o p m e n t Command, W o r k Unit N.O. M 0 0 9 5 . 0 0 1 - I 0 0 5 . The o p i n i o n s and a s s e r t i o n s c o n t a i n e d h e r e i n are the p r i v a t e ones of the a u t h o r s and s h o u l d not be c o n s t r u e d as r e f l e c t i n g the views of the U.S. Navy, the naval service at large, or the D e p a r t m e n t of Defense. We g r a t e f u l l y a c k n o w l e d g e of the m a n u s c r i p t .

Mrs.

Carolyn

McCoy

for her

preparation

REFERENCES CC. HARDY, C. ROBINSON, A.E. T A T T E R S F I E L D , and S.J. HOLGATE, N. E n g l a n d J. of Medicine, 311 209-212 (1984) C.O. SIMPKINS, S.T. ALAILIMA, E.A. TATE, and M. JOHNSON. J. Surg. Res. 4__1 645-652 (1986) B.M. BABIOR, R.S. KIGNES, J.T. CURNETTE. J. Clin. Invest. 52 741-744 (1973) G. G R Y N K I E W I C Z , M. POENIE, and R.Y. TSIEN. J. Biol. Chem. 260 3 4 4 0 - 3 4 5 0 (1985) A.E. M A R T E L L and R.M. SMITH. C r i t i c a l S t a b i l i t y C o n s t a n t s , i, P l e n u m Press, NY (1974) J.E. NIEDEL, L.J. KUHN, G.R. V A N D E R B A R K . Proc. Nat'l. Acad. Sci. USA 75 3838-3822 (1978) T. T A K E N A W A G Q , J. ISHITOYA, Y. NAGIA. J. Biol. Chem. 261 10921098 (1986) J.C. F A N T O N E and D.A. KINNES. Biochem. Biophys. Res. Commun. 113 506-512 (1983) P. TOGNI, G. CARBRINI, F. DIVIRGILIO. Biochem. J. 224 629-635 (1984)