Accepted Manuscript Provenance analysis on detrital zircons from the back-arc Arivechi basin: Implications for the Upper Cretaceous tectonic evolution of northern Sonora and southern Arizona José Luis Rodríguez-Castañeda, Amabel Ortega-Rivera, Jaime Roldán-Quintana, Inocente Guadalupe Espinoza-Maldonado PII:
S0895-9811(17)30509-6
DOI:
10.1016/j.jsames.2018.04.007
Reference:
SAMES 1906
To appear in:
Journal of South American Earth Sciences
Received Date: 8 December 2017 Revised Date:
5 April 2018
Accepted Date: 5 April 2018
Please cite this article as: Rodríguez-Castañeda, José.Luis., Ortega-Rivera, A., Roldán-Quintana, J., Espinoza-Maldonado, I.G., Provenance analysis on detrital zircons from the back-arc Arivechi basin: Implications for the Upper Cretaceous tectonic evolution of northern Sonora and southern Arizona, Journal of South American Earth Sciences (2018), doi: 10.1016/j.jsames.2018.04.007. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT PROVENANCE ANALYSIS ON DETRITAL ZIRCONS FROM THE BACK-ARC ARIVECHI BASIN: IMPLICATIONS FOR THE UPPER CRETACEOUS TECTONIC EVOLUTION OF NORTHERN SONORA AND SOUTHERN ARIZONA.
José Luis Rodríguez-Castañeda1*, Amabel Ortega-Rivera2 Jaime Roldán-Quintana3, & Inocente Guadalupe
1, 2, 3
RI PT
Espinoza-Maldonado4 Estación Regional del Noroeste, Instituto de Geología, UNAM, Blvd. Luis Donaldo Colosio y Madrid,
Hermosillo, Sonora, CP 83000, México.
Unversidad de Sonora, Departamento de Geología, Rosales y Luis Encinas, Hermosillo, Sonora, México,
M AN U
4
SC
Tel. 662 2175019
CP 83000, México. Tel. 662 2592110
[email protected],
[email protected],
[email protected],
[email protected].
*Corresponding author
ABSTRACT
TE D
1
EP
In the Arivechi region of eastern Sonora, northwestern Mexico, mountainous exposures of Upper
AC C
Cretaceous rocks that contain monoliths within coarse sedimentary debris are enigmatic, in a province of largely Late Cretaceous continental-margin arc rocks. The rocks sequence in the study area are grouped in two Upper Cretaceous units: the lower Cañada de Tarachi and the younger El Potrero Grande. Detrital zircons collected from three samples of the Cañada de Tarachi and El Potrero Grande units have been analyzed for U–Pb ages to constrain their provenance. These ages constrain the age of the exposed rocks and provide new insights into the geological evolution of eastern Sonora Cretaceous rocks. The detrital zircon age populations determined for the Cañada de Tarachi and El Potrero Grande units contain distinctive 1
ACCEPTED MANUSCRIPT Precambrian, Paleozoic, and Mesozoic zircon ages that provide probable source areas which are discussed in detail constraining the tectonic evolution of the region. Comparison of these knew ages with published data suggests that the source terranes, that supplied zircons to the Arivechi basin, correlate with Proterozoic, Paleozoic and Mesozoic domains in southern
RI PT
California and Baja California, northern Sonora, southern Arizona and eastern Chihuahua. The provenance variation is vital to constrain the source of the Cretaceous rocks in eastern Sonora and support a better
SC
understanding of the Permo-Triassic Cordilleran Magmatic Arc in the southwestern North America.
M AN U
Key words: U-Pb detrital zircon dates, 40Ar39Ar step-heating date, Upper Cretaceous, northwestern México.
1. INTRODUCTION
The Upper Cretaceous geologic evolution of eastern Sonora, Mexico, is dominated by three NW-
TE D
trending tectonic elements: westward, (1) the subduction of the oceanic Farallon plate beneath the North America plate, (2) a magmatic arc, and (3) a back-arc basin towards the east. Before that period, a major change in the western Atlantic Ocean occurred, from Middle Jurassic to Lower Cretaceous, with the breakup
EP
extension of the Gulf of México and formation of sedimentary basins (Anderson and Nourse, 2005). Also, it has been found that uplift and exhumation associated with several tectonic events (Late Cretaceous to early
AC C
Cenozoic extension, mid-Cenozoic Core Complex, and late Cenozoic Basin and Range) during post breakup deformation is suggested by an angular unconformity, separating tilted Upper Cretaceous rocks sequences from underlying faulted and folded Proterozoic, Paleozoic, and Mesozoic rocks (Rodríguez-Castañeda, 2002).
The Upper Cretaceous sedimentary and volcanic rocks in eastern Sonora can be traced for more than three hundred kilometers, from the Sonora-Arizona border, to the Arivechi region and even further south (González-León and Lawton, 1995; McDowell, et al., 2001; McKee and Anderson, 1998; McKee et al., 2
ACCEPTED MANUSCRIPT 2005; Rodríguez-Castañeda, 1994, 2002) (Fig. 1). The rock exposures allow to distinguish a north-south belt of dominantly non-marine clastic sedimentary rocks about 6,000 m thick as result of a widespread extension (Rodríguez-Castañeda, 2002).
RI PT
Upper Cretaceous volcanic and volcano-sedimentary rocks in the Arivechi region record proximal volcanic sources. These rocks, which constitute one of the best preserved Upper Cretaceous magmatic arc segments in the North American Cordillera, are of importance since they play a key role for the understanding of the geologic and tectonic setting of eastern Sonora. The volcanic, volcaniclastic, and
SC
intrusive rocks that comprise this magmatic arc have been described by several workers including McDowell
M AN U
et al. (2001), Roldán-Quintana (2002), Rodríguez-Castañeda (2002), González-León et al., 2011; RodríguezCastañeda et al. (2015).
The structural, stratigraphic and petrologic attributes of these rocks in Arivechi have been previously described by various authors (King, 1939; Fernández-Aguirre and Almazán-Vázquez, 1991; FernándezAguirre et al., 1995; Minjárez-Sosa et al., 1985; Palafox et al., 1984; Pubellier, 1987; Rivera-Cabrera, 2007),
TE D
who attributed their formation to a contractional tectonic environment. However, new structural information obtained by Rodríguez-Castañeda et al. (2015) suggest a complex scenario involving filling of one or more
EP
basins during the development of the Late Cretaceous magmatic arc, indicating that these basin(s) are probably Jurassic and Upper Cretaceous as suggested earlier by McKee et al. (2005). During Upper
AC C
Cretaceous time, the main tectonic environment across eastern Sonora was that of extension, where massgravity deposits and recognition of geological structures as the Arivechi back-arc basin (?); and a pair of positive structural land forms, the Cananea High (McKee and Anderson, 1998; Rodriguez-Castañeda et al., 2015) and the Aldama Platform (Ramirez and Acevedo, 1957) are tectonic features in the history of the region. Although some researchers have suggested the existence of Laramide foreland basins based upon sedimentologic and stratigraphic studies (e.g. Gonzalez-León and Lawton, 1995; García y Barragán, 2003), 3
ACCEPTED MANUSCRIPT Rodríguez-Castañeda et al. (2015) suggest that the back-arc basin received debris from structurally positive landforms in western Sonora. Although there have been several interpretations of the structural geology of the Arivechi region, the tectonic models of McKee (1991) and Rodríguez-Castañeda (2002) are more consistent with the new study by Rodríguez-Castañeda et al. (2015), where they propose a thicker that includes several megablocks (Blair and McPherson, 1999). The
RI PT
stratigraphic column (Fig. 2).
megablocks include Precambrian, Paleozoic, and Mesozoic rocks derived probably from the CananeaAldama high. Identified structures (Rodríguez-Castañeda et al., 2015) suggested that megablocks were
SC
initiated as slumps or slides because of an extensional regime, and emplaced on the lower part of the slope causing intense deformation and fragmentation. Such large-scale mass-gravity megablocks are a
M AN U
characteristic feature of the San Antonio-Arivechi basin(s), the Cabullona basin (McKee et al., 2005) and other basins like east Sierra Los Ajos and the El Tigre area (Montaño-Jimenez, 1988) where such processes have not been recognized. Previously, the megablocks were interpreted as thrust faults structures related to a contractional regime by other authors (Rangin, 1977; Pubellier, 1987). 40
Ar/39Ar geochronological studies were carried out to constrains the
TE D
Hence, U-Pb and
paleogeography and tectonic evolution of northwest Mexico, the tectonic development of the basin and its fill, and the timing and manner of translation of crustal blocks. In this study U-Pb age spectra of detrital
EP
zircons, collected from the two units exposed in the area, were studied to identify provenance of sediments and to locate the source terranes that contributed sediments to the study area.
AC C
The results of this study will provide new insights on the geological evolution of Arivechi’s stratigraphy and allow us to establish a correlation between units exposed in northern and northwestern Sonora and southern Arizona. The data and interpretations presented here, although largely limited to one locality, provide a foundation for further studies on the Upper Cretaceous volcano-sedimentary sequence.
2. GEOLOGY 4
ACCEPTED MANUSCRIPT 2.1 Study area The study area, Arivechi region, is located in eastern Sonora (28° 50′ 00″ to 28° 57′ 00″ north Latitude and 109°03´00´´ to 109°09´00´´ west Longitude (Fig. 3). Three sandstone samples were collected
RI PT
from the Arivechi area one in the Cañada de Tarachi unit and two from the El Potrero Grande unit along the Arivechi – Tarachi road.
SC
2.2. Geological Setting
The Upper Cretaceous was a period of major global tectonism, when the Laurasia and Gondwanan
M AN U
supercontinents had already broken up and tectonic activity in southwestern North America was characterized by strike-slip and normal faulting, magmatism, and denudation. (Iriondo and Premo, 2011; Iriondo et al., 2003; Rodríguez-Castañeda, 2002; Roldán-Quintana, 2002; Rodríguez-Castañeda et al., 2015). These plate tectonic patterns caused a change from primarily compressional tectonics to a tensional stress
and Nourse, 2005).
TE D
field, transmitted as strike-slip fault movements across the Sonora on ancient Jurassic structures (Anderson
Through the Late Cretaceous time, uplift, erosion, downslope movements of sediment were
EP
concurrent with the widespread emplacement of plutons and batholiths and related volcanism (McDowell et al., 2001; Kimbrough et al., 2001).
AC C
The Arivechi region is in the margin of a basin that may have originally developed as a back-arc basin of the California-Baja California-Sonoran magmatic arc during Mesozoic contraction associated with subduction of the Farallon plate along the western margin of North America (Rodriquez-Castañeda et al., 2015).
2.2.1. Upper Cretaceous stratigraphy
5
ACCEPTED MANUSCRIPT The Arivechi basin includes two lithological units: (a) Cañada de Tarachi, and (b) El Potrero Grande accompanied by the Oligocene-Miocene Sierra Madre Occidental volcanic sequence (Fig. 2; Rodríguez-
RI PT
Castañeda et al., 2015).
2.2.1.1. Cañada de Tarachi Unit
This unit comprises conglomerate, sandstone, siltstone, shale, andesitic dikes, and a significant
SC
presence of megablocks of Precambrian, Paleozoic and Mesozoic origin (Rodriquez-Castañeda et al., 2015).
M AN U
Regarding the conglomerates, they are abundant throughout the unit, distributed at various levels, with 1-10 m in thickness although occasionally reaching ~100 m. The conglomerate beds are composed of several lithologies. The pebble-cobble conglomerate that occurs in the Cerro Zoropuchi to the north (Fig. 3), the clasts that are principally limestone (Fig. 4a, 4b), indicate Paleozoic and Early Cretaceous ages (R. Monreal, written communication, 2014), and therefore the age of the Cañada de Tarachi unit is situated in the Upper
TE D
Cretaceous sequence.
In addition to those included in the slipped blocks, no fossils have been identified in the Cañada de Tarachi Unit. This observation has genetic significance for the sedimentary environment, as the fossil
EP
absence could be interpreted as an inland development for the Arivechi basin. Our geological mapping and strike and slip direction of bedding data suggest a minimum thickness of ~2000 m.
AC C
Pebble-cobble conglomerate well exposed in the Cañada de Tarachi stream and along the ArivechiTarachi road, comprises two types of conglomerates: one constituted by angular sedimentary rock clasts (siltstone, quartzite, chert, and less limestone) supported by matrix of the same composition as the coarse portion with sizes varying from 0.5 centimeters to 30 centimeters and bigger; another type includes rounded volcanic (andesite and tuff) clasts that vary between 0.5 and 30 centimeters. Matrix composition is like the coarse portion (Fig. 4c to 4h).
6
ACCEPTED MANUSCRIPT Monoliths exposed in the section consist of Proterozoic, Paleozoic, and Mesozoic rocks (Fig. 2) (Rodríguez-Castañeda et al., 2015). The megablocks show a gradational transition from coherent beds in their upper and middle parts to fragmented and sheared beds along their edges and bases. Rodríguez-
the development of structures associated to slump.
RI PT
Castañeda et al. (2015) report different type of structures within the megablocks that were used to reconstruct
The Precambrian monolith (long ~ 7 km) is exposed at Cerro El Palmar (Fig. 3). It is mainly composed of quartz sandstone and dolomite beds intercalations. The dolomite beds contain stromatolites,
SC
possibly of the Jacutophyton genus, like those found in the Caborca region of a Neoproterozoic age (Weber et al., 1979). A 10-m thick bed disruption (breccia) represents the contact between the Neoproterozoic rocks
M AN U
and the Cañada de Tarachi Unit.
Paleozoic monoliths (long ~2 km; Fig. 3) consist of Mississippian fossiliferous limestone and quartz sandstone (Fernández-Aguirre and Almazán-Vázquez, 1991). These megablocks can be observed at Cerro Peñasco Blanco and Cerro Las Conchas. At Cerro Las Conchas (Fig. 3), another monolith is exposed being
TE D
composed of limestone, shale, and sandstone, containing fossils of Early Cretaceous age (Fernández-Aguirre and Almazán-Vázquez, 1991). Bartolini (1993) suggested that these rocks are correlated with exposed units in western Chihuahua. Smaller megaclasts of dozens of meters in size of different composition and ages are
EP
also found imbedded within the sequence.
The fact that these are glided fragments and because of their size, they were not previously identified
AC C
as megaclasts, was the main reason for assuming that the structures were incorrectly interpreted by previous authors. Hence, the exposures of Cerro Las Conchas, Cerro Peñasco Blanco and Cerro El Palmar are considered as gliding megaclasts.
In a previous work (Rodríguez-Castañeda et al., 2015), several granitic megaclasts were found at the base of this unit. One was collected next to stream Cañada de Tarachi, being dated by U-Pb zircon geochronology at 76.0 ± 2.0 Ma (Campanian, Late Cretaceous; Figure 3) and another sample collected at the Arivechi-Tarachi road dated by 40Ar/39Ar step-heating of a K-feldspar at 69.57 ± 0.48 Ma (Fig. 3). 7
ACCEPTED MANUSCRIPT The basal section of the Cañada de Tarachi Unit is not exposed in the study area. However, by correlation with other localities to the north, this contact must be an angular unconformity between the Upper Cretaceous rocks and older rocks. The upper contact with the El Potrero Grande Unit is transitional to a younger volcanoclastic sequence. The Cañada de Tarachi unit records a strong deformation, probably
than the result of a compressive tectonic deformation.
SC
2.2.1.2. El Potrero Grande Unit
RI PT
synsedimentary and related to gravitational movement (vertical uplift and sliding) of the megaclasts, rather
M AN U
The El Potrero Grande unit is exposed in the eastern part of the study area and this unit comprises conglomerate, sandstone, siltstone, and shale with interbedded rhyolitic tuff and andesitic and dioritic dikes (Fig. 3). An andesitic tuff collected at the base of this unit yield an 40Ar/39Ar age of 261.9±1.8 Ma (Permian, Capitanian age). These rocks together form a partial column of ˃2400 m in thickness. However, the thickness
Occidental volcanic rocks.
TE D
of this unit could not be determined, because this sequence is covered by the Cenozoic Sierra Madre
The age of this unit can be fixed by isotopic K/Ar ages in biotite concentrates yielded Upper
EP
Cretaceous (Santonian) dates of 83.4 ± 4.2, 84, and 86 Ma for two tuffs from the upper part of the sequence (Grajales-Nishimura et al., 1990); and, an andesite at Cerro San Miguel (southward of the study area) yield
AC C
an 83.4±4.17 Ma age (Pubellier, 1987). Northward, along the Sahuaripa-Natora road, Rodríguez-Castañeda et al. (2015) reported a tuff, from a comparable section to the area, dated as 76.30 ± 1.98 Ma (Campanian) by U-Pb method in zircon.
Stratigraphically, the El Potrero Grande unit is transitional with the lower Cañada de Tarachi unit and is uncomformably covered by the Cenozoic Sierra Madre Occidental volcanic rocks.
8
ACCEPTED MANUSCRIPT 3. METHODOLOGY
Three sandstone samples were selected for detrital zircons (290 grains) U-Pb analysis (one sample from Cañada de Tarachi unit and two sandstone samples from El Potrero Grande unit) and, an andesitic tuff 40
Ar/39Ar geochronology (Samples localities are
RI PT
sample from El Potrero Grande unit was also selected for
shown in Figure 3). Sample A78-11 (99 grains), coordinates UTM Zone 12 0682651E, 3198616N; Sample A82-11 (93 grains), UTM Zone 12 0685321E, 3199261N; and Sample A79-11 (98 grains), UTM Zone 12,
SC
0686647E, 3198030N (datum WGS84). Sample JR10, coordinates UTM Zone 12R 0685245E, 3198845N). Stratigraphically, sample A78-11 lies in the lower part of Cañada de Tarachi unit, whereas samples A82-11
M AN U
and A79-11 were collected from the lower and middle parts of the El Potrero Grande sequence, respectively. Sample JR10 is located near to base of the El Potrero Grande unit.
Minerals were concentrated by standard technics at the Estación Regional del Noroeste of the Instituto de Geología, UNAM. The number of grains analyzed from three samples were 289 from a total of
3.1. U-Pb dating
TE D
297 zircon grains.
