Resolution of the Q branch in the ν3 fundamental of PF5

Resolution of the Q branch in the ν3 fundamental of PF5

JOURNAL OF MOLECULAR SPECTROSCOPY 137,204-2 14 ( 1989) Resolution of the Q Branch in the v3 Fundamental of PF5 H. PRINZ AND W. A. KREINER Abteil...

661KB Sizes 0 Downloads 19 Views

JOURNAL OF MOLECULAR

SPECTROSCOPY

137,204-2 14 ( 1989)

Resolution of the Q Branch in the

v3

Fundamental of PF5

H. PRINZ AND W. A. KREINER Abteilung Physikalische Chemie, University of Urn, West Germany

The ~3fundamental of phosphorus pentafhroride, PF5, has been investigated with a laser sideband spectrometer. A line width of 2 X lo-’ cm-’ was observed with the saturation technique, which was sufficient to resolve the @branch K structure. Four hundred sixty-seven transition frequencies up to J” = 76 have been measured with an accuracy of +200 kHz. The spectrum was fitted with a symmetric rotor program including three terms of sixth order. As a result, 11 parameters have been determined, yielding an overall standard deviation of 207 kHz. With the present resolution of 600 kHz no indication of splitting due to Berry rotation was found. o 1989 Academic PIWS,IIIC. 1. INTRODUCTION

The infrared spectrum of a fairly heavy molecule like phosphorus pentafluoride, PF,, has been a challenging problem in high-resolution spectroscopy for several years. The Q branch of the v3 fundamental was first observed at 944.8 cm-’ by Griffith et al. (I). Schatz and Reichmann (2) derived the first rotational constants from a partly resolved spectrum. The K structure was not resolved in a spectrum recorded with 0.014 cm-’ resolution by Palma et al. in 1982 (3) while Dana et al. derived nine spectroscopic constants from a Fourier transform spectrum with 1.6 X lob3 cm-’ resolution in 1985 (4). The K structure of the v3 P and R branch was resolved in 1983 with a diode laser in a pulsed supersonic free jet by Takami and Kuze (5). Single lines around 940 cm-’ have been observed by BordC et al. with saturation spectrosCOPY (6, 7). PFS is a subject of considerable theoretical interest because of the presence of the phenomenon of pseudorotation first suggested by Berry (8). This fast intramolecular rearrangement process may explain the observation that NMR data show only one fluorine resonance (9) although electron diffraction (10, I I), infrared, and Raman (12, 13) data indicate the presence of a D3h trigonal bipyramidal configuration. The spectroscopic consequences of different tunnelling mechanisms have been discussed by Brocas and Fastenakel (14). With the advent of laser sideband saturation spectroscopy using microwave modulation frequency resolution (1.5), absolute accuracy and tunability are achieved in the infrared region which are comparable to those of conventional microwave spectroscopy. In addition, this technique produces infrared frequencies directly rather than the wavelengths. Since sub-Doppler resolution can be achieved with this method its application to the Q branch of a heavy molecule looked promising. However, since the spectral brightness so far available is relatively low this method can only be applied to strongly absorbing bands. The u3 fundamental of PFS seemed to fill the necessary 0022-2852189

$3.00

Copyright Q 1989 by Ademic F’ress,Inc. All ri#~ts of nwoduction in any fomt reserved.

204

205

vj OF PFs

requirements. We were also interested in investigating the spectrum at fairly high quantum numbers J in order to check whether a symmetric rotor Hamiltonian up to sixth order can describe the observed transition frequencies satisfactorily. 2. EXPERIMENTAL

PROCEDURE

The spectrometer has been described already (15). With this technique the overall spectral coverage in the infrared is determined by the CO2 laser lines available (e 1Op36 of 13C02 at 882 cm-’ and =9R40 of CO2 at 1090 cm-‘). It should be mentioned that sideband spectroscopy with a CO laser has been reported (16) as well as generation of sidebands at higher mw modulation frequencies (17). As infrared source a DC sealedoff COZ laser was used which could also be operated with other CO2 isotopes. The output (between 5 and 10 W) was modulated at frequencies between 12 and 18 GHz via the electrooptic effect in a CdTe crystal. The crystal was placed in a copper housing designed as a tunable microwave resonator with a bandwidth of 30 MHz. The microwave, generated in a synthesizer (HP 8673 E), was amplified up to 20 W by a travelling wave tube. A few mW of tunable IR power were obtained in either sideband. The cell consisted of a 1.2-m J-band waveguide equipped with a Stark septum leaving a gap of 7.65 mm. Because the sideband radiation is polarized perpendicularly with respect to the carrier, one can separate most of the unmodulated laser power (the carrier) from the sidebands by reflection on suitably oriented Brewster polarizers. Part of the carrier radiation was fed into the COZ fluorescence cell in order to stabilize the laser via the 4.3~pm emission Lamb dip. For this purpose the piezo mounted laser mirror was jittered at a frequency of 400 Hz. The sideband radiation traversed the absorption cell twice in order to allow saturation dips to be observed. A grid polarizer in front of the detector provided additional suppression of the carrier. The reflected beam was usually tilted at a slight angle in order to produce spatial separation. During part of the measurement a slightly different arrangement was chosen in order to produce collinear direction of saturation and detection beams (Fig. 1). In this case a partly transmitting mirror was positioned at the far end of the absorption cell, perpendicular to the incoming beam. The reflected

SIDEBAND

IN

STARK

CELL

R.98%

DET

FIG. 1. Optical arrangements used to observe saturation dips. In the version with the partly transmitting mirror (top) probe beam and saturation beam are nearly parallel; this avoids line broadening introduced when there is an angle between them (bottom).