EP
U-Pb geochronological analyses were carried out at the Laboratorio de Estudios Isotópicos (LEI) of the Centro de Geociencias Isotopic lab, UNAM. U-Pb ages were obtained using laser-ablation inductively-
AC C
coupled-plasma mass spectrometry (LA-ICPMS) employing a 193-nm excimer laser workstation (Resolution M-050) coupled with a Thermo X-ii quadrupole ICPMS. The protocol reported by Solari et al. (2010) was used, employing a 23-µm analytical spot and the Plešovice zircon (Slama et al., 2008) as the bracketing standard. Time-resolved analyses were then reduced off-line with in-house developed software written in R (Solari and Tanner, 2011), and the output was then imported into Excel, where the concordia as well as ageerror calculations were obtained with Isoplot v. 3.70 (Ludwig, 2008).
9
ACCEPTED MANUSCRIPT During the analytical sessions, the observed uncertainties (1-sigma relative standard deviation) on the 206
Pb/238U,
207
Pb/206Pb and
208
Pb/232Th ratios measured on the Plešovice standard zircon were 0.75, 1.1 and
0.95% respectively. These errors were quadratically added to the quoted uncertainties observed on the measured isotopic ratios of the unknown zircons. This last factor considers the heterogeneities of the natural 204
Pb, used to correct for initial common Pb, was not measured (because its
RI PT
standard zircons. The isotope
signal is swamped by the 204Hg normally present in the He carrier gas); common Pb was thus evaluated using the
207
Pb/206Pb ratio, and all the analyses graphed on Tera- Wasserburg (1972) diagrams. Corrections, if
206
Pb/238U ages are used for zircons < 1.0 Ga, whereas
207
SC
needed, was then performed using the algebraic method of Andersen (2002). In figures, tables and results, Pb/206Pb ages are cited for older grains. The
M AN U
TuffZirc algorithm of Ludwig and Mundil (2002) was used to calculate the best mean of which is preferred for estimating the apparent age of those young zircons in which the
207
206
Pb/238U ages,
Pb signal is low.
The 207Pb/206Pb ages were furthermore considered as minimum ages because of the effect of possible Pb loss. The results have been plotted in pie diagrams, where the total number of analyzed grains appears. The
TE D
same data have been plotted in relative probability diagrams showing the different ages and their uncertainty
AC C
3.2. 40Ar/39Ar dating
EP
(only for deviations in the measurement) as a normal distribution for all ages of a sample in a single curve.
Age analyses were carried out in the Queen's University
40
Ar/39Ar geochronology laboratory. For
each mineral separate, ~5-10 mg of material was wrapped in Al foil and stacked vertically into Al canisters, which were then irradiated in the McMaster University Nuclear Reactor in Hamilton, Canada, with the 40
Ar/39Ar flux monitor - LP-6 biotite (128.5 Ma, Roddick, 1983). Following irradiation, the samples and
monitors were placed in small pits, ~2 mm in diameter, drilled in a Cu sample holder. This was placed inside a small, bakeable, stainless steel chamber with a ZnSe viewport connected to an ultra-high vacuum purification system. Monitors were fused in a single step, using a focused New Wave MIR-10 30-watt CO2 10
ACCEPTED MANUSCRIPT laser. For the total-fusion experiments, the laser beam was focused to melt single grains of muscovite in a single step. The evolved gases were purified using a SAES C50 getter for ~5 minutes. Argon isotopes were measured using a MAP 216 mass spectrometer, with a Bäur Signer source and an electron multiplier. All data were corrected for blanks, atmospheric contamination, and neutron-induced interferences (Roddick, 1983;
using the decay constants recommended by Steiger and Jager (1977).
SC
4. RESULTS
RI PT
Onstott and Peacock, 1987). All errors are reported as ±2σ, unless otherwise noted, and dates were calculated
4.1. U-Pb Geochronology
M AN U
Sample A78-11 is a middle bedded sandstone that petrographically corresponds to a quartz-feldspatic sandstone with quartz and microcline grains in a matrix composed by fragments of quartz, sericite and opaque minerals. Ninety-nine zircon grains were selected for U-Pb analysis. Sample A78-11 is dominated by Precambrian grains in which 7% are Paleoproterozoic (1602 to 1688 Ma) and 82% are Mesoproterozoic
TE D
(1341 to 1591 Ma). In addition, 6% are Permian grains (255 to 274 Ma); and 4% are Triassic detrital zircons (247 to 250 Ma) (Fig. 5a, Table 1).
Sample A82-11 is a middle bedded sandstone and petrographically classified as an arkose where
EP
quartz, and plagioclase are the main mineralogy. 92 zircons were analyzed, being, 79% of the grains of a Cretaceous age (86 to 146 Ma). Other small percentage of grains are Jurassic (147 to 160 Ma; 6%), Permian
AC C
(250 to 256 Ma, 2%), and Mesoproterozoic (1417 to 1650 Ma, 5%) (Fig. 5b, Table 2). Sample A79-11 correspond to a thick bedded sandstone composed of quartz and feldspars. Of the 99 grains analyzed in this sample, 96% have ages from 71 to 97 Ma; only 1 grain is Triassic and 2 grains are Mesoproterozoic (Fig. 5c, Table 3).
4.2. 40Ar/39Ar Geochronology 11
ACCEPTED MANUSCRIPT An andesitic tuff in the lower part of the Cretaceous El Potrero Grande unit (sample JR10) was dated by whole-rock 40Ar/39Ar step-heating. As seen in Figure 6 and Table 4, the whole-rock age spectra is disturbed; the first steps yield a Cretaceous date (~80 Ma) that can be correlated to the age of the El Potrero Grande unit sequence at this level. An age segment (steps 7 to 13) yields an integrated 40Ar/39Ar age of 262±1 Ma (2s),
RI PT
with a similar correlation age of 262±2 Ma (2s), initial 40Ar/36Ar =281 ± 5 and a MSWD = 0.80, providing a maximum age for the rock. Ca/K values are consistent with degassing from hornblende. The initial argon ratio is close to the atmospheric ratio of 295.5, indicating that the rock does not contain excess argon and
SC
further supporting the reliability of the age. A 261 Ma age is also consistent with the U-Pb ages of detrital zircons from sample A78-11, A82-11, and A79-11 and strongly supports the presence of Permian and
M AN U
Triassic rocks in the region, occurring as megablocks in the Cañada de Tarachi unit. A 261 Ma age for this andesitic tuff suggests that it was a megablock, reheated and disturbed at around 80 Ma while being imbedded in the fine-grained sequence of the El Potrero Grande unit, which was still being deposited.
TE D
5. DISCUSSION
5.1. Provenance implications from detrital zircon U-Pb geochronology
EP
The detrital zircon age populations (Fig. 5) determined in the Cañada de Tarachi and El Potrero Grande units contain distinctive Precambrian, Paleozoic, and Mesozoic zircon ages. The U-Pb dates provide
AC C
probable source areas which are discussed in detail constraining the tectonic evolution of the region.
5.1.1 Precambrian zircons
The older zircon age peaks are greater than 1600 Ma, with the most dominant peak at 1400 Ma (Fig. 5). Older zircons (1600 Ma), correlate with a region in northeast Sonora, where a significant area of Proterozoic crystalline basement (1700 – 1600 Ma) can be correlated with the Pinal Schist or the Mazatzal province of southern Arizona and northern Sonora. Two localities with ancient zircons of 1600 Ma age 12
ACCEPTED MANUSCRIPT population can be identified in northeast Sonora, the Sierra Los Ajos and Cerros Mesteñas (Figs. 7 and 8), which are associated with the Pinal province of southern Arizona and northern Sonora. Within the Pinal Province, there are two blocks, the Pinal block to the northwest and Cochise block to the southeast. Sedimentation within the Pinal block occurred around 1.68 Ga, whereas volcanic activity in the younger
RI PT
Cochise block recorded between 1.647 and 1.630 Ga (Anderson and Silver, 2005). The Pinal Schist forms the basement rock of most of southern Arizona and may also extend some distance into northern Sonora, Mexico (Anderson and Silver, 1981). Anderson and Silver (1981) sampled a rhyolitic tuff exposed in a pass-through
SC
Sierra Los Ajos, west of rancho Mababi; zircons from the rhyolite yielded an upper-intercept age of ca. 1.69 Ga.
M AN U
The 1400 Ma age population may be derived from Proterozoic suite of anorogenic, consanguineous plutons of porphyritic granodiorite to granite (Loiselle and Wones, 1979; Anderson, 1983). These anorogenic plutons crop out throughout the southwestern United States and into northern Mexico that consistently yield zircon U-Pb ages of 1425 – 1475 Ma (Anderson and Silver, 1977; 2005) (Fig 8). Anorogenic intrusives are
TE D
also common in northwest Sonora together with Permian and Triassic granitoids in the Sonoyta region (Stewart et al., 1986; Arvizu et al., 2009). The ages of the two geotectonic domains in northern Sonora, the Pinal terrane (located in the northeast) and the Caborca terrane (located in the northwest Sonora) are also
EP
similar (Fig. 7). Other localities are in northwest Sonora, Sierra Los Alacranes and Sierras Cabeza PrietaChoclo Duro have exposures of Proterozoic metaplutonic rocks interlayered with fine-grained gneisses. The
AC C
granitic intrusions have ages of ca. 1645 Ma and were, in turn, intruded by non-foliated granites with an age of 1432±6 Ma (Nourse et al., 2005). Detrital zircons with an age of 1400-1300 Ma can be associated with anorogenic plutons that are widespread in Sonora and Arizona (Fig. 8). Magmatism migrated westward with time and reached northern Mexico about 1410 Ma ago (Anderson and Silver, 2005).
13
ACCEPTED MANUSCRIPT Several ~1300 Ma zircons grains are present in the A78-11 sample. Rocks within these age range have not yet been identified in the Sonora region and may reflect 1400–1300 Ma granite sources throughout the North American Southwest (Windley, 1993; Anderson, 1989; Van Schmus et al., 1993).
RI PT
5.1.2. Permian-Triassic zircons
A population of much younger zircons have ages that range from 247 to 274 Ma, spanning from the Permian to the Lower Triassic periods (Fig. 5a). Triassic and Permian zircons may have come from arc
SC
terranes exposed in northwestern Sonora around Sonoyta town and/or southern Arizona (Stewart et al., 1986). From U-Pb isotopic geochronology and regional stratigraphic studies, widespread Mesozoic volcanic
M AN U
rocks in northern Sonora are similar in age to those in southern Arizona (Anderson and Silver, 1978, 1979). No plutonic rocks of Triassic age are known in southern Arizona, except for one small area in the Trigo Mountains of southwesternmost Arizona (Stewart et al., 1986). In the other hand, in Sierra Los Tanques, southwest from Sonoyta, Stewart et al. (1986) obtained a U-Pb zircon age of 225 Ma from a small pluton,
TE D
whereas in the same locality Campbell and Anderson (2003) obtained a U-Pb Triassic age of 233 Ma from a monzodiorite. With these two exceptions, Phanerozoic granitoids in this region have been dated as MiddleLate Jurassic, or younger.
EP
Riggs et al. (2009) obtained U-Pb zircon ages from three samples of the nearby Sonoyta pluton, which yielded a composite age of ~270 Ma. In addition, Riggs et al. (2010) reported Permian U-Pb zircon
AC C
ages of 280±3 Ma from Sierra Los Tanques pluton, and an age of 273±6 Ma from two clasts of the El Antimonio Formation in northwest Caborca, Riggs et al. (2014) reported also a group of Permian zircons in the El Antimonio Formation that yields a TuffZirc age of 273 Ma. Arvizu and Iriondo (2015) reported U-Pb Permo-Triassic granitoids at Sierra Los Tanques that range in age between 284 and 221 Ma, and which may be considered as a potential source rocks for the detrital zircons in the study area.
14
ACCEPTED MANUSCRIPT 5.1.3. Jurassic zircons Jurassic zircons (147-160 Ma) according to the literature (Tosdal et al., 1989, Anderson et al., 2005) may be related to the Jurassic magmatic arc widely distributed throughout northwest and central Sonora and southern Arizona. These Jurassic Sonoran rocks ages are assigned based upon interpreted ages derived from
RI PT
U-Pb isotopic results on zircon ages obtained from igneous rocks across Sonora (Anderson and Silver, 1978, 1979).
North of the Mojave-Sonora megashear arc-related volcanic, volcaniclastic, and clastic rocks are
SC
intruded by plutons ranging age between 175 and 160 Ma that are part of the Middle Jurassic igneous province. In south-central Arizona and northern Sonora, the Upper Jurassic volcanic and sedimentary rocks
M AN U
exposed in the region can be associated to the Artesa sequence, which in turn, is closely associated with the Late Jurassic plutonism of the Ko Vaya super unit (Tosdal et al., 1989). U-Pb ages of the Ko Vaya suite are 146±3 Ma, while the Ko Vaya granite is Ca. 150 Ma (Haxel et al., 2008). Other ages are Baboquivari peak (146±3 Ma; Haxel et al., 2008), San Moises granite (149 Ma; Anderson et al., 2005), volcanics from the
TE D
Cucurpe Formation in central Sonora (150±1 Ma, 152±2 Ma; Mauel et al., 2011), El Sahuaro granodiorite (153 Ma, Anderson et al., 2005). Therefore, the tectonic environment for emplacement for the Upper Jurassic
(2014).
AC C
5.1.4. Cretaceous zircons
EP
rocks is associated to extension, rifting, magmatism and transtension according with Lawton and Molina
Cretaceous zircons (86-146 Ma, Table 2, Fig. 5b) likely reflect an admixture of California-BajaSonora magmatic arc. Erosion has stripped off most of the volcanic rocks, leaving a series of batholiths as remnants of the magmatic arc. The Peninsular Ranges Batholith of California and Baja California as well as the Sonoran batholiths have a key role in the paleogeography of western North America. Before the opening of the Gulf of California, the rocks of the Peninsular Ranges batholith were contiguous with the plutonic rocks of Sonora (Fig. 8). 15
ACCEPTED MANUSCRIPT The plutons of the Peninsular Ranges in California and Baja California were emplaced from west to east between 140 and 80 Ma (U-Pb zircon dates) (Ortega-Rivera, 2003). The western Peninsular Ranges consist of Jurassic and Cretaceous (140-105 Ma) age plutons, where some of them intrude their own volcanic rocks with ages of 125-118 Ma. Meanwhile, the eastern Peninsular Ranges plutons are younger ranging from
RI PT
105 to 80 Ma. These plutons together comprise the La Posta-type granite province of the eastern Peninsular Ranges batholith, which is large, widely exposed, and consists of composite bodies of more than hundreds of square kilometers in surface exposure. Plutons 90 to 65 Ma in age were emplaced throughout Sonora as the
SC
manifestation of the magmatic arc (Ortega-Rivera, 2003).
Detrital zircons of 71-97 Ma on sample A79-11 (Table 3, Fig. 5c) yield different Cretaceous ages
M AN U
compared to sample A82-11. Zircons with these ages are recorded in the Coastal Sonoran batholith, where granitoids in the Kino and Punta Tepopa region range in age between 69-90 Ma (Anderson and Silver, 1969; Gastil and Krummenacher, 1977; Ramos-Velazquez et al., 2008) (Fig. 8). The main peak age population for this sample range between 71 and 79 Ma. The Coastal Sonoran batholith and other batholiths further east in
TE D
Sonora and Sinaloa are interpreted to be a continuation of the Eastern Peninsular Ranges Batholith, which is presently separated from Sonora and Sinaloa by the Gulf of California and is related to the subduction of the
EP
Farallon plate beneath North America during the Late Cretaceous and early Cenozoic (Ortega-Rivera, 2003).
5.2. Permo-Triassic rocks in the Arivechi region
40
AC C
Permo-Triassic rocks in the Arivechi region are recorded by an andesitic tuff megablock dated by a Ar/39Ar whole-rock age at 262±1 Ma (2s) and U-Pb detrital zircons ages (274 - 247 Ma) obtained from
sandstone samples. The provenance of the early Permian to Middle Triassic zircons are problematic because Permo-Triassic igneous rocks are not widely distributed in Sonora, i.e., they are very locally distributed (Anderson and Campbell, 1992; Arvizu et al., 2009; González-León et al., 2009; Riggs et al., 2015; Stewart et al., 1986). Nevertheless, the Arivechi´s Permian rocks can be correlated with Permian igneous rocks in the Mojave Desert region include volcanic rocks dated at ~283 Ma (Walker, 1988), 281±8, and 262±2 (Martin 16
ACCEPTED MANUSCRIPT and Walker 1995) and granitoids dated at ~249 Ma (Cart et al., 1984) and 240-260 Ma (Miller et al., 1995). Recently, Riggs et al (2015) reported new U-Pb ages from Permian metasedimentary units in the Inyo Mountains of eastern California and plutons in the central Mojave Desert – a foliated granite of ~270 Ma, an orthogneiss at ~261 Ma, and the plutons at ~257 Ma. Riggs et al (2015) suggest these ages document the
RI PT
initiation of arc magmatism by Middle Permian time, consistent with pluton ages from Sonora, Mexico. In eastern California, deep- to shallow-water carbonate to siliciclastic rocks yield zircon ages that suggest a maximum depositional age of ~260 Ma. It is possible that such rocks are continuous through Sonora but have
SC
not been widely recognized or are overlain by Mesozoic or Cenozoic cover. Meanwhile, the Permian plutonic rocks near Los Filtros, Chihuahua, are part of a discontinuous igneous belt (230-280 Ma) that extends from
M AN U
Chihuahua to southern Mexico (Torres et al., 1999; Torres et al., 1986).
Sarmiento-Villagrana, et al. (2016) reports Early Triassic U-Pb ages of 249.6±2.1 Ma and 241.3±2.4 Ma (for granodiorite and a quartz-monzonite, respectively) for the Western Sonobari Complex located at the border between Sonora and Sinaloa. These ages are similar to the detrital zircons ages reported for the
TE D
studied area and maybe a possible source for the sandstones in the Arivechi region. Another possible source area for the Permian-Triassic zircons (296-222 Ma) besides Sonora and Chihuahua localities are the rocks of the Guacamaya Formation in the Huizachal region in northeastern
EP
Mexico (Rubio-Cisneros and Lawton, 2011). Other localities for Permian-Triassic zircon ages have been reported mostly in southern Mexico (Torres et al., 1999; Keppie et al., 2003; Pack et al., 2016). Armstrong‐
AC C
Altrin, et al. (2018) and Tapia-Fernandez et al. (2017) reported detrital zircon ages between 216 and 286 Ma, obtained from sandstone beaches, that are related to erosion of Permian granitoids and metasedimentary rocks of the Chiapas Massif Complex. Although more detailed paleogeography work needs to be carry out, the source of zircons from the northeastern and southeastern Mexico cannot be rejected as plausible sediment contributors to the Arivechi area.
17
ACCEPTED MANUSCRIPT Meanwhile, the presence of Lower Triassic rocks in Sonora is limited and the outcrops seem to be remnants of an ancient magmatic arc (Stewart et al., 1986). Triassic sections are exposed in northwestern and central Sonora, southern Arizona, and equivalent strata have been recognized in sections in eastern California and western Arizona. U-Pb zircon ages from the Arivechi region provide the possible estimate of the age of
RI PT
Triassic magmatic arc activity in that area. These zircon ages also provide a basis for understanding the paleogeography and stratigraphy of Triassic rocks in the Arivechi region, where the source of the volcanic debris was presumably a major magmatic arc related volcanic system. Notably, the U-Pb ages obtained in
SC
this study are older than those proposed for the Chinle Formation in northern Arizona (Riggs, 2013). Locally, our preliminary field work, in the areas of Cerro El Mogallón, Cerro La Sata, and Cerro El
M AN U
Santisimo, west of Arivechi, suggests that the distribution of Triassic rocks in the region is likely to be more widespread that has been recognized previously.
The paleogeography, tectonic evolution, location and configuration of the Permo-Triassic Cordilleran margin in Sonora is not well stablished. The 40Ar/39Ar age and U-P detrital zircons ages data obtained from a
rocks.
EP
5.3. Regional Tectonic Setting
TE D
volcanic megablock and sedimentary rocks respectively, in the study area, suggest the occurrence of such
The two Upper Cretaceous units (Cañada de Tarachi unit and the El Potrero Grande unit) are similar
AC C
in terms of the age and source composition, although their provenance can be distinguished by the population distributions of zircon ages. The different populations of detrital zircons obtained from Cretaceous sediments from eastern Sonora reflect sources from: (a) igneous suites that are widespread in the southwestern North American craton and (b) from less predominant sources that reflect the evolution of the Arivechi region in Cretaceous time.
5.3.1. Cretaceous sedimentation 18
ACCEPTED MANUSCRIPT Although the focus of this paper is the provenance of detrital zircons, we believe is important to try to explain the evolution of the Arivechi basin and its relationship to other Cretaceous basins, such as the Bisbee basin. Cretaceous Bisbee Group sedimentary rocks in southeastern Arizona and northeastern Sonora were
RI PT
deposited along the northwestern edge of the Chihuahua trough, a west-northwest-trending rift type basin (Bilodeau, 1978, 1982), filled with carbonate and siliciclastic sediments. Erosion of Paleozoic carbonate rocks and Precambrian crystalline basement supplied lithic and arkosic sediment to the basin (Glance
SC
Conglomerate). By middle Aptian the rift shoulder was substantially reduced in relief, and carbonate deposition was widespread (Mural Limestone). In southeastern Arizona and northeastern Sonora, Mexico,
M AN U
similar thickness variations and local provenance of the Glance Conglomerate are associated with syndepositional movement of high-angle normal faults (Bilodeau, 1982; Bilodeau and Lindberg, 1983). Hayes (1970) proposed that Lower Cretaceous detrital sedimentary rocks in southeastern Arizona and northeastern Sonora were derived primarily from a source to the west or southwest of the basin.
TE D
In late Albian-Cenomanian, however, northeastern and eastern Sonora experienced a dramatic increase in tectonic subsidence and siliciclastic sedimentation rate (> 6000 m), as well as changes in sediment dispersal and provenance. These changes could mark the beginning of a Arivechi back-arc basin
EP
that persisted into the Late Cretaceous.
AC C
Some lines of evidence suggest that the increase in subsidence and sedimentation rate was the reactivation (uplift) of positive land(s) like the Cananea High – Aldama Platform or some other orogens. (1) Quartz-arenites of the lower Cañada de Tarachi unit were derived from crystalline basement and Paleozoic rocks, (2) the megaclasts of Precambrian, Paleozoic, and Mesozoic rocks derived from the positive land were overlapped by shallow-continental sediments, (3) the volcaniclastic material in the El Potrero Grande unit and the diminishes of the lower siliciclastic sediments suggest the proximity within a few tens of kilometers
19
ACCEPTED MANUSCRIPT of an eroded magmatic arc and reactivated positive land, and (4) sediment provenance is from northwest to southeast, north-south, northeast, and east. The great thickness of sedimentation identified in the Upper Cretaceous rocks conform best a back-
RI PT
arc basin were erosion of orogens (Precambrian basement, Paleozoic rocks, the Cretaceous magmatic arc itself) increase the tectonic loading and produce a great volume of siliciclastic and volcaniclastic material that spread eastward and northeastward Sonora across the former rift basin (Bisbee basin) and overlapped the
SC
former positive land, e.g. Cananea high and the Aldama Platform.
Critical to the argument of an Upper Cretaceous back-arc basin in north-northeastern Sonora is the
M AN U
evidence of late Albian-early Cenomanian extensional deformation suggested by the presence of a regional angular unconformity along eastern Sonora. The identification of syntectonic sedimentary rocks (megablocks) indicates that extension belt was active in north, northeast and east Sonora in mid-Cretaceous time (McKee, 1991; McKee and Anderson, 1998, Rodriguez-Castañeda, 2002; McKee et al., 2005). In
TE D
southeastern Arizona scattered evidence also indicates mid-Cretaceous extensional deformation. In addition to providing information about sediment source regions, detrital zircons ages can help to constrain a depositional age. The Proterozoic zircons suggest that source rocks were eroded and transported
EP
from N to S and/or NW to SE – the most important source regions for these sediments being the Mazatzal and the Yavapai terranes and/or the anorogenic plutons exposed in northern Sonora and southern Arizona.
AC C
The detrital zircons with ages ranging between 274 and 255 Ma likely come from the PermianTriassic Cordilleran magmatic arc which occur as isolated outcrops in northern Sonora (Arvizu et al., 2009; Riggs et al., 2009, 2010, 2013, Fig. 9). The lack of detrital zircons with ages younger than 247 Ma implies a valuable time constraint, i.e. that 247 Ma is the maximum time of sedimentation for these rocks. These data therefore imply that these rocks, that are exposed in the Cañada de Tarachi unit are part of a Triassic megablock. Consequently, the Triassic
20
ACCEPTED MANUSCRIPT megablock can be correlated (in time) with the Barranca Group, although correlation with other units exposed in Chihuahua and southern Arizona may also be possible. El Potrero Grande lower sample (A82) contains detrital zircon populations of predominantly Lower Cretaceous (146-100 Ma) and Upper Cretaceous (99-86 Ma) ages, whereas an upper sample (A79) contains
RI PT
detrital zircon populations of Upper Cretaceous (97 to 71) ages. These detrital zircons were derived from the rocks inherited in the Cretaceous magmatic arc which is widely exposed in Sonora. The Lower Cretaceous zircons are derived from the denudation of the gabbro, diorite and tonalites of the western Peninsular Ranges
SC
Batholith-Santiago Peak Volcanics in California-Baja California and/or the Vizcayno Volcanics in Baja California. The Upper Cretaceous population in both samples can be correlated with the denudation of the
M AN U
eastern Peninsular Ranges Batholith or the La Posta-type plutons composed of tonalite, granodiorite and granites (i.e. Long Potrero, La Posta, El Pinal, El Topo, Laguna Juárez and San Pedro Mártir). Rocks of this age around the Bacanora region were also described by Perez-Segura (2006). The detrital zircons come from source rocks that were generated during the development of magmatic
TE D
arc during subduction processes in Cretaceous times. Because the Baja Peninsula was attached to the mainland during the Mesozoic (Ortega-Rivera, 2003) (Fig.10), we propose that the main source of the Mesozoic detrital zircons were sediments derived by denudation of the Peninsular Ranges Batholith and their
EP
host rocks during this time. Palinspastic restoration of both Californias to their pre-drift position with respect to the rest of Mexico during Mesozoic is consistent with the eastward younging of ages (chrontours) that
AC C
systematically cross from California and Baja California into mainland Mexico, from Sonora to Jalisco, i.e. the decrease in ages across the region and within individual plutons is attributed to the regional eastward migration of granitic intrusions (Ortega-Rivera et al., 1997; Ortega-Rivera, 2003). This supports the interpretation that the Peninsular Ranges Batholith and the Coastal Sonora batholith are the source of the Upper Cretaceous detrital zircons. Although these rocks are rather distal from the proposed San Antonio back-arc basin, they are considered the main sedimentary source for the Upper Cretaceous zircons in this study. These ages reflect the so-called Laramide magmatic arc that is widespread in Sonora, although it is of 21
ACCEPTED MANUSCRIPT interest to note that zircons from younger batholiths are not present in the Cretaceous sedimentary rocks of the Arivechi region. This study of the Cretaceous strata on the western foothills of Sierra Madre Occidental, in eastern Sonora, Mexico, shows that analysis of detrital zircons can reflect an extensional regime history that is not as
RI PT
simple as previously thought.
6. CONCLUSIONS
SC
U-Pb detrital zircons from the Cañada de Tarachi and the El Potrero Grande units in the Arivechi region yield ages that constrain the age of the exposed rocks and provide new insights into the geological
M AN U
evolution of eastern Sonora Cretaceous rocks. Histograms showing relative age probability distribution and comparison of detrital zircon age population of this study show similarities and very distinct differences between representative samples of the units indicated that the potential source areas are distal and proximal. U-Pb detrital zircons ages obtained from sedimentary rocks of the Arivechi area indicate that these
TE D
rocks were supplied by rocks of different age groups, these groups are dominated by the Proterozoic, Paleozoic, and Mesozoic. The Proterozoic is represented by Paleoproterozoic-(1688 -1602 Ma) and the Mesoproterozoic (1591-1341 Ma) ages, meanwhile, the Paleozoic-Mesozoic by the Permian-Triassic (274-
EP
247 Ma) ages. The Mesozoic is represented by Jurassic (160 to 147 Ma), Lower Cretaceous (146 to 100 Ma), and Upper Cretaceous (99 to 71 Ma) ages. In addition, a 40Ar/39Ar whole-rock Permo-Triassic age (262 ± 2
AC C
Ma (2s) (Permian, Capitanian age)) was obtained for an andesitic megablock in the El Potrero Grande unit. These U-Pb and 40Ar/39Ar ages, constrain the provenance and composition of the sediments that conforms the Upper Cretaceous stratigraphy of the study area. Potential source areas for the Proterozoic detrital zircons discussed in this study are crystalline rocks exposed in the Caborca block, in the Pinal Province, and anorogenic plutons widely distributed in northern Sonora and southern Arizona. Meanwhile, the Paleozoic detrital zircons the potential source areas are southern California and northwestern Sonora and perhaps southern Arizona. 22
ACCEPTED MANUSCRIPT Also, the new Permo-Triassic detrital zircon U-Pb and whole rock 40Ar/39Ar age data in sediments of the Arivechi area strongly support a new provenance clast source, since the presence of Permo-Triassic age clasts in sedimentary rocks for eastern Sonora have not been previously reported. However, the provenance of the Early Permian to Middle Triassic zircons (274 – 247 Ma) are problematic because Permo-Triassic
RI PT
igneous rocks are not widely distributed in Sonora, they are very locally distributed. Plausible rock sources for these Permo-Triassic andesitic tuff megablock and andesitic clasts conglomerate, could be linked to the volcanic rocks of the Permo-Triassic Cordilleran magmatic arc, exposed mainly in the Mojave Desert region
SC
of southern California and northwestern Sonora or the granitoids of Permo-Triassic age, exposed in the Los Filtros and Carrizalillo ranches area of central Chihuahua located to the east of Arivechi region.
M AN U
Meanwhile, the Jurassic and Cretaceous ages populations can be related to rocks of the same age (plutons and volcanics) from southern California and Baja California, northern Sonora, southern Arizona and eastern Chihuahua(?), these rocks may be the potential Jurassic-Cretaceous contributors of sediments to the Arivechi sequence.
TE D
Building on the megablocks gliding model for the geologic evolution of the region, the identification of Proterozoic to Mesozoic megablocks in both units confirm that Arivechi Upper Cretaceous was deposited in a deep sedimentary basin that received sediments from an existing magmatic arcs and from both the now
EP
exposed northwestern and northeastern basements.
In this work, the characterization of important tectonic processes throughout time was paramount to
AC C
better understand the evolution of the successive periods of crustal formation. Knowledge of such events allowed the identification of possible source areas for the zircons. The results of this study combined with previous structural and stratigraphic data provide a better understanding of the tectonic evolution for southwestern North America and northwest Mexico.
Acknowledgements 23
ACCEPTED MANUSCRIPT Funding for this study was provided by the PAPIIT-UNAM through grant 22-IN103710. Grinding of samples and preparation of thin sections were performed by Pablo Peñaflor and Aime Orci, respectively, from the Estación Regional del Noroeste, Instituto de Geología, UNAM. U-Pb dating was completed at the Centro de Geociencias, UNAM, where Carlos Ortega and Ofelia Pérez carried out the laboratory analysis.
RI PT
We are grateful to the reviewers Rogelio Monreal Saavedra, John S. Armstrong‐Altrin, and a third
SC
anonymous reviewer for numerous helpful comments, which significantly improved the manuscript.
M AN U
References
Anderson, J.L., 1983, Proterozoic anorogenic granite, plutonism of North America, Mem. Geological Society of America, 161, 133-154.
Anderson, J.L., 1989, Proterozoic anorogenic granites of the southwestern United States, in Jenney, J.P., and
238.
TE D
Reynolds, S.J., eds., Geological Evolution of Arizona: Arizona Geological Society Digest, 17, 211–
Andersen T., 2002, Correction of common lead in U–Pb analyses that do not report 204Pb, Chemical
EP
Geology, 192, 59-79.
Anderson, T. H., and Campbell, P.A., 1992, Mylonite at the Mojave-Sonora megashear, northwestern
AC C
Mexico, Geological Society of America. Abstracts with Programs, 24, 147. Anderson, T.H. and Nourse, J.A, 2005, Pull apart basins at releasing bends of the sinistral Late Jurassic Mojave-Sonora megashear, in Anderson, T.H.; McKee, J.W.; y Steiner, M.B., eds., The MojaveSonora megashear hypothesis—development, assessment, and alternatives: Geological Society of America Special Paper 393, 97-122.
24
ACCEPTED MANUSCRIPT Anderson, T.H.; Rodríguez-Castañeda, J.L.; and Silver, L.T. 2005, Jurassic rocks in Sonora, Mexico— relations to the Mojave-Sonora megashear and its inferred northwestward extension, in Anderson, T.H.; McKee, J.W.; and Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis—development, assessment, and alternatives: Geological Society of America Special Paper 393, 51–95.
RI PT
Anderson, T.H., Silver, L.T., 1969, Mesozoic magmatic events of the northern Sonora coastal region, Mexico (abstract): Geological Society of America Abstracts with Programs, 3-4.
Anderson, T.H., y Silver, L.T., 1977, U-Pb isotope ages of granitic plutons near Cananea Sonora: Economic
SC
Geology, 72, 827–836.
Abstracts with Programs, 10-7, 359.
M AN U
Anderson, T.H., y Silver, L.T., 1978, Jurassic magmatism in Sonora, Mexico: Geological Society of America
Anderson, T.H., y Silver, L.T., 1979, The role of the Mojave-Sonora megashear in the tectonic evolution of northern Sonora, in Anderson T.H. and Roldán-Q., J., eds., Geology of northern Sonora: Annual Meeting of the Geological Society of America, Guidebook-Field Trip No. 27, 59–68.
TE D
Anderson, T.H., and Silver, L.T., 1981, An overview of Precambrian rocks in Sonora: Universidad National Autónoma de Mexico, Instituto de Geología, Revista, 5, 131–139. Anderson, T.H., y Silver, L.T., 2005, The Sonora-Mojave megashear —field and analytical studies leading to
EP
the conception and evolution of the hypothesis, in Anderson, T.H.; McKee, J.W.; y Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis—development, assessment, and alternatives: Geological
AC C
Society of America Special Paper 393, 97–122. Arvizu, H.E. and Iriondo, A., 2015, Control temporal y geología del magmatismo Permo-Triásico en Sierra Los Tanques, NW Sonora, México: Evidencia del inicio del arco magmático cordillerano en el SW de Laurencia: Boletín de la Sociedad Geológica Mexicana, 67-3, 545-586. Arvizu, H.E., Iriondo, A., Izaguirre, A., Chávez-Cabello, G., Kamenov, G.D., Solís-Pichardo, G., Foster, D.A.M, and Lozano-Santa Cruz, R., 2009, Rocas graníticas pérmicas en la Sierra Pinta, NW de Sonora,
25
ACCEPTED MANUSCRIPT México: Magmatismo de subducción asociado al inicio del margen continental activo del SW de Norteamérica: Revista Mexicana de Ciencias Geológicas, 26-3, 709-728. Bartolini C., 1993, Fragments of the lower Cretaceous Chihuahua´s Aldama platform in eastern Sonora,
RI PT
Mexico: Cordilleran Section, Abstracts with Programs, Geological Society of America, 25-5, 7. Blair, T.C. and McPherson, J.G., 1999, Grain-size and textural classification of coarse sedimentary particles. Journal of Sedimentary Research, 69-1, 6-19.
SC
Bilodeau, W. L., 1978, The Glance Conglomerate, a Lower Cretaceous syntectonic deposit in southeastern Arizona: New Mexico Geological Society, Field Conference, 29th, Guidebook, 209-214.
M AN U
Bilodeau, W. L., 1982, Tectonic models for Early Cretaceous rifting in southeastern Arizona: Geology, 10, 466-470.
Bilodeau, W. L., and Lindberg, F. A., 1983, Early Cretaceous tectonics and sedimentation in southern Arizona, southwestern New Mexico, and northern Sonora, Mexico, in Reynolds, M. W., and Dolly, E.
TE D
D., eds., Mesozoic paleogeography of west-central United States: Society of Economic Paleontologists and Mineralogists, Rocky Mountain Section, 173-188. Campbell, P.A. and Anderson, T.H. 2003, Structure and kinematics along a segment of the Mojave-Sonora
EP
megashear: A strike-slip fault that truncates the Jurassic continental magmatic arc of southwestern
AC C
North America: Tectonics, 22-6, 16:1-21. Carr, M.D., Poole, F.G., and R.L. Christiansen, R.L., 1984, Pre-Cenozoic geology of the El Paso Mountains, southwestern Great Basin, California: A summary, in Western Geologic Excursions Geological Society of America Annual Meeting, 1984, Guidebook 4, edited by J. Linz Jr., 84-93. Carta Geológica-Minera Estado de Baja California, escala 1: 500,000, Servicio Geológico Mexicano, 2008. Carta Geológica-Minera Estado de Sonora, escala 1: 500,000, Servicio Geológico Mexicano, 2008.
26
ACCEPTED MANUSCRIPT Fernández-Aguirre, M.A., Almazán-Velázquez E., 1991, Geología de la carta Arivechi (H12D56): Secretaría de Fomento Industrial y Comercio del Estado de Sonora, Dirección General de Fomento Minero, Mapa. Fernández-Aguirre M.A., Grijalva-Haro A.S., Estrada-Cubillas R., 1995, Carta Geológica Sahuaripa, escala
RI PT
1: 50,000: Secretaría de Desarrollo Económico y Productividad, Gobierno del Estado de Sonora. Mapa. Garcia y Barragán, J.C., 2003, Stratigraphy, sedimentology, and tectonic model for the origin of the Late Cretaceous El Tuli formation in northern Sonora, Mexico [Ph.D. Thesis] El Paso, Texas, University of
SC
Texas at El Paso, 194 p.
M AN U
Gastil, G., Krummenacher, D., 1977, Reconnaissance geology of coastal Sonora between Puerto Lobos and Bahia Kino: Geological Society of America Bulletin, 88, 189-198.
González-León, C.M. and Lawton, T.F., 1995, Stratigraphy, depositional environments, and origin of the Cabullona basin, northeastern Sonora, in Jacques-Ayala. C., González-León, C.M., and RoldánQuintana, J., eds., Studies on the Mesozoic of Sonora and Adjacent Areas, Geological Society of
TE D
America Special Paper 301, 121-142.
González-León, C.M., Solari, L., Sole, J., Ducea, M.N., Lawton, T.F., Bernal, J.P., González-Becuar, E., Gray, F., López-Martínez, M., and Lozano-Santacruz, R., 2011, Stratigraphy, geochronology, and
EP
geochemistry of the Laramide arc in north-central Sonora, Mexico: Geosphere, 7-6, 1392-1418. González-León, C.M., Valencia, V.A., Lawton. T.F., Amato, J.M., Gehrels, G.E., Leggett, W.J., Montijo-
AC C
Contreras, O., Fernández, M.A., 2009, The lower Mesozoic record of detrital zircon U-Pb geochronology of Sonora, México, and its paleogeographic implications: Revista Mexicana de Ciencias Geológicas, 26-2, 301-314.
Grajales-Nishimura, J.M., Terrel, D., Torres-Vargas, R., Jacques-Ayala, C., 1990, Late Cretaceous synorogenic volcanic/sedimentary sequences in eastern Sonora, Mexico. Geological Society of America, Abstracts with Programs, 22-3, 26. 27
ACCEPTED MANUSCRIPT Hayes, P. T., 1970, Cretaceous paleogeography of southeastern Arizona and adjacent areas: U.S. Geological Survey Professional Paper 6511-B, 42 p. Haxel, G.B., Anderson, T.H., Briskey, J.A., Tosdal, R.M., Wright, J.E., and May, D.J., 2008, Late Jurassic igneous rocks in south-central Arizona and north central Sonora: Magmatic accompaniment of crustal
RI PT
extension, in Spencer, J.E., and Titley, S.R., eds., Ores and Orogenesis: Circum-Pacifi c Tectonics, Geologic Evolution, and Ore Deposits: Arizona Geological Society Digest, v. 22, p. 333–355. Iriondo, Alexander, y Premo, W.R., 2011, Las rocas cristalinas proterozoicas de Sonora y su importancia
SC
para la reconstrucción del margen continental SW de Laurencia— La pieza mexicana del rompecabezas de Rodinia, in Calmus, Thierry, ed., Panorama de la geología de Sonora, México:
M AN U
Universidad Nacional Autónoma de México, Instituto de Geología, Boletín 118, cap. 2, 25–55. Iriondo, Alexander; Miggins, D.; and Premo, W.R., 2003, The Aibó type (~1.1 Ga) granitic magmatism in NW Sonora, Mexico— failed continental rifting of Rodinia?: Geological Society of America Abstracts with Programs, 35-4, 84.
TE D
Kimbrough, D.L., Smith, D.P., Mahoney, J.B., Moore, T.E., Grove, M., Gastil, R.G., Ortega-Rivera, A., and Fanning, C.M., 2001, Forearc-basin sedimentary response to rapid late Cretaceous batholith emplacement in the Peninsular Ranges of southern and Baja California: Geology, 29, 491-493.
EP
King R.E., 1939, Geological reconnaissance in the northern Sierra Madre Occidental of Mexico. Geological Society of America, Bulletin, 50, 1625-1722.
AC C
Lawton, T.F. and Molina-Garza, R.S., 2014, U-Pb geochronology of the type Nazas Formation and superjacent strata, northeastern Durango, Mexico: Implications of a Jurassic age for continental-arc magmatism in north-central Mexico: Geological Society of America, Bulletin, 126, 1181-1199. doi:10.1130/B30827.1
Loiselle, M. C., Wones, D. R., 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, 11-7, 468.
28
ACCEPTED MANUSCRIPT Ludwig, K., 2008, Manual for Isoplot 3.7. Berkeley Geochronology Center Special Publication No. 4, rev. August 26, 77. Ludwig, K.R., Mundil, R., 2002, Extracting reliable U–Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Goldchmidt Conference Abstracts 2002. Geochimica et Cosmochimica
RI PT
Acta, 66, 15A, A463.
Martin, M.W. and Walker, J.D., 1995: Stratigraphy and paleogeographic significance of metamorphic rocks in the Shadow Mountains, western Mojave Desert, California: GSA Bulletin; March 1995;107-3,354–
SC
366.
Mauel, D.J., Lawton, T.F., González-León, C.M., Amato, J.M., Iriondo, A., and Amato, J.M., 2011,
M AN U
Stratigraphy and age of Upper Jurassic strata in north-central Sonora, Mexico: Southwestern Laurentian record of crustal extension and tectonic transition: Geosphere, 7, 390–414, doi: 10 .1130 /GES00600 .1.
McDowell, F.W.., Roldán-Quintana, J., and Connelly, J.N., 2001, Duration of Late Cretaceous–early Tertiary
TE D
magmatism in east-central Sonora, Mexico: Geological Society of America Bulletin; 113-4, 521–531. McKee, M.B., 1991, Deformation and stratigraphy relationships of mid-Cretaceous mass gravity slides of a marine basin in Sonora, Mexico [Ph.D. Thesis]. Pittsburgh, PA, University of Pittsburgh, 286 p.
EP
McKee, M.B. and Anderson, T.H., 1998, Mass-gravity deposits and structures in the Lower Cretaceous of Sonora, Mexico: GSA Bulletin, 110-12; 1516–1529.
AC C
McKee, J.W., McKee, M.B. and Anderson, T.H., 2005, Mesozoic basin formation, mass-gravity sedimentation, and inversion in northeastern Sonora and southeastern Arizona, in Anderson, T.H.; McKee, J.W.; y Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis—development, assessment, and alternatives: Geological Society of America Special Paper 393, 481-507. Meijer, A., 2012, Pinal Schist of southern Arizona: Evidence for spreading ridge–trench interactions in the Paleoproterozoic: Geological Society of America Abstracts with Programs, 44-6, 8.
29
ACCEPTED MANUSCRIPT Miller, J.S., Glazner, A.F., Walker, J.D., and Martin, M.W., 1995, Geochronologic and isotopic evidence for Triassic–Jurassic emplacement of the eugeoclinal allochthon in the Mojave Desert region, California: Geological Society of America Bulletin, 107, 1441–1457. Minjárez-Sosa, I., Palafox, J.J., Torres, Y., Martínez, J.A., Rodríguez, B., 1985, Consideraciones respecto a
Departamento de Geología, 2, 1-2, 90-105.
RI PT
la estratigrafía y estructura del área de Sahuaripa - Arivechi. Universidad de Sonora, Boletín del
Hermosillo, Sonora, Universidad de Sonora, 135 p.
SC
Montaño-Jiménez, T., 1988, Geología del área de El Tigre, noreste de Sonora [Tesis Licenciatura]:
Myra, K., 1996, The Pinal Schist, southeast Arizona, USA: contraction of a Paleoproterozoic rift basin:
M AN U
Journal of the Geological Society, London, 153, 979-993.
Nourse, J.A., Premo, W.R., Iriondo, A., and Stahl, E.R., 2005, Contrasting Proterozoic basement complexes near the truncated margin of Laurentia, northwestern Sonora–Arizona international border region, in Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., The Mojave-Sonora megashear
TE D
hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, 123–182, doi: 10.1130/2005.2393(04).
Onstott, T., Peacock, M., 1987, Argon retentivity of hornblendes: A field experiment in a slowly cooled
AC C
7037(87)90365-6.
EP
metamorphic terrane. Geochimica et Cosmochimica Acta, 51, 2891-2903, doi:10.1016/0016-
Ortega-Rivera, A., 2003, Geochronological constraints on the tectonic history of the Peninsular Ranges batholith of Alta and Baja California: Tectonic implications for western México, in Johnson, S.E., Paterson, S.R., Fletcher, J.M., Girty, G.H., Kimbrough, D.L., and Martín-Barajas, A., eds., Tectonic evolution of northwestern México and the southwestern USA: Boulder, Colorado, Geological Society of America Special Paper 374, 297-335.
30
ACCEPTED MANUSCRIPT Ortega-Rivera, M.-A., Farrar, E., Hanes, J.A., Archibald, D.A., Gastil, R.G., Kimbrough, D., LópezMartínez, M., Féraud, G., and Zentilli, M., 1997, Chronological constraints on the therrnal and tilting history of the Sierra San Pedro Mártir Pluton, Baja California, México, from U-Pb,
40
Ar/39Ar, and
fission track geochronology: Geological Society of America Bulletin, 109-6, 728-745.
RI PT
Palafox, J.J., Minjárez, J.L., Pubellier, M., Rascón, B., 1984, Sobre la presencia de rocas del Paleozoico Superior en el área de Arivechi, Sonora, México. Universidad de Sonora, Boletín del Departamento de Geología, 1, 1, 60-62.
SC
Pérez-Segura, E., 2006, Estudio metalognético de los yacimientos de Ni-Co (Cu-Zn) de La Esperanza, Sonora central: Caracterización de los depósitos y relaciones con el magmatismo Laramídico [Tesis
M AN U
Doctorado]: México, D.F. Universidad Nacional Autónoma de México, 212 p. Pubellier, M., 1987, Relations entre domaines cordillérain et mésogéen au nord du Mexique; étude géologique de la vallé de Sahuaripa, Sonora central [PhD thesis]. Paris, Université de Paris 6, 219 p. Ramírez-M, J.C., Acevedo-C., F., 1957, Notas sobre la geología de Chihuahua. Boletín de la Asociación
TE D
Mexicana de Geólogos Petroleros, IX, 9-10, 583-770.
Ramos-Velázquez, E., Calmus, T., Valencia, V., Iriondo, A., Valencia-Moreno, M., and Bellon, H., 2008, UPb and 40Ar/39Ar geochronology of the coastal Sonora batholith: New insights on Laramide continental
EP
arc magmatism: Revista Mexicana de Ciencias Geológicas, 25-2, 314-333. Rangin, Claude, 1977, Tectónicas sobrepuestas en Sonora septentrional: Universidad Nacional Autónoma de
AC C
México, Instituto de Geología, Revista, 1, 44-47. Riggs, N.R., Barth, A.P., González-León, C., Walker, J.D., and Wooden, J.L., 2009, Provenance of Upper Triassic strata in southwestern North America as suggested by isotopic analysis and chemistry of zircon crystals: Geological Society of America Abstracts with Programs, 41-7, 540. Riggs, N.R., Barth, A.P., Wooden, J., Walker, J.D., 2010, Use of zircon geochemistry to the volcanic detritus to source plutonic rocks: an example from Permian northwestern Sonora, Mexico: Geological Society of America, Abstracts with Programs, 42, 267. 31
ACCEPTED MANUSCRIPT Riggs, N.R., Reynolds, S.J., Lindner, P.J., Howell, E.R., Barth, A.P., Parker, W.G., and Walker, J.D., 2013, The Early Mesozoic Cordilleran arc and Late Triassic paleotopography: The detrital record in Upper Triassic sedimentary successions on and off the Colorado Plateau: Geosphere; 9-3; 602–613; doi:10.1130/GES00860.1.
RI PT
Riggs, N.R., González-León, C.M., Cecil, M.R., Marsaglia, K., Navas-Parejo, P., 2014, Age of the Permian Monos Formation, northern Sonora, Mexico and implications for initiation of the Cordilleran magmatic arc: Geological Society of America, Abstracts with Programs, 46, 377.
SC
Riggs, N.R., Cecil, M. R., Stone, P.A., Stevens, C.H., and Sanchez, T.B., 2015, Permian arc magmatism and its detrital record in southwest Laurentia: Geological Society of America, Abstracts with Programs,
M AN U
47, 262.
Rivera-Cabrera, J.H., 2007, Estudio de la provenencia de las areniscas Mesozoicas de la región del Cerro Las Conchas, en Arivechi, Sonora [Tesis Licenciatura] Hermosillo, Sonora, Universidad de Sonora. 122 p.
TE D
Roddick J., 1983, High precision intercalibration of 40Ar-39Ar standards. Geochimica et Cosmochimica Acta, 47, 887-898, doi:10.1016/0016-7037(83)90154-0. Rodríguez-Castañeda, J.L., 1994, Geología del área El Teguachi, Estado de Sonora. México: Revista
EP
Mexicana de Ciencias Geológicas, 11-1, 11-28.
Rodríguez-Castañeda, J.L., 2002, Tectónica Cretácica y Terciaria en la margen suroeste del Alto de Cananea,
AC C
Sonora, Norte Central [Tesis Doctorado]. México, D.F., Universidad Nacional Autónoma de México, 217 p.
Rodríguez-Castañeda, J.L., Roldán-Quintana, J., and Ortega-Rivera A., 2015, Mesozoic gliding and Tertiary Basin and Range tectonics in eastern Sonora, Mexico: Geofísica Internacional, 54-3, 221-244. Roldán-Quintana, J., 2002, Caracterización geológico-geoquímica y evolución del Arco Magmático Mesozoico-Terciario entre San Carlos y Maycoba, sur de Sonora: [Tesis Doctorado]. México, D.F., 32
ACCEPTED MANUSCRIPT Universidad Nacional Autónoma de México, 185 p. Slama, J., Kosler, J., Condon, D., Crowley, J., Gerdes, A., Hanchar, J., Horstwood, M., Morris, G., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M., Whitehouse, M.J., 2008, Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis: Chemical Geology, 249, 1-35,
RI PT
doi: 10.1016/j.chemgeo.2007.11.005.
Solari, L., Gómez-Tuena, A., Bernal, J., Pérez-Arvizu, O., Tanner, M., 2010, U-Pb Zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: Achievements in precision and accuracy.
SC
Geostandards and Geoanalytical Research, 34(1), 5-18.
Solari, L.A., Tanner, M., 2011, U-Pb age, a fast data reduction script for LA-ICP-MS U-Pb geochronology:
M AN U
Revista Mexicana de Ciencias Geológicas, 28(1), 83-91.
Steiger R., Jäger E., 1977, Subcommission on geochronology. Earth and Planetary Science Letters, 36, 359362, doi:10.1016/0012-821X(77)90060-7.
Stewart, J.H., Anderson, T.H., Haxel, G.B., Silver, L.T., and Wright, J.E., 1986, Late Triassic
TE D
paleogeography of the southern Cordillera: The problem of a source for voluminous volcanic detritus in the Chinle Formation of the Colorado Plateau region: Geology, 14, 567–570. Stewart, J.H., Gehrels, G.E., Barth, A.P., Link, P.K., Christie-Blick, N., and Wrucke, C.T., 2001, Detrital
EP
zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico: Geological Society of America Bulletin, 113, 1343–1356.
AC C
Tera, F., Wasserburg, G., 1972, U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters, 14, 281-304. Torres, R., Murillo, M.G., and Grajales, J.M., 1986, Estudio petrográfico y radiométrico de la porción límite entre los complejos Acatlan y Oaxaqueño: VII Convención Geológica Nacional, México, 148-149. Torres, R., Ruiz, J., Patchett, P.J., Grajales, J.M., 1999, Permo-Triassic continental arc in eastern México: Tectonic implications, for reconstructions of southern North America, in Bartolini, C., Wilson, J.L., 33
ACCEPTED MANUSCRIPT Lawton, T.F. (eds.), Mesozoic Sedimentary and Tectonic History of North-Central Mexico: Geological Society of America, Special Paper 340, 191-196. Tosdal, R.M., Haxel, G.B., and Wright, J.E., 1989, Jurassic geology of the Sonoran Desert region, southern Arizona, southeastern California, and northernmost Sonora: Construction of a continental-margin
RI PT
magmatic arc, in Jenny, J.P. and Reynolds, S.J., eds., Geologic evolution of Arizona: Arizona Geological Society Digest, 17, 397-434.
Van Schmus, W.R., Bickford, M.E., Anderson, J.L., Bender, E.E., Anderson, R.R., Bauer, P.W., Robertson,
SC
J.M., Bowring, S.A., Condie, K.C., Denison, R.E., Gilbert, M.C., Grambling, J.A., Mawer, C.K., Shearer, C.K., Hinze, W.J., Karlstrom, K.E., Kisvarsanyi, E.B., Lidiak, E.G., Reed, J.C., Jr, Sims, P.K.,
M AN U
Tweto, O, Silver, L.T., Treves, S.B., Williams, M.L., and Wooden, J.L., 1993, Transcontinental Proterozoic provinces, in Reed, J.C., Jr., Bickford, M.E., Houston, R.S., Link, P.K., Rankin, D.W., Sims, P.K., and Van Schmus, W.R., eds., Precambrian Conterminous U.S.: Boulder, Colorado, Geological Society of America, Geology of North America, C-2, 171–334.
TE D
Walker, J.D., 1988, Permian and Triassic rocks of the Mojave Desert and their implications for timing and mechanisms of continental truncation: Tectonics, 7, 685–709. Weber, R., Ceballos-Ferriz, S., López-Cortés, A., Olea-Franco, A., Singer-Sochet, S., 1979, Los
EP
estromatolitos del Precambrico tardío de los alrededores de Caborca, Estado de Sonora, parte I; Reconstruccion de Jacutophyton Shapovalova e interpretación paleoecologica preliminar. Universidad
AC C
Nacional Autónoma de México, Instituto de Geología, Revista, 3-1, 9-23. Windley, B.F., 1993, Proterozoic anorogenic magmatism and its orogenic connections: Journal of the Geological Society, London, 150, 39-50.
FIGURES CAPTION
34
ACCEPTED MANUSCRIPT Figure 1. Location of the study area to the east of Arivechi, Sonora, Mexico and outcrops of Upper Cretaceous rocks. Figure 2. Schematic stratigraphic column, without scale, that shows the relationship between the La Cañada
RI PT
de Tarachi and El Potrero Grande units in the Arivechi area and the interpreted monoliths in the Cañada de Tarachi and the El Potrero Grande units. a). The megablocks are separated by a shear zone from the underlying unit. Intense shearing between Paleozoic rocks and underlying Lower Cretaceous rocks around Cerro Las Conchas. b) Block constituted by conglomerate of unknown age in the Cañada de Tarachi stream.
SC
The block is surrounded by conglomerate of possible Triassic age. c) Megablock constituted by Paleozoic
M AN U
rocks exposed along the Arivechi-Tarachi road. d and e) Blocks of Precambrian rocks along the Cañada de Tarachi stream. The block of figure e contains stromatolites that indicate the Precambrian age. Figure 3. Geologic map showing the main synsedimentary megablocks of the Arivechi area. The map is modified from Rodríguez-Castañeda et al. (2015). The new interpretation (this study) includes the Permo-
TE D
Triassic rocks in the study area.
Figure 4. The Cañada de Tarachi conglomerate in the Cerro Zoropuchi (a and b locality). Clasts are limestone of Paleozoic and Cretaceous ages. Conglomerates exposed along the Arivechi-Tarachi road (c, d,
EP
e, and f) show sedimentary clasts with angular shapes, whereas, in the Cañada de Tarachi stream conglomerates (g and h) show well-rounded volcanic clasts. Sedimentary clasts are composed of quartzite,
AC C
sandstone, chert, and mudstone, whereas the volcanic clasts are mainly andesite and some tuffs. Figure 5. U-Pb detrital zircon age-probability plots and the Concordia diagrams for (a) sample A78-11, (b) sample A82-11, and (c) sample A79-11. The second set of diagrams displays the younger populations in more detail. Figure 6.
40
Ar/39Ar step-heating age spectrum and isotope correlation diagram of whole-rock sample JR10
from the block found in the El Potrero Grande unit. 35
ACCEPTED MANUSCRIPT Figure 7. Tectonostratigraphic terranes in northern Sonora and southern Arizona. The Pinal Province extends through Sonora and Arizona (modified from Anderson and Silver, 2005). Figure 8. Map showing the 1) Eastern and Western Peninsular Ranges Batholith of Baja California
RI PT
(modified from Kimbrough et al., 2001; Ortega-Rivera, 2003); geology from the Carta Geológico-Minera Estado de Baja California, Servicio Geológico Mexicano, (2008). 2) outcrops of 1400 Ma anorogenic granites in Sonora (circles) and Arizona and their relationship with major geologic structures in Sonora
SC
(modified from Carta Geológica-Minera del Estado de Sonora, scale 1:500,000, Servicio Geológico Mexicano, 2008; and Meijer, 2012); and 3) exposed batholiths in Sonora (geology from the Carta Geológico-
M AN U
Minera Estado de Sonora, Servicio Geológico Mexicano, 2008); U-Pb data compiled from the literature (Anderson and Silver, 1969); Ortega-Rivera, 2003; Ramos-Velázquez et al., 2008; McDowell et al., 2001; Perez-Segura, 2006; González-León et al., 2011). Inset square shows pre-Cenozoic reconstruction of Baja California and Sonora.
TE D
Figure 9. Map of southwestern North America and northern Sonora showing location of the Permo-Triassic Cordilleran Magmatic Arc that can be extended to the Arivechi region. Modified from Riggs et al. 2013. Figure 10. (a) Palinspastic reconstruction for western Mexico before opening the Gulf of California in the
EP
Mesozoic and U-Pb chrontours for plutons of the Mesozoic western arc and for the Peninsular Ranges. (b) Zircon U-Pb chrontours; (c) Hornblende 40Ar/39Ar plateau and K/Ar chrontours; (d) Biotite 40Ar/39Ar plateau
AC C
and K/Ar dates chrontours for the Peninsular Ranges batholith. Modified from Ortega-Rivera (2003). Arrows indicate the likely direction of provenance of some detrital zircons in the study area.
TABLES 36
ACCEPTED MANUSCRIPT Table 1. Summary of LA-ICPMS U-Pb data of zircons from sample A78-11 (Cañada de Tarachi Unit). Table 2. Summary of LA-ICPMS U-Pb data of zircons from sample A82-11 (El Potrero Grande Unit). Table 3. Summary of LA-ICPMS U-Pb data of zircons from sample A79-11 (El Potrero Grande Unit). 40
Ar/39Ar analytical data from the andesitic sample JR10 (El Potrero Grande Unit), in the
RI PT
Table 4. WR
AC C
EP
TE D
M AN U
SC
Arivechi region, eastern Sonora.
37
ACCEPTED MANUSCRIPT
Table 1. Summary of LA-ICPMS U-Pb data of zircons from sample A78-11 (Cañada de Tarachi Unit).
Zircon_1_78-11_008
220
92
0.37
0.08967
0.001
3.0534
0.048
0.2463
0.002
1419
9
1421
1419
27
1419
27
349
152
0.38
0.08823
0.001
2.9589
0.039
0.24306
0.001
1403
7
1397
10
1387
22
1387
22
Zircon_100_126
126
53
0.37
0.09043
0.001
3.107
0.048
0.24891
0.002
1433
8
1434
12
1435
25
1435
25
Zircon_11_020
379
170
0.40
0.0872
0.001
2.8534
0.041
0.23745
0.002
RI PT
12
Zircon_10_018
1373
8
1370
11
1365
23
1365
23
Zircon_12_021
860
244
0.25
0.08894
0.001
3.0754
0.041
0.25099
0.001
1444
8
1427
10
1403
22
1403
22
Zircon_13_022
698
273
0.35
0.10074
0.001
4.0385
0.055
0.29041
0.002
1644
9
1642
11
1638
21
1638
21
Zircon_14_023
1290
973
0.67
0.09014
0.001
3.1351
0.046
0.25217
0.002
1450
8
1441
11
1428
23
1428
23
Zircon_15_024
111
65
0.52
0.08771
0.001
3.1374
0.055
0.25934
0.002
1486
12
1442
14
1376
27
1376
27
Zircon_16_026
419
188
0.40
0.08745
0.001
2.9483
0.042
0.24443
0.001
1410
8
1394
11
1370
24
1370
24
Zircon_17_027
256
110
0.38
0.08912
0.001
3.1098
0.045
0.25311
0.002
1454
9
1435
11
1407
23
1407
23
Zircon_18_028
104
47
0.40
0.09298
0.001
3.1991
0.056
0.24961
0.002
1436
9
1457
14
1487
29
1487
29
Zircon_19_029
114
43
0.33
0.08935
0.001
3.077
0.049
0.24941
0.002
1435
10
1427
12
1412
25
1412
25
Zircon_2_009
589
248
0.37
0.09024
0.001
3.0777
0.044
0.24729
0.001
1424
8
1427
11
1431
23
1431
23
Zircon_20_030
236
112
0.42
0.08953
0.001
3.115
M AN U
CORRECTED AGES (Ma)
0.046
0.25226
0.002
1450
9
1436
11
1416
23
1416
23
Zircon_21_032
284
110
0.34
0.08908
0.001
2.8047
0.045
0.22821
0.002
1325
10
1357
12
1406
25
1406
25
Zircon_22_033
216
109
0.44
0.09053
0.001
3.0691
0.045
0.24554
0.002
1415
8
1425
11
1437
23
1437
23
Zircon_23_034
201
122
0.54
0.09049
0.001
3.2271
0.054
0.25852
0.002
1482
10
1464
13
1436
27
1436
27
Zircon_24_035
230
98
0.38
0.08784
0.001
2.7652
0.045
0.22819
0.001
1325
7
1346
12
1379
27
1379
27
Zircon_25_036
156
59
0.34
0.0919
0.002
2.8615
0.063
0.22582
0.002
1313
9
1372
17
1465
35
1465
35
Zircon_26_038
697
453
0.57
0.09033
0.001
3.05
0.042
0.24471
0.002
1411
9
1420
11
1433
21
1433
21
Zircon_27_039
242
124
0.45
0.10146
0.001
4.0967
0.061
0.29284
0.002
1656
10
1654
12
1651
23
1651
23
Zircon_28_040
405
159
0.35
0.08909
0.001
2.9514
0.042
0.23989
0.001
1386
7
1395
11
1406
23
1406
23
AC C
CORRECTED RATIOS ±1s
207
Pb/235U
Zircon_29_041
211
86
Zircon_3_010
487
344
Zircon_30_042
175
82
Zircon_31_044
1319
491
Zircon_32_045
521
186
Zircon_33_046
119
65
0.49
Zircon_34_047
493
154
0.28
Zircon_35_048
566
284
0.44
0.09034
±1s
206
Pb/238U
±1s
206
Pb/238U ±1s
SC
Pb/206Pb
TE D
207
EP
U(ppm) Th (ppm) Th/U
207
Pb/235U ±1s
207
Pb/206Pb ±1s Best age (Ma) ±1s
0.36
0.08939
0.001
3.0913
0.048
0.25032
0.002
1440
8
1431
12
1413
25
1413
25
0.63
0.08945
0.001
3.0351
0.041
0.24585
0.001
1417
8
1416
10
1414
22
1414
22
0.42
0.08827
0.001
2.9929
0.044
0.24522
0.002
1414
8
1406
11
1388
24
1388
24
0.33
0.05298
0.001
0.31763
0.005
0.04348
0.000
274
2
280
4
328
32
274
2
0.32
0.08929
0.001
3.0428
0.039
0.24684
0.002
1422
8
1418
10
1410
20
1410
20
0.08863
0.001
2.8758
0.044
0.23507
0.002
1361
8
1376
12
1396
24
1396
24
0.08922
0.001
2.7405
0.047
0.2227
0.003
1296
14
1340
13
1409
21
1409
21
0.001
2.7748
0.037
0.22266
0.001
1296
7
1349
10
1433
21
1433
21
ACCEPTED MANUSCRIPT
218
118
0.48
0.08923
0.001
3.0097
0.046
0.24437
0.002
1409
8
1410
12
1409
24
1409
24
Zircon_37_051
468
245
0.46
0.09
0.001
3.2016
0.046
0.25773
0.002
1478
8
1458
11
1426
22
1426
22
9
1625
188
72
0.34
0.0988
0.001
3.9551
0.057
0.28998
0.002
1641
12
1602
22
1602
22
836
299
0.32
0.08842
0.001
2.7726
0.038
0.22694
0.002
1318
8
1348
10
1392
21
1392
21
Zircon_4_011
278
189
0.60
0.08968
0.001
3.063
0.044
0.24785
0.001
1427
8
1423
11
1419
23
1419
23
Zircon_40_054
128
51
0.35
0.08957
0.001
3.0059
0.052
0.24345
0.002
1405
8
1409
13
1416
28
1416
28
Zircon_41_056
718
589
0.73
0.09901
0.001
3.3672
0.060
0.24679
0.003
1422
15
1497
14
1606
22
1606
22
Zircon_42_057
556
328
0.52
0.08948
0.001
3.1173
0.043
0.25245
0.002
1451
9
1437
11
1414
21
1414
21
Zircon_43_058
850
277
0.29
0.08904
0.001
3.0281
0.041
0.24639
0.002
1420
8
1415
10
1405
21
1405
21
Zircon_44_059
172
81
0.42
0.08924
0.001
3.0026
0.044
0.24356
0.002
1405
8
1408
11
1409
23
1409
23
Zircon_45_060
166
130
0.69
0.08981
0.001
3.1508
0.054
0.25444
0.003
1461
13
1445
13
1421
24
1421
24
Zircon_46_062
357
204
0.51
0.0877
0.001
2.9219
0.043
0.24155
0.002
1395
9
1388
11
1376
23
1376
23
Zircon_47_063
112
44
0.35
0.08812
0.001
2.9826
Zircon_48_064
705
250
0.31
0.08926
0.001
3.1093
Zircon_49_065
477
289
0.54
0.08827
0.001
3.4381
Zircon_5_012
135
89
0.58
0.05445
0.002
0.29255
Zircon_50_066
229
111
0.43
0.09126
0.001
3.1958
Zircon_51_068
406
163
0.36
0.08849
0.001
2.9153
M AN U
SC
Zircon_38_052 Zircon_39_053
RI PT
Zircon_36_050
0.040
0.23883
0.002
1381
8
1386
10
1393
21
1393
21
Zircon_52_069
1020
208
0.18
0.08997
0.001
2.52141
0.059
0.20326
0.003
1193
15
1278
17
1425
27
1425
27
Zircon_53_070
432
210
0.43
0.10094
0.001
4.221
0.067
0.30266
0.003
1704
14
1678
13
1641
22
1641
22
Zircon_54_071
151
75
0.44
0.08933
0.001
3.0038
0.049
0.24349
0.002
1405
8
1409
12
1411
26
1411
26
Zircon_55_072
698
320
0.41
0.08916
0.001
3.0806
0.042
0.25034
0.002
1440
8
1428
10
1408
21
1408
21
Zircon_56_074
646
280
0.38
0.0896
0.001
3.0751
0.041
0.24879
0.001
1432
8
1427
10
1417
21
1417
21
Zircon_57_075
163
77
0.42
0.08778
0.001
3.0225
0.051
0.24953
0.002
1436
10
1413
13
1378
26
1378
26
Zircon_58_076
392
220
0.50
0.08978
0.001
3.1291
0.045
0.25244
0.002
1451
8
1440
11
1421
23
1421
23
Zircon_59_077
644
332
0.46
0.04948
0.001
0.28109
0.005
0.04115
0.000
260
2
252
4
171
39
260
2
Zircon_6_014
179
66
0.33
0.08613
0.001
0.048
0.21756
0.002
1269
8
1296
14
1341
28
1341
28
Zircon_60_078
186
82
25
Zircon_61_080
217
121
Zircon_62_081
1503
746
0.2453
0.002
1414
8
1403
12
1385
24
1385
24
0.25238
0.002
1451
8
1435
10
1410
21
1410
21
0.055
0.28245
0.002
1604
11
1513
13
1388
24
1388
24
0.011
0.03916
0.000
248
2
261
8
390
73
248
2
0.049
0.25369
0.002
1457
8
1456
12
1452
24
1452
24
AC C
EP
TE D
0.046
0.042
2.58369
0.52
0.09688
0.001
3.6587
0.058
0.2735
0.002
1559
10
1562
13
1565
24
1565
24
0.45
0.08928
0.001
3.0542
0.053
0.24766
0.002
1426
9
1421
13
1410
28
1410
28
0.001
3.039
0.049
0.24799
0.002
1428
8
1417
12
1401
26
1401
26
0.001
4.0354
0.059
0.2908
0.002
1646
10
1641
12
1634
22
1634
22
0.39
0.08952
0.001
2.8401
0.044
0.2298
0.002
1333
8
1366
12
1415
25
1415
0.49
0.09823
0.001
4.0899
0.070
0.30096
0.003
1696
15
1652
14
1591
24
1591
24
0.44
0.08933
0.001
3.0334
0.040
0.24589
0.001
1417
7
1416
10
1411
21
1411
21
Zircon_63_082
311
181
Zircon_64_083
130
66
Zircon_65_084
143
61
0.38
0.08885
Zircon_66_086
286
103
0.32
0.10053
1416
346
0.22
0.05006
0.001
0.2732
0.005
0.0395
0.000
250
2
245
4
198
36
250
2
Zircon_68_088
765
565
0.65
0.0904
0.001
3.1277
0.043
0.25035
0.002
1440
9
1440
11
1434
21
1434
21
Zircon_69_089
1531
802
0.46
0.05264
0.001
0.28318
0.005
0.03904
0.000
247
2
4
313
29
247
2
Zircon_7_015
98
37
0.33
0.08782
0.001
2.7469
0.045
0.22702
0.002
1319
8
1379
27
1379
27
Zircon_70_090
47
35
0.66
0.08967
0.002
3.131
0.059
0.25287
0.002
1453
10
1440
14
1419
30
1419
30
Zircon_71_092
177
76
0.38
0.08979
0.001
3.0448
0.045
0.24572
0.002
1416
9
1419
11
1421
23
1421
23
Zircon_72_093
93
47
0.44
0.08962
0.001
3.0781
0.052
0.24905
0.002
1434
10
1427
13
1417
26
1417
26
Zircon_73_094
380
161
0.38
0.08931
0.001
3.1726
0.059
0.25655
0.003
RI PT
12
1472
16
1451
14
1411
25
1411
25
Zircon_74_095
200
96
0.42
0.0892
0.001
2.8676
0.043
0.23299
0.002
1350
9
1373
11
1408
23
1408
23
Zircon_75_096
471
189
0.35
0.08927
0.001
3.1526
0.046
0.25603
0.002
1469
11
1446
11
1410
21
1410
21
Zircon_76_098
270
172
0.56
0.05155
0.001
0.28551
0.007
0.04029
0.000
255
2
255
5
266
46
255
2
Zircon_77_099
1044
345
0.29
0.08863
0.001
2.7853
0.049
0.22754
0.003
1322
14
1352
13
1396
23
1396
23
Zircon_78_100
436
204
0.41
0.08881
0.001
2.9442
23
Zircon_79_101
279
140
0.44
0.05182
0.001
0.29392
Zircon_8_016
293
143
0.43
0.08991
0.001
3.1208
Zircon_80_102
340
151
0.39
0.09045
0.001
3.1379
Zircon_81_104
540
231
0.38
0.0908
0.001
3.1478
Zircon_82_105
338
152
0.40
0.0883
0.001
3.0552
Zircon_83_106
765
599
0.69
0.05125
0.001
0.29255
Zircon_84_107
570
371
0.58
0.08961
0.001
Zircon_85_108
149
70
0.41
0.08895
Zircon_86_110
342
186
0.48
0.08998
Zircon_87_111
188
89
0.42
0.08875
0.001
Zircon_88_112
201
92
0.40
0.1035
Zircon_89_113
263
84
0.28
0.05441
Zircon_9_017
759
307
0.36
0.08949
Zircon_90_114
146
79
0.48
Zircon_91_116
857
287
Zircon_92_117
445
145
Zircon_93_118
457
333
Zircon_94_119
352
239
Zircon_95_120
358
205
Zircon_96_122
936
624
0.59
Zircon_97_123
134
60
0.39
0.09098
253 1341
0.24033
0.002
1388
8
1393
11
1400
23
1400
0.04139
0.000
261
2
262
6
277
51
261
2
0.045
0.25134
0.002
1445
10
1438
11
1424
21
1424
21
0.046
0.25126
0.002
1445
9
1442
11
1435
23
1435
23
0.047
0.25111
0.002
1444
10
1444
12
1442
23
1442
23
0.043
0.25065
0.001
1442
7
1422
11
1389
23
1389
23
0.006
0.04137
0.000
261
2
261
4
252
38
261
2
2.7839
0.043
0.22496
0.002
1308
10
1351
12
1417
23
1417
23
0.001
2.9044
0.043
0.23648
0.002
1368
9
1383
11
1403
23
1403
23
0.002
2.95984
0.076
0.23857
0.002
1379
13
1397
19
1425
36
1425
36
2.9771
0.043
0.24314
0.002
1403
8
1402
11
1399
24
1399
24
0.001
4.1619
0.064
0.29179
0.002
1650
10
1667
13
1688
25
1688
25
0.001
0.32417
0.008
0.04315
0.000
272
2
285
6
388
49
272
2
0.001
3.0885
0.042
0.25021
0.002
1440
9
1430
11
1415
22
1415
22
0.09274
0.001
3.2733
0.051
0.25491
0.002
1464
9
1475
12
1483
25
1483
25
0.30
0.08909
0.001
3.1452
0.051
0.25569
0.003
1468
13
1444
13
1406
24
1406
24
0.29
0.08881
0.001
3.0494
0.044
0.24866
0.002
1432
8
1420
11
1400
24
1400
24
0.65
0.05014
0.001
0.2699
0.007
0.03899
0.000
247
2
243
6
201
55
247
2
0.60
0.09019
0.001
3.0361
0.041
0.24371
0.002
1406
8
1417
10
1430
22
1430
22
0.51
0.0897
0.001
3.0973
0.058
0.25024
0.003
1440
13
1432
14
1419
29
1419
29
0.09149
0.001
3.1797
0.049
0.25095
0.002
1443
9
1452
12
1457
25
1457
25
0.001
3.0242
0.050
0.24034
0.002
1388
9
1414
13
1446
27
1446
27
EP
TE D
0.043
0.007
AC C
SC
Zircon_67_087
M AN U
ACCEPTED MANUSCRIPT
ACCEPTED MANUSCRIPT
0.09086
0.001
2.8664
0.040
0.22855
0.002
1327
8
1373
M AN U
SC
RI PT
0.41
TE D
180
EP
391
AC C
Zircon_98_124
10
1444
22
1444
22
ACCEPTED MANUSCRIPT
Table 2. Summary of LA-ICPMS U-Pb data of zircons from sample A82-11 (El Potrero Grande Unit).
Zircon_10_018
Th (ppm)
Th/U
106
62
0.52
207
206
Pb/ Pb
0.10138
±1s
207
235
Pb/ U
0.002
4.1258
±1s
206
238
Pb/ U
0.073
0.2943
±1s
CORRECTED AGES (Ma) 206
RI PT
CORRECTED RATIOS U (ppm)
238
Pb/ U ±1s
0.002
1663
11
207
235
Pb/ U
±1s
1659
14
207
Pb/206Pb 1650
±1s
Best age (Ma)
±1s
28
1650
28
Zircon_100_126
418
199
0.43
0.05442
0.003
0.11172
0.006
0.01492
0.000
95
1
108
6
388
114
95
1
Zircon_11_020
257
113
0.39
0.06149
0.004
0.12407
0.007
0.01473
0.000
94
1
119
7
656
117
94
1
93
1
550
232
0.38
0.05361
0.003
0.10562
0.006
0.01446
0.000
102
6
355
127
93
1
140
54
0.35
0.05121
0.004
0.10928
0.010
0.01548
0.000
99
1
105
9
250
182
99
1
Zircon_15_024
249
139
0.50
0.05324
0.003
0.11357
0.006
0.0155
0.000
99
1
109
5
339
106
99
1
Zircon_17_027
245
113
0.41
0.05985
0.003
0.12079
0.007
0.01495
0.000
96
1
116
6
598
120
96
1
Zircon_2_009
160
65
0.36
0.05619
0.004
0.11356
0.009
0.01466
0.000
94
1
109
8
460
181
94
1
Zircon_20_030
182
83
0.41
0.06693
0.004
0.14531
0.008
0.01578
0.000
101
1
138
7
836
117
101
1
Zircon_21_032
387
279
0.65
0.05131
0.003
0.10186
0.005
0.0145
0.000
93
1
98
5
255
121
93
1
Zircon_22_033
531
456
0.77
0.0469
0.002
0.15091
0.006
0.02349
0.000
150
1
143
5
44
81
150
1 2
M AN U
SC
Zircon_13_022 Zircon_14_023
859
346
0.36
0.05667
0.003
0.14652
0.007
0.01922
0.000
123
2
139
6
479
106
123
331
162
0.44
0.05198
0.002
0.10313
0.005
0.01445
0.000
92.5
1
100
4
285
109
93
1
Zircon_25_036
49
18
0.33
0.06023
0.009
0.132
0.021
0.0159
0.000
102
3
126
19
612
341
102
3
Zircon_26_038
244
124
0.46
0.0495
0.003
0.10004
0.006
0.01478
0.000
95
1
97
6
172
137
95
1
Zircon_27_039
131
65
0.44
0.05269
0.004
0.10635
0.008
0.01464
0.000
94
1
103
7
315
170
94
1
Zircon_28_040
701
481
0.61
0.05103
0.002
0.10518
0.005
0.01502
0.000
96.1
1
102
4
242
102
96
1
Zircon_29_041
817
322
0.35
0.05228
0.001
0.29134
0.007
0.04049
0.000
256
2
260
5
298
50
256
2
Zircon_3_010
102
36
0.32
0.06424
0.005
0.13495
0.011
0.01524
0.000
97
2
129
10
749
171
97
2
Zircon_30_042
955
488
0.46
0.04932
Zircon_31_044
518
267
0.46
0.05498
Zircon_33_046
2168
485
0.20
0.05187
Zircon_34_047
182
89
0.44
Zircon_35_048
289
154
0.48
Zircon_36_050
235
237
0.90
Zircon_37_051
108
22
0.18
Zircon_38_052
123
61
0.44
EP
TE D
Zircon_23_034 Zircon_24_035
0.002
0.1111
0.005
0.01637
0.000
105
1
107
4
163
93
105
1
0.002
0.17478
0.007
0.02311
0.000
147
2
164
6
411
95
147
2
0.003
1
0.005
0.01348
0.000
86
1
94
5
280
128
86
0.005
0.11925
0.010
0.01441
0.000
92
1
114
9
604
190
92
1
0.08961
0.001
3.1094
0.049
0.25144
0.002
1446
9
1435
12
1417
28
1417
28
0.09746
0.001
3.8224
0.066
0.28444
0.002
1614
12
1597
14
1576
29
1576
29
0.05936
0.005
0.12399
0.011
0.01546
0.000
99
2
119
10
580
206
99
2
0.04893
0.004
0.09971
0.008
0.01497
0.000
96
1
97
8
144
186
96
1
AC C
0.09654
0.06002
Zircon_4_011
418
312
0.67
0.05091
0.003
0.10309
0.006
0.01505
0.000
96
2
100
6
237
141
96
2
Zircon_40_054
152
86
0.50
0.05474
0.003
0.103
0.007
0.0139
0.000
89
1
100
6
402
147
89
1
Zircon_42_057
315
153
0.43
0.05074
0.003
0.09986
0.005
0.01441
0.000
92
1
97
5
229
121
92
1
ACCEPTED MANUSCRIPT
Zircon_43_058
261
97
0.33
0.06009
0.004
0.12238
0.007
0.01492
0.000
95
1
117
7
607
133
95
1
Zircon_45_060
175
81
0.42
0.05167
0.004
0.10708
0.008
0.0153
0.000
98
2
103
8
271
160
98
2
2
252
4
258
41
250
2
23
607
370
102
3
1509
683
0.40
0.05138
0.001
0.28115
0.006
0.03953
0.000
250
40
16
0.37
0.06009
0.011
0.13259
0.026
0.016
0.000
102
Zircon_49_065
225
98
0.39
0.0577
0.004
0.11782
0.007
0.015
0.000
96
1
113
7
518
128
96
1
Zircon_5_012
47
19
0.35
0.05577
0.010
0.11426
0.023
0.01486
0.000
95
3
110
21
443
367
95
3
Zircon_50_066
291
106
0.33
0.05153
0.005
0.10303
0.010
0.01484
0.000
95
1
100
9
265
196
95
1
Zircon_51_068
224
101
0.41
0.05173
0.006
0.10653
0.012
0.01475
0.000
94
1
103
11
273
222
94
1
Zircon_53_070
282
190
0.60
0.04966
0.002
0.16335
0.007
0.02387
0.000
152
2
154
6
179
86
152
2
Zircon_55_072
162
77
0.43
0.05421
0.004
0.10465
0.007
0.01426
0.000
91
1
101
7
380
147
91
1
Zircon_56_074
334
308
0.83
0.09858
0.001
3.8667
0.065
0.28419
0.002
1612
11
1607
13
1597
26
1597
26
Zircon_57_075
336
166
0.44
0.04621
0.003
0.09483
0.007
0.01481
0.000
95
1
92
6
9
138
95
1
Zircon_58_076
173
102
0.53
0.06018
0.004
0.11842
0.008
0.01433
0.000
92
1
114
7
610
130
92
1
Zircon_59_077
90
46
0.46
0.05608
0.010
0.13245
0.023
0.01641
0.000
105
3
126
20
456
335
105
3
RI PT
Zircon_46_062 Zircon_47_063
M AN U
SC
3
126
678
448
0.59
0.04844
0.002
0.0987
0.004
0.0148
0.000
95
1
96
4
121
84
95
1
230
96
0.37
0.05863
0.004
0.12102
0.010
0.01497
0.000
96
2
116
9
553
155
96
2
Zircon_62_081
468
123
0.23
0.05447
0.002
0.11381
0.005
0.0154
0.000
99
1
109
5
391
95
99
1
Zircon_63_082
64
29
0.41
0.07264
0.020
0.14455
0.039
0.01554
0.001
99
3
137
35
1004
540
99
3
Zircon_65_084
96
38
0.35
0.05807
0.005
0.1247
0.012
0.01568
0.000
100
2
119
11
532
195
100
2
Zircon_66_086
285
118
0.37
0.05364
0.004
0.11223
0.008
0.0151
0.000
97
1
108
7
356
141
97
1
Zircon_67_087
209
129
0.55
0.04746
0.003
0.09562
0.006
0.01479
0.000
95
1
93
5
72
119
95
1
Zircon_68_088
755
219
0.26
0.04989
0.002
0.1012
0.004
0.01471
0.000
94.2
1
98
4
190
81
94
1
Zircon_7_015
57
36
0.56
0.05445
0.006
0.12132
0.014
0.01629
0.000
104
2
116
12
390
228
104
2
Zircon_71_092
780
317
0.36
0.09786
0.001
23
Zircon_72_093
207
113
0.49
0.04955
Zircon_73_094
343
178
0.46
0.0517
Zircon_75_096
251
118
0.42
0.05111
Zircon_76_098
158
68
0.38
Zircon_77_099
190
59
0.28
Zircon_78_100
226
41
0.16
TE D
Zircon_6_014 Zircon_61_080
0.048
0.23439
0.002
1357
10
1449
12
1584
23
1584
0.10303
0.006
0.0152
0.000
97
1
100
5
174
116
97
1
0.003
0.10069
0.006
0.01422
0.000
91
1
97
6
272
125
91
1
0.002
0.10565
0.005
0.01518
0.000
97
1
102
5
246
97
97
1
0.05599
0.004
0.12023
0.008
0.01575
0.000
101
2
115
8
452
142
101
2
0.04827
0.005
0.10265
0.010
0.01578
0.000
101
2
99
9
113
195
101
2
0.05456
0.002
0.187
0.009
0.02506
0.000
160
2
174
7
394
91
160
2
AC C
EP
3.1665
0.003
Zircon_79_101
259
159
0.55
0.05211
0.002
0.10539
0.005
0.01463
0.000
94
1
102
4
290
88
94
1
Zircon_80_102
190
54
0.25
0.06561
0.004
0.13849
0.009
0.01531
0.000
98
2
132
8
794
127
98
2
Zircon_81_104
249
121
0.44
0.05089
0.002
0.09953
0.005
0.0144
0.000
92
1
96
5
236
105
92
1
Zircon_82_105
268
101
0.34
0.04808
0.005
0.09512
0.009
0.01464
0.000
94
2
92
9
103
193
94
2
ACCEPTED MANUSCRIPT
Zircon_83_106
1014
715
0.63
0.05045
0.001
0.16532
0.005
0.02373
0.000
151
1
155
4
216
61
151
1
Zircon_84_107
109
45
0.36
0.05479
0.003
0.10937
0.007
0.01448
0.000
93
1
105
7
404
129
93
1
Zircon_85_108
510
217
0.38
0.05099
0.001
0.17559
0.005
0.02499
0.000
159
Zircon_86_110
74
6
0.08
0.06345
0.007
0.13044
0.015
0.01543
0.000
99
Zircon_87_111
53
22
0.37
0.06564
0.007
0.1389
0.016
0.01583
0.000
101
Zircon_88_112
192
55
0.26
0.05547
0.004
0.1141
0.008
0.01492
0.000
95
Zircon_89_113
475
178
0.34
0.05687
0.003
0.121
0.007
0.01543
0.000
99
1
4
240
61
159
1
124
164
723
229
99
2
2
132
14
795
226
101
2
1
110
8
431
153
95
1
116
6
486
106
99
1 1
13
Zircon_9_017
271
161
0.53
0.05876
0.002
0.17093
0.005
0.02077
0.000
RI PT
1
133
1
160
5
558
59
133
Zircon_90_114
556
379
0.61
0.05169
0.002
0.1042
0.004
0.01459
0.000
93
1
101
3
272
69
93
1
Zircon_91_116
207
92
0.40
0.05373
0.003
0.13649
0.009
0.0191
0.000
122
2
130
8
360
135
122
2 2
SC
2
176
92
0.47
0.052
0.003
0.10586
0.007
0.01477
0.000
94
2
102
6
285
127
94
821
608
0.66
0.04963
0.002
0.09638
0.003
0.01406
0.000
90
1
93
3
178
74
90
1
Zircon_94_119
82
47
0.52
0.06764
0.010
0.14151
0.022
0.01517
0.000
97
2
134
19
858
301
97
2
Zircon_95_120
155
92
0.53
0.05007
0.003
0.13361
0.008
0.01965
0.000
125
2
127
7
198
119
125
2
Zircon_97_123
96
36
0.33
0.0712
0.006
0.15245
0.013
0.01584
0.000
101
2
144
12
963
169
101
2
Zircon_98_124
181
73
0.36
0.04881
0.004
0.09823
0.008
0.01478
0.000
95
1
95
7
139
155
95
1
Zircon_99_125
11044
5350
0.43
0.05264
0.006
0.10388
0.012
0.01485
0.000
95
2
100
11
313
232
95
2
Zircon_96_122
-1330
-458
0.31
0.05087
0.003
0.10769
0.007
0.01542
0.000
99
1
104
6
235
132
99
1
AC C
EP
TE D
M AN U
Zircon_92_117 Zircon_93_118
ACCEPTED MANUSCRIPT
Table 3. Summary of LA-ICPMS U-Pb data of zircons from sample A79-11 (El Potrero Grande Unit). CORRECTED RATIOS ±1s
207
Pb/235U
±1s
206
Pb/238U
±1s
Zircon_1_79-11_008
300
0.42
0.0503
0.003
0.08473
0.005
0.01222
0.000
Zircon_10_018
179
234
1.25
0.05078
0.003
0.08296
0.004
0.0119
0.000
Zircon_100_126
112
81
0.69
0.05137
0.004
0.08519
0.007
0.01203
0.000
Zircon_11_020
226
325
1.37
0.06318
0.004
0.10507
0.006
0.01197
0.000
Zircon_12_021
472
201
0.41
0.05958
0.003
0.1085
0.006
0.01321
Zircon_13_022
174
207
1.13
0.06798
0.003
0.10901
0.005
0.0117
Zircon_14_023
753
388
0.49
0.04945
0.001
0.08057
0.003
0.0118
Zircon_17_027
506
187
0.35
0.05251
0.002
0.0883
Zircon_18_028
329
124
0.36
0.05374
0.002
0.08929
CORRECTED AGES (Ma)
206
Pb/238 U 78
207
Pb/235U
±1s
208
Pb/232Th ±1s
1
83
5
78
1
Best age (Ma) 78
76
1
81
4
75
2
76
1
77
1
83
7
76
2
77
1
77
±1s
RI PT
Pb/206Pb
±1s 1
1
101
6
75
2
77
1
0.000
85
1
105
6
82
1
85
1
0.000
75
1
105
5
76
2
75
1
0.000
75.6
0.7
79
2
75
2
76
1
SC
Th/U
207
Th (ppm) 131
M AN U
U (ppm)
0.003
0.01224
0.000
78
1
86
3
77
2
78
1
0.004
0.01207
0.000
77.3
0.8
87
3
72
2
77
1
0.011
0.0125
0.000
80
2
104
10
78
1
80
2
0.003
0.01178
0.000
75.5
0.9
83
3
74
2
76
1
0.005
0.03922
0.000
248
2
247
4
236
5
248
2
0.004
0.01225
0.000
78
1
86
4
77
3
78
1
0.007
0.01226
0.000
79
1
94
6
77
1
79
1
0.003
0.01214
0.000
77.8
1
85
3
79
2
78
1
0.003
0.01189
0.000
76.2
0.8
81
3
77
2
76
1
0.002
0.01119
0.000
71.7
1
74
2
73
2
72
1
0.07433
0.002
0.01113
0.000
71.3
0.6
73
2
71
4
71
1
0.10693
0.009
0.0124
0.000
79
2
103
8
77
2
79
2
0.08226
0.003
0.01213
0.000
77.7
0.8
80
2
76
2
78
1
70
54
0.73
0.06228
0.006
0.10733
Zircon_2_009
414
140
0.32
0.0525
0.002
0.08493
Zircon_20_030
983
679
0.66
0.05097
0.001
0.2759
Zircon_21_032
324
153
0.45
0.05246
0.003
0.08827
Zircon_22_033
334
170
0.48
0.05729
0.004
0.09682
Zircon_23_034
628
193
0.29
0.05204
0.002
0.0874
Zircon_24_035
700
171
0.23
0.05066
0.002
0.08314
Zircon_25_036
2066
345
0.16
0.04904
0.001
0.07603
Zircon_26_038
2170
12
0.01
0.04845
0.001
Zircon_28_040
138
43
0.30
0.06252
0.005
Zircon_29_041
585
292
0.48
0.04892
0.001
EP
TE D
Zircon_19_029
107
43
0.38
0.05614
0.003
0.11547
0.006
0.01484
0.000
95
2
111
6
91
5
95
2
406
216
0.51
0.04986
0.003
0.08489
0.006
0.01235
0.000
79
1
83
5
79
2
79
1
Zircon_31_044
959
784
0.78
0.05126
0.001
0.08206
0.002
0.01159
0.000
74.3
0.7
80
2
75
2
74
1
Zircon_32_045
518
366
0.67
0.05137
0.001
0.08442
0.002
0.01196
0.000
76.6
0.9
82
2
78
2
77
1
Zircon_33_046
660
353
0.51
0.05148
0.002
0.08538
0.004
0.01203
0.000
77.1
0.9
83
4
76.3
0.8
77
1
Zircon_34_047
244
341
1.33
0.05832
0.002
0.09255
0.004
0.01157
0.000
74.2
1
90
4
73
2
74
1
Zircon_35_048
268
235
0.84
0.0547
0.002
0.08893
0.003
0.01185
0.000
75.9
1
87
3
75
2
76
1
Zircon_36_050
188
312
1.58
0.05674
0.003
0.08936
0.004
0.01148
0.000
74
1
87
4
74
2
74
1
Zircon_37_051
119
193
1.54
0.06522
0.008
0.10911
0.015
0.01213
0.000
78
2
105
14
75
1
78
2
Zircon_38_052
742
307
0.39
0.04924
0.002
0.07785
0.003
0.01146
0.000
73.5
0.7
76
2
74
2
74
1
AC C
Zircon_3_010 Zircon_30_042
ACCEPTED MANUSCRIPT
236
149
0.60
0.05167
0.003
0.10148
0.006
0.01425
0.000
91
1
98
6
90
1
91
Zircon_4_011
232
89
0.37
0.05522
0.005
0.0923
0.009
0.01212
0.000
78
1
90
8
76
2
78
1
Zircon_40_054
276
141
0.49
0.05459
0.002
0.08919
0.004
0.01189
0.000
76.2
1
87
4
75
2
76
1
Zircon_41_056
198
118
0.57
0.0528
0.003
0.08873
0.005
0.01219
0.000
Zircon_42_057
194
243
1.19
0.05105
0.005
0.08907
0.010
0.01265
0.000
Zircon_43_058
725
450
0.59
0.04793
0.002
0.0781
0.004
0.01182
0.000
Zircon_44_059
680
426
0.60
0.05207
0.002
0.08435
0.004
0.01175
0.000
Zircon_45_060
356
185
0.50
0.05344
0.002
0.09027
0.003
0.01235
0.000
Zircon_46_062
209
205
0.93
0.05704
0.003
0.09285
0.005
0.01194
0.000
Zircon_47_063
391
191
0.47
0.05253
0.002
0.0863
0.003
0.01193
Zircon_48_064
113
177
1.49
0.0519
0.003
0.08667
0.006
0.01229
Zircon_49_065
579
329
0.54
0.04681
0.002
0.07505
0.004
0.01163
Zircon_5_012
146
79
0.52
0.06754
0.006
0.11155
0.010
Zircon_50_066
154
75
0.46
0.05841
0.004
0.09544
Zircon_51_068
183
115
0.60
0.06062
0.004
0.10032
Zircon_52_069
664
367
0.53
0.0473
0.002
0.0794
Zircon_53_070
293
186
0.60
0.05113
0.002
0.09817
Zircon_55_072
3291
874
0.25
0.04735
0.001
0.06645
Zircon_57_075
257
171
0.63
0.05502
0.002
Zircon_58_076
214
93
0.41
0.05194
0.003
0.08364
0.005
Zircon_59_077
301
206
0.65
0.0487
0.002
0.0793
1
1
86
5
81
3
78
1
81
2
87
10
80
2
81
2
75.7
0.9
76
4
76
2
76
1
75.3
0.7
82
3
74.4
0.7
75
1
79
1
88
3
77
2
79
1
77
1
90
5
74
2
77
1
0.000
76.5
0.8
84
3
76
2
77
1
0.000
79
1
84
6
78
2
79
1
0.000
75
1
73
4
75
2
75
1
0.01198
0.000
77
1
107
9
74
1
77
1
0.007
0.01185
0.000
76
1
93
7
74
1
76
1
M AN U
SC
78
0.007
0.01219
0.000
78
1
97
6
79
3
78
1
0.003
0.01218
0.000
78
0.8
78
3
78
1
78
1
0.004
0.01397
0.000
89
1
95
3
90
2
89
1
0.001
0.01019
0.000
65.4
0.7
65
1
75
2
65
1
0.004
0.01158
0.000
74.2
1
85
4
71
2
74
1
0.01168
0.000
75
1
82
5
74
1
75
1
0.003
0.01187
0.000
76.1
0.8
77
3
74
2
76
1 1
TE D
0.0873
RI PT
Zircon_39_053
376
295
0.75
0.05586
0.002
0.08661
0.004
0.01116
0.000
71.5
1
84
3
71
2
72
728
351
0.46
0.04916
0.001
0.07907
0.002
0.01164
0.000
74.6
0.8
77
2
74
2
75
1
Zircon_61_080
440
194
0.42
0.05117
0.002
0.08606
0.005
0.0122
0.000
78.2
0.8
84
4
77.5
0.8
78
1
Zircon_62_081
208
91
0.41
0.0573
0.009
0.01186
0.000
76
1
91
8
74
1
76
1 1
EP
Zircon_6_014 Zircon_60_078
0.005
0.0937
208
691
3.16
0.06143
0.003
0.09975
0.005
0.0119
0.000
76
1
97
4
71
2
76
226
105
0.44
0.06007
0.002
0.11407
0.004
0.01384
0.000
89
1
110
4
92
3
89
1
Zircon_66_086
1244
467
0.36
0.05028
0.001
0.07759
0.002
0.01122
0.000
71.9
0.6
76
2
71
2
72
1
Zircon_67_087
112
174
1.48
0.0563
0.004
0.09524
0.006
0.01246
0.000
80
1
92
6
76
2
80
1
Zircon_68_088
662
159
0.23
0.05126
0.002
0.08099
0.003
0.01146
0.000
73.5
0.6
79
2
73
2
74
1
Zircon_69_089
138
164
1.13
0.0672
0.005
0.11877
0.009
0.01308
0.000
84
1
114
8
86
2
84
1
Zircon_7_015
173
92
0.50
0.05036
0.003
0.08804
0.005
0.01261
0.000
81
2
86
5
83
4
81
2
Zircon_70_090
286
144
0.48
0.05771
0.002
0.09798
0.004
0.01244
0.000
79.7
1
95
4
80
2
80
1
Zircon_71_092
350
502
1.37
0.05875
0.008
0.09485
0.014
0.01171
0.000
75
1
92
13
73
2
75
1
AC C
Zircon_63_082 Zircon_65_084
ACCEPTED MANUSCRIPT
95
59
0.59
0.06246
0.008
0.10339
0.015
0.01201
0.000
77
2
100
14
74
2
77
2
914
582
0.61
0.05373
0.001
0.08224
0.002
0.01111
0.000
71.2
0.6
80
2
73
2
71
1
Zircon_77_099
666
244
0.35
0.05049
0.002
0.07782
0.004
0.01118
0.000
71.7
0.7
1
Zircon_78_100
77
59
0.73
0.06492
0.007
0.11815
0.014
0.0132
0.000
Zircon_79_101
221
163
0.70
0.05489
0.003
0.08661
0.004
0.01151
0.000
Zircon_8_016
177
129
0.69
0.05586
0.003
0.11111
0.006
0.01447
0.000
Zircon_80_102
220
174
0.75
0.05289
0.002
0.08199
0.004
0.01123
0.000
Zircon_81_104
411
219
0.51
0.05288
0.005
0.09214
0.010
0.01264
0.000
Zircon_82_105
223
517
2.20
0.06352
0.003
0.10283
0.005
0.01188
0.000
Zircon_84_107
893
383
0.41
0.04958
0.001
0.07917
0.002
0.01157
4
71.1
0.8
72
85
2
113
13
81
2
85
2
74
1
84
4
75
2
74
1
93
2
107
6
91
4
93
2
72
1
80
4
72
2
72
1
81
2
89
9
80
2
81
2
76
1
99
5
76
2
76
1
0.000
74.2
0.8
77
2
76
2
74
1
0.000
71.6
1
73
2
78
2
72
1
0.000
75.9
0.7
82
3
75.2
0.6
76
1
SC
76
RI PT
Zircon_73_094 Zircon_74_095
2311
379
0.16
0.04835
0.001
0.07444
0.002
0.01117
Zircon_86_110
1334
484
0.35
0.05175
0.002
0.08456
0.003
0.01185
Zircon_87_111
398
198
0.47
0.05032
0.002
0.07918
0.003
0.01142
0.000
73.2
0.7
77
3
76
2
73
1
Zircon_88_112
407
149
0.35
0.04957
0.003
0.09122
0.005
0.01331
0.000
85
1
89
5
85
3
85
1
Zircon_9_017
147
169
1.09
0.06199
0.004
0.10443
0.006
0.01221
0.000
78
1
101
6
71
2
78
1
Zircon_90_114
743
389
0.50
0.0474
0.001
0.07483
0.002
0.01153
0.000
73.9
0.6
73
2
74
2
74
1
Zircon_91_116
317
134
0.40
0.0508
0.002
0.08243
0.003
0.01175
0.000
75.3
0.8
80
3
75
2
75
1
Zircon_92_117
144
84
0.55
0.05268
0.003
0.10325
0.006
0.01421
0.000
91
1
100
6
90
1
91
1
Zircon_93_118
151
116
0.73
0.05326
0.003
0.09015
0.006
0.01241
0.000
80
1
88
6
75
3
80
1
Zircon_94_119
762
190
0.24
0.0512
0.002
0.08216
0.003
0.01165
0.000
74.7
0.8
80
2
74
2
75
1
Zircon_95_120
540
317
0.56
0.04936
0.002
0.07842
0.003
0.0115
0.000
73.7
0.7
77
3
74
2
74
1
Zircon_97_123
69
164
2.25
0.05212
0.004
0.08367
0.006
0.01199
0.000
77
2
82
6
71
2
77
2
Zircon_98_124
215
321
1.43
0.04999
0.004
0.07985
0.007
0.01158
0.000
74
1
78
7
74
1
74
1
Zircon_99_125
741
426
0.55
0.05146
0.007
0.08302
0.012
0.0117
0.000
75
2
81
11
74
5
75
2
Zircon_15_024
158
187
1.13
0.06136
0.004
0.11737
0.010
0.01359
0.001
87
5
113
9
73
2
87
5
Zircon_16_026
767
191
0.24
0.09733
0.001
3.3345
0.057
0.24854
0.002
1431
13
1489
13
1309
25
1574
24
Zircon_54_071
252
79
0.30
0.06577
0.003
0.13632
0.009
0.01516
0.001
97
4
130
8
102
7
97
4
Zircon_83_106
283
129
0.43
0.09521
0.002
2.7643
0.063
0.21057
0.002
1232
9
1346
17
1212
9
1532
36
AC C
EP
TE D
M AN U
Zircon_85_108
ACCEPTED MANUSCRIPT
Table 4. WR 40Ar/39Ar analytical data from the andesitic sample JR10 (El Potrero Grande Unit) eastern Sonora, Arivechi region.
JR10 Can/Pos
Mineral
J
WR
± (1s)
0.004 0.000006
% error
Int Age (Ma) ± (2 s) with ± in J
0.16
212.73
0.92
1.13
221/JR10 AOR13-11
IsoPlot PA--> IsoPlot CA-->
Decay corrected true ratios Step no
Power
40Ar/39Ar
Plateau Age ± (2s)
±
38Ar/39Ar
±
37Ar/39Ar
36Ar/39Ar
±
±
40Ar*/39Ar(K)
with ± in J
RI PT
Sample no
MSWD % 39Ar
261.93
1.35
1.57
8.43
35.95
na
na
na
na
na
Probability Initial Ratio Initial Ratio Error na
na
na
261.90
1.80
na
0.80
28.59
0.45
280.80
5.30
±
40Ar*
Cumulative
Age
±
Ca/K
±
Cl/K
±
(%)
(Ma)
(1 s)
1
3.5
553.458
8.710
1.265
0.030
2.803
0.455
1.822
0.033
15.389
5.079
2.8
0.39
98.59
31.67
5.14
0.87
0.2095
0.02
2
4.5
162.443
1.943
0.597
0.013
2.666
0.371
0.509
0.010
12.324
2.239
7.6
1.10
79.38
14.11
4.89
0.72
0.1124
0.01
3
5.5
81.315
0.494
0.391
0.006
3.946
0.139
0.238
3.54
74.09
4.35
7.24
0.42
0.0767
0.01
4
6.5
59.549
0.314
0.330
0.004
4.991
0.123
0.157
5
8.0
56.574
0.273
0.255
0.003
6.447
0.131
0.131
6
9.5
47.233
0.281
0.387
0.004
8.646
0.142
0.078
7
11.0
48.846
0.229
0.998
0.008
3.348
0.058
0.047
8
12.5
53.740
0.231
1.054
0.006
2.577
0.054
0.034
9
14.5
51.733
0.294
1.115
0.008
2.218
0.067
0.032
10
18.0
47.458
0.236
1.000
0.008
2.043
0.074
11
22.0
45.944
0.158
1.332
0.007
2.271
12
27.0
49.101
0.169
1.329
0.007
13
31.0
47.629
0.165
0.857
0.005
14
35.0
35.845
0.108
0.682
0.004
2.077
(1 s)
(1 s)
M AN U
(1 s)
(1 s)
(1 s)
11.485
0.689
14.1
0.002
13.721
0.577
23.0
6.35
88.16
3.62
9.17
0.48
0.0661
0.01
0.002
18.530
0.423
32.6
10.14
118.07
2.61
11.85
0.60
0.0500
0.00
0.001
25.147
0.367
52.9
14.43
158.43
2.21
15.92
0.78
0.0830
0.01
0.001
35.357
0.274
72.2
21.37
218.98
1.60
6.14
0.30
0.2248
0.02
0.001
43.969
0.271
81.7
29.12
268.52
1.54
4.72
0.24
0.2382
0.02
0.001
42.569
0.326
82.2
34.98
260.56
1.86
4.07
0.23
0.2524
0.02
0.030
0.001
38.871
0.335
81.8
38.57
239.36
1.93
3.74
0.22
0.2258
0.02
0.061
0.026
0.000
38.586
0.196
83.9
48.66
237.71
1.13
4.16
0.22
0.3024
0.03
2.466
0.047
0.023
0.001
42.576
0.210
86.6
59.82
260.60
1.20
4.52
0.23
0.3020
0.03
2.007
0.044
0.019
0.000
42.365
0.192
88.8
71.00
259.39
1.09
3.68
0.19
0.1933
0.02
0.037
0.022
0.000
29.506
0.147
82.2
100.00
184.53
0.87
3.81
0.19
0.1528
0.01
TE D
0.003
EP
(1 s)
AC C
(%)
SC
(1 s)
39Ar (%)
ACCEPTED MANUSCRIPT San Luis Río Colorado
Upper Cretaceous-Cenozoic plutonic rocks (granite and granodiorite).
115° 114°
AR IZ SO ONA NO RA
32°
113°
Upper Cretaceous volcano-sedimentary rocks.
Sonoyta ?
RI PT
112°
Puerto Peñasco
109°
110°
111°
Agua Prieta
Nogales
75
31° Cananea 1000
29°00´
?
Im
?
Caborca
Esqueda
SC
## Santo Tomas
2000
Ma
Altar
CABORCA
Santa Ana Nacozari Arizpe
0
1500
1000
1000
Banámichi
o 3030°
30° 69
1
M AN U
2000
60 0
113 o
C. ZOROPUCHI
1000
31°
1
+
250
Moctezuma
00
10
C. LA BEBELAMA
C. PEÑASCO BLANCO
C. LA SATA C. EL MOGOLLON
1000
C. LAS CONCHAS
Las Conchas
C. COLORADO
29°
65 0
Arivechi
Tarachi
C. EL VOLANTIN Guisamopa
112 o
C. EL PALMAR
Yecora 5
## Bámori
250
1500
El Potrero Grande
Sahuaripa
HERMOSILLO
29 o
1500
ÑA DA DE
TA RA CH I
TE D
CA
C. EL SANTISIMO
C. EL ENCINAL
Tepache
Ures L
### Arivechi #
28 o28°
28°
Guaymas
500
250
C. SAN MIGUEL
Cd. Obregón
1000
Navojoa 27°
5
C. LA GOMILLA
0
AC C
R
## Valle de Tacupeto
1000
EP
500
study area
San Miguel
scale 0
20
40
60
kilómeters 0
2 kilometers
-109°20´
28°45´ -109°00´
Figure 1. Location of the study area to the east of Arivechi, Sonora, Mexico and outcrops of Upper Cretaceous rocks.
80
100
27°
ACCEPTED MANUSCRIPT 100
9::::
U/Pb Zircon Chrontours for the northern Peninsular Ranges of Alta and Baja California
90
110 120
Zircon Chrontours (Ma) 90 U/Pb Sample site
33° 135
115
USA ME XIC O
90 100 120
107
110
32°
90
110
Agu
a Bla
A
90
nca
lif Ca
Fau
lt
orn
RI PT
US
100
f lf o
Gu
120
97 +4/-1
110
80 70 60
ia
31°
120
Pa
140
100
ic cif
50
ea Oc
n
b
115°
SC
110 100
90
109 139
15
101 104
140
102 103
116°
117°
80
14
40
Ar/39Ar Hornblende Chrontours for the northern Peninsular Ranges of Alta and Baja California 90 40Ar/39Ar Hornblende Chrontours (Ma)
12
120
23
17
18
10
19
8
9
110
111
9::::
7
112
99
105
6
33°
116
114 113
9
4
121
119
125
126 124
120
10
60
12
70
115
130 131
136
15
122
11
130 14
17
148 147
142
21
140
22
120
120
137 138 134
145
141
50
USA ME XIC O
132 133
13 130
80
7
135 300
5
128 127129
117
144
130 23
39
28 96
25
24
90
26
100
40
34
49
44
50 48
43
38
105
42
110
58
35
80
58
52
37 45
36
100
46 47
78
62
32°
69 73
40
41
94
42
45 46
66
95 94 93
48
92
TE D EP
orn
5 4 3
53 2
1
81
9 40
8 8
6 1 2 4 6
82
93 9 18
10
25 23 55
80
16
an 79 77
90 100
73
110
c
120
117°
100 120 110
90
15
115°
116°
80
70
40
Ar/39Ar Biotite Chrontours for the northern Peninsular Ranges of Alta and Baja California
12
60
23 11 17 18 21
10
20
22
24 19
8 9
25
24
7
80 40Ar/39Ar Biotite Chrontours (Ma)
10
5
23
9
20
8
4
22
21
107
18
19 17
115 116 16
33°
2
114 113
1
7
1
15 6
8
5
12
14
4
13
3
7
2 3
121
119
6
125 126 123 124
120
130
11
3
117
131
USA ME XIC O
122
11
133
60
17 16
145 141
143
18
148
146
2
142
20 21
22
30
19
144
29
149
23
39
24
31
28 96
25
9::::
32
27 26
70
58 33
57
49 44
110
50 48
43
59
42 35
60
53
41
58
59
54
37
51 45
36
120
100
46
55
56 56
80
100
62 98
63
32°
68
64
74
61
71
90
41
64
42
lf Gu
40
80
63
73
70
94
80
79
62
72
69
77
44
67
60
61
57
47
46
66
75
47
81
88
96 95
89 88
90
86
94 93
48
49
cif
50 51
ca
91 90
52
Fault
70
5 4
40
3
53 54
1
2
25
9 6 81
82
1 2 4
93
92
8 10
18 17
Oc
23 55
24
80
16
n ea
60
ia
ic
100
orn alif
Blan
Pa
31°
60
89
Agua
of C
AC C
91 90
52
Fault
74
118
70 80 90
50 51
ca
ce
120
89
Blan
84 83
alif
85
cO
110
49
Agua
87 86
72
16
140
fC
85 84
cifi
31°
120
88
47
96
91 90
88
82 83
Pa
140
a
43
67
65
lf o
110
72
68
64
Gu
100 90
61
74 98
63
ia
M AN U
106
108
50
80 79 78
76
110
d
117°
116°
120
100
90
115°
Figure 10. (a) Palinspatic reconstruction for western Mexico before opening the Gulf of California in the Mesozoic and U-Pb chrontours for plutons of the Mesozoic western arc for the Peninsular Ranges. (b) Zircon U-Pb chrontours; (c) Hornblende 40Ar/39Ar plateau and K/Ar chrontours; (d) Biotite 40Ar/39Ar plateau and K/Ar dates chrontours for the Peninsular Ranges Batholith. Modified from Ortega-Rivera (2003). arrows indicate the likely direction of provenance of some detrital zircons in the study area.
ACCEPTED MANUSCRIPT
Volcanics rocks SMO angular unconformity
Limestone, Unknown age Conglomerate, Unknown age
EL POTRERO GRANDE UNIT
Limestone, shale, sandstone (Lower Cretaceous)
Limestone (Mississippian, Paleozoic) Dolomite (Proterozoic) Quartzite (Proterozoic)
d
M AN U
Block of igneous Permian rocks 40 39 Ar/ Ar 261±1.8 Ma
e
RI PT
Conglomerate, sandstone, siltstone (Permo-Triassic)
SC
Monoliths
Tuff (Permian)
Tuff
Trachydacite
Limolita Shale
Sandstone
e
Siltstone
Large megablock of possible Permian-Triassic rocks Large megablocks of Paleozoic and exotic rocks Shear zones Large megablock of possible Permian-Triassic rocks
c
AC C
EP
c
TE D
Conglomerate
d
CAÑADA DE TARACHI UNIT
UPPER CRETACEOUS
Granite (Upper Cretaceous)
b
Large megablocks of sedimentary Precambian rocks
b
Megablocks of sedimentary Precambian rocks
Megablock of conglomerate unknown age Large megablocks of Paleozoic rocks
a
Large megablocks of Lower Cretaceous rocks 40
Ar/39Ar KSP 69.57±0.48 Ma U-Pb Zircon 76.00±2.00 Ma
a
angular unconformity ?
Figure 2. Schematic stratigraphic column, without scale, that shows relationships between the Cañada de Tarachi and El Potrero Grande units in the Arivechi area and the interpreted monoliths in the Cañada de Tarachi and the El Potrero Grande units. a) The megablocks are separated by shear zones. Intense shearing between Paleozoic rocks and underlying Lower Cretaceous rocks around Cerro Las Conchas. b) Block constituted by conglomerate of unknown age in the Cañada de Tarachi stream. The block is surrounded by conglomerate of possible Triassic age. c) Megablock constituted by Paleozoic rocks exposed along the Arivechi-Tarachi road. d) and e) Blocks of Precambrian rocks along the Cañada de Tarachi stream. The block of figure e contains stromatolites that indicate the Precambrian age.
ACCEPTED MANUSCRIPT
109°09´
109°03´ 28°57´
9
Tv
EXPLANATION
22
1000
1100
38 49
33
40
26
Tgr
Pz
C. PEÑASCO BLANCO 72
SC
Tba
C. LAS CONCHAS
Las Conchas
Ksgr
Pz
Ki
A82-11
Pz
A78-11
58
52 58
38
Tgr
49 33 de da Tarachi 15 ña a C 65 81
50
24 5
35
57
35
15 30
35
75
40
30
20
Conglomerate, sandstone, shale, tuff, siltstone, andesite and megaliths
0
42
12
A79-11
39
C. EL BATAMOTE
40
40
42
25
34
45
Pc
Ks1
67
33
TR
35
C. EL VOLANTIN
48
El Potrero Grande
130
0
50
C. EL PALMAR
TE D
1300
Pc
C. LAS TIERRITAS
Tcg
Ks2
140
28
43
30
78
Ksgr
50
20
Granite
Pz
38
30
41
Tuff
Tgr
Andesite
Ks2
Pz
55
Pz
Tcg
51
Tv
C. COLORADO
M AN U
15
28°53´
TR
Basalt
PALEOGENE
C. LA BEBELAMA
31
Tba
RI PT
Ks2
Conglomerate, sandstone
Ks2
55
Conglomerate, sandstone,siltstone, andesite, tuff, monoliths
Ksgr Granite
Ki Limestone, shale
TR Conglomerate, sandstone, siltstone, shale, andesite
Pz
C. LA AGUJITA
74
EP 32
AC C
25
C. LA AGUJA
Pc
oyo
TR
Sa
31
C. LOS HORCONES
l
SIMBOLOGY 20
60
strike and dip normal fault strike-slip fault lineament megaliths
C. SAN MIGUEL
anticlinal
44
Mina Los Horcones
1000
35
?
San Miguel
Ks2
20
Arr
angular unconformity
40
c
Tcg
35
32
el igu
nM
Pc Quartzite, dolomite
0
1 Kilometers
28°50´
0
90
18
Limestone, andesite
1400
C. ZAPALUPA
El Potrero Grande Unit
Ks1
18
Tcg
NEOGENE
C. MOSIBOPA C. MOSIBOPA
syncline road sample locality
Figure 3. Geologic map showing the main synsedimentary megablocks of the Arivechi area. The map is modified from Rodríguez-Castañeda et al. (2015). The new interpretation (this work) includes the Permo-Triassic rocks in the study area.
Cañada de Tarachi Unit
Vinateria 43
42
UPPER CRETACEOUS
Tcg
Zoropuchi
MONOLITHS
59
C. ZOROPUCHI
ACCEPTED MANUSCRIPT
RI PT
Cerro Zoropuchi
b
M AN U
SC
a
d
f
AC C
e
EP
TE D
c
g
h
Figure 4. The Cañada de Tarachi conglomerate in the Cerro Zoropuchi (a and b) locality). Clasts are limestone of Paleozoic and Cretaceous ages. Conglomerates exposed along the Arivechi-Tarachi road (c, d, e and f) show sedimentary clasts with angular shapes, whereas, in the Cañada de Tarachi stream conglomerates (g and h) show well-rounded volcanic clasts. Sedimentary clasts are composed of quartzite, sandstone, chert and mudstone, whereas the volcanics clasts are mainly andesite and some tuffs.
70
14
a
A78-11
A78-11
n = 100
60
ACCEPTED MANUSCRIPT
data-point error ellipses are 2σ
0.12
A78-11
Intercepts at 262±12 & 1441±16 [±17] Ma MSWD = 5.5
n=8
12
0.10
10
2
0 400
a
600
800
1000
1200
1400
1600
1800
100
150
80
200
40
b n = 100
A82-11 n = 93
35
30
40 30
20 15
20
10
10
5 0
0 0
400
800
1200
50
1600
100
150
10
60
A79-11
EP
c
A79-11 n = 100
20 238
A82-11
0.12
Intercepts at 88.8±4.7 & 1589±160 Ma MSWD = 22
0.10
0.08
0.06
200 0.04 200
250
0
300
20
40
60 238
A79-11
n = 98
Intercepts at 70.5- 2.3 & 1832- 190 Ma MSWD = 11.7
40
20
Pb/206Pb
Number
30
0.08
207
AC C
Number
0.10 Relative probability
Relative probability
60
600
0.06 20
100
data-point error ellipses are 2σ
0.12
40
80
U/206 Pb
50 80
30
U/206 Pb data-point error ellipses are 2σ
Age, Ma
Age, Ma
100
TE D
50
25
Number
Number
Relative probability
60
200
0
300
Relative probability
M AN U
70
b
250
Age, Ma
Age, Ma
A82-11
600
0.04
50
SC
200
1000 0.06
0 0
0.08
Pb/206Pb
4
207
20
Pb/206Pb
6
1400
207
8
RI PT
30
Relative probability
40
Number
10
Relative probability
Number
50
10
200 0
c
0 0
400
800
Age, Ma
1200
1600
50
100
150
200
Age, Ma
250
300
0.04 0
20
40
60 238
U/206 Pb
Figure 5. U-Pb detrital zircon age-probability plots and the Concordia diagrams for (a) sample A78-11, (b) sample A82-11, and (c) sample A79-11. The second set of diagrams displays the younger populations in more detail.
80
100
120
ACCEPTED MANUSCRIPT
box heights are 2σ
Plateau steps are magenta, rejected steps are cyan
0.004
SC
Age = 261.9±1.8 Ma 40 36 Initial Ar/ Ar = 280.8-5.3 MSWD = 0.80
0.002
36
M AN U
Ar/40Ar
200
100
0
20
60
40 39
Cumulative Ar Percent
80
EP
0
TE D
0.001
100
0.000 0.000
0.004
0.008
0.012 39
0.016
0.020
Ar/40Ar
Figure 6. 40Ar/39Ar step-heating age spectrum and isotope correlation diagram of whole-rock sample JR10 from the block found in the El Potrero Grande unit.
AC C
Age (Ma)
0.003
data-point error ellipses 2σ
RI PT
300
0.024
ACCEPTED MANUSCRIPT
114°
l rie ab G ce n vin Sa Pro
Pina
l Pro
Sonoyta
?
UN MÉ
vinc
e
NEW MÉXI CO
S
32°
Douglas
TE D
Nogales
CHIUAHUA
SONORA
30°
)
ks
AC C
Caborca Block 1.8 - 1.7 Ga rock
D X I C S TAT E O
oc
EP
Pinal Province 1.7 - 1.6 Ga rock
ITE
R a rc ck talline bo Blo ic Crys Ca rca erozo bo f Prot Ca (Limit o
ia
orn
alif
fC
lf o
Gu Individual sample localities
San Antonio Basin
SC
ARIZONA
M AN U
BAJA CALIFORNIA
Localities of crystalline rocks of Precambrian age (ages established by means of isotopic studies of cogenetic zircon suites)
RI PT
Yavapai Province
Yuma
109°
110°
112°
HERMOSILLO
0
100 Km
Figure 7. Tectonostratigraphic terranes in northern Sonora and southern Arizona . The Pinal Province extends through Sonora and Arizona (modified from Anderson and Silver, 2005).
ACCEPTED MANUSCRIPT
N
0
Phoenix Buckeye Hills Maricopa Mountains San Tan Mountains Sierra Estrella
Webb Peak
Tank Mountains
Gila Bend Mountains
Zapata Wash
115´00° 116´00° CA LIF OR NIA NI A BA JA CA LIF OR
Yuma
115°
bou
Jhonny Lions Hills
Rincon Mountains
113°00´
32°
ry o
Sonoyta
97
f th eE
AR IZ S O O N A 112°00´ NO RA
.
.
.
.
.
.
.
.
.
.
108 ± 1.2 Ma 107 ± 1.8 Ma 102 ± 1.6 Ma 110 ± 1.6 Ma 97 + 4/-1 Ma
31°
69 64
Mo
jav
Caborca
96 ± 4 Ma
e-S
75
on
ora
Im
nA
nto
Sierra Buenos
Lo
SC
GU
ult
ar
LF OF CA
Nochebuena
s
Ajo 75.7+0.30/-0.70 Arizpe Nacozari sf 71.7±1.7 au lt 70.02±1.5 75 73.56±1.3 74.64±1.5 73.8±1.6 75.10±1.2 Bánamichi 74.30±1.3 69 69.1±2.4
OR
Moctezuma
72.20+1.60/-1.20 75.75+0.55/-0.85
A
CE
NI
CO AN
69.4±1.2
Isla Tiburón
29°00´
Ures
Tepache
62
72.0±1.2
75.9±0.8 HERMOSILLO 70.8±1.8 81.4±0.8 90.1±1.1 84.1±1.0 74.0±0.7
90.6 95.2
60 65
Mazatan
88.7 Sahuaripa
TE D
29°00´
Arivechi
.
Tarachi
.
72-70 90
Guisamopa
72 Yecora
89-70
kilómetros
28°00´
30°00´
Opodepe
M AN U
IFI
LIF
C PA
75
30°
31°00´
Esqueda
i Aires Magdalena o fa
he
79
95 ± 1 Ma
as
Cerros Mesteñas
Cananea
Sa
n
me
g Santa Ana
80
30°00´
Sierra Los Ajos
75 31°
Agua Prieta
Nogales
.
Puerto Peñasco
109°00´
110°00´
111°00´
Puerto Peñasco
92
150
PR
ABF
Dos Cabezas Mountains Little Dragoons Mountains
Tucson
Los Alacranes
nda
32°00´
Piñaleno Mountains
John The Baptist Mountains
Yuma
San Luis Río Colorado 114°00´ 84 Sierra 97
RI PT
117´00°
28°00´
scale
0
SO
AL
IF
O
R
N
IA
50 kilometers
EP
C
RA
JA
NO
BA
pre-Cenozoic reconstruction of Baja and Sonora
AC C
BAJA CALIFORNIA
Upper Cretaceous granitoids
Upper Cretaceous sedimentary rocks
Triassic-Jurassic metamorphic rocks Paleozoic sedimentary rocks
Overlap of magnetite and ilmenite series (magnetite-ilmenite boundary)
ABF = Agua Blanca Fault
100
Guaymas 500
Cd. Obregón
Navojoa
27°00´
27°00´
SONORA Upper Cretaceous and Cenozoic intrusives (Granite and granodiorita)
ARIZONA Anorogenic granitoids
Upper Cetaceous volcanosedimentary rocks. Anorogenic granitoids (circles)
84.1±1.0 U-Pb Zircon date 65, 90 U-Pb Zircon date
Figure 8. Map showing the 1) Eastern and Western Peninsular Ranges Batholith of Baja California (modified from Kimbrough et al., 2001; Ortega_Rivera, 2003; Geology from the Carta Geológica-Minera del Estado de Baja California, scale 1:500,000, Servicio Geológico Mexicano, 2008). 2) Outcrops of 1400 Ma anorogenic granites in Sonora (circles) and Arizona and their relationship with the major geologic structures in Sonora (modified from Carta Geológica-Minera del Estado de Sonora, scale 1:500,000, Servicio Geológico Mexicano, 2008; and Meijer, 2012); and 3) Exposed batholiths in Sonora (geology Carta Geológica-Minera del Estado de Sonora, scale 1:500,000, Servicio Geológico Mexicano, 2008). U-Pb data compiled from the literature (Anderson and Silver, 1969; Ortega-Rivera, 2003; Ramos-Velázquez et al., 2008; McDowell et al., 2001; Pérez-Segura, 2006; González-León, 2011). Inset square shows pre-Cenozoic reconstruction of Baja California and Sonora.
ACCEPTED MANUSCRIPT
PE
215-230 Ma
RM
UTAH COLO
N A R AD FO I EV AL C
TR IA
CHINLE FORMATION
IC
IA
SS 240-260 Ma
MOJAVE
Flagstaff
SC
36°
RI PT
N
O-
ARIZONA NMX
Barstow
240-250 Ma
C
San Bernardino
34°
O
R
D IL 210-225 Ma LE
Blythe
R
A
N
California ia Baja Californ
San Luis Río Colorado
TE D
32°
M AN U
DESERT
260-270 Ma .
.
.
.
.
.
30°
AC C
Triassic rocks
Sonoyta
M
AG
0
50
.
.
119°
ARIZONA Nogales SONORA .
.
.
.
.
AT I
C
Magdalena Santa Ana
AR
117°
116°
Nacozari
C Moctezuma
HERMOSILLO
Sahuaripa Arivechi
100
118°
Agua Prieta
Cananea
Caborca
Triassic plutons
29°
M
EP
31°
Puerto Peñasco
Tucson
Kilometers
115°
114°
113°
112°
111°
274-247 Ma 110° 109°
Figure 9. Map of southwestern North America and northern Sonora showing location of the Permo-Triassic Cordillera Magmatic Arc that can be extended to the Arivechi region. Modified from Riggs et al. 2013.
ACCEPTED MANUSCRIPT
Highlights Large-scale mass-gravity megablocks are characteristic feature of Upper Cretaceous rocks. U-Pb detrital zircon and 40Ar/39Ar ages reveal Permo-Triassic and Cretaceous sediments.
RI PT
We constrain the age of exposed Upper Cretaceous rocks.
AC C
EP
TE D
M AN U
SC
We provide new insights into the geological evolution of northwestern México.