206

PRINZ AND KREINER

PF5 V3= 1

a,2 (12)

12530 co2

50

45

40

35

MHZ

lOP18

FIG. 2. Frequency modulated lines in the Q-branch of the ys fundamental. Ten sweeps have been averaged. The two features at the let? side are most likely due to thermal effects in the modulator, while the sharp spike in the center is an artifact produced by the synthesizer. In addition, saturation dips ofweaker transitions can be recognized.

power (98%) was still strong enough to saturate most of the transitions. The transmitted portion of the radiation (2%) could be used to detect the saturation signal, with the incoming beam acting as the probe. No monochromator was used to eliminate one of the sidebands.

us

LS

P2,(45)

15 125

30

35

40

45

uns

co2 1OP 25 FIG. 3. The two strong lines, just resolved on the recording, coincide with the upper and lower sideband, respectively. The baseline is due to frequency modulation of the Doppler profile and the bandwidth of the modulator, which are of the same order [Aun(PFs) = 34 MHz; Ayr.,oD= 30 MHz].

207

vj OF PFI

12 420 co2 10 PlB

us

FIG. 4. Series of Q-branch lines, partly blended. The assigned transitions coincide with the upper sideband of the P18 laser line in the IO-pm band of the regular CO2 isotope.

3. OBSERVATION AND RESULTS

Examples of saturation dips observed are given in Figs. 2 to 5. Half width (FWHM) is 2600 kHz and absolute accuracy was G +200 kHz in most cases; this was limited by spectral impurity introduced mainly into the laser cavity via the stabilization system and other sources of mechanical noise.

PF5 V3=

1

us

16930

R6u61

35

40

45

MHZ

cop 1OP 8 FIG. 5. Assignment refers to the strong line, while the unassigned lines were just checked with respect to the sideband they coincide with by changing their carrier frequencies slightly and observing their relative shifts.

266 lOP26 266 10126 266 lOP26 266 lOP26

-25 -77 lo* 292

P g (36, 936.29010, 939.202915 9,9.20,5*7

P o 02) P , 02,

P 6 (32, 9,9.245662 P 9 (32, 9,9.257045

-16.05,54

-15.474,*

-15.65546

-15.3967,

-15.09611

-14.75966

-14.36135

-13.9630,

-11.50467

-13.00661

-12.4667,

-11.69066

13.5111,

1,.5,,1,

13.59296

266 10126

266 lOP26

266 1op2*

266 1OP26

266 IOPZO

266 1OP26

266 1OP26

266 lOP20

266 1OP26

266 1OP26

266 1OP26

266 lOP26

266 1OP26

266 10126

266 10124

-64 -99

-114 -65

P 5 124, 941.106973 P 6 (24, 941.114,46 P , (24, 941.123059 P 6 (24, 941.1,,116 P 9 124, 941.144520

16.66617

17.42551

-13.54970

-1,.5296,

-13.46976

-I,.,6970

266 lOP26

266 10126

266 10126

266 10126

266 10126

266 10126

466

446

P,, 140, 937.367015

PII 140, 9,7.,*5005

9M.242289

125

-140

P 4 124, 941.100937

16.36666

266 lOP26

429

P,2 140, 9,7.,50,59

P , 061

-109

P , 124, 941.096246

15.92762

266 lOP26

407

Pl, (40, 9,7.3,5041

-15

-79

P 2 (24, 941.092696

15.50*4,

266 lOP26

41,

PIO (401 9,7.,21056

P 2 (36, 9,6.216951

-71

P , (24, 941.090606

15.12922

266 lOP26

436

P g (40, 9,7.,04409

-127

-115

P o (24, 941.090214

14.74992

266 lOP26

,*0

P * (401 9,7.291091

P 1 116, 9H.236944

-359

P 5 (26.1 940.17097,

14.49062

266 lOP26

160

-146

-416

P 4 (26, 940.164946

14.21127

266 lOP26

-1

-294

P , (26, 940.160267

14.0,1*7

266 10126

9M.236265

-425

P 2 (26, 940.156917

P o 06,

-357

P 1 (26, 940.154911

13.69274

306 -,61

9,9.2*,790

Pll 021 P o (26, 940.154242

211

Plo 1321 939.269746

234

256

19, 255

P 6 (32, 939.226967 P 7 02,

939.235657

242 294

939.219621

P 5 02,

144

P , (32, 939.208927 P 4 (32, 919.213606

224

9M.276964

P 2 132) 9,9.20556(1

P 4 06,

P 7 (36, 9M.266959

1,.8,2,0

P , (40, 937.267107

266 10P26

5

-16.19265

266 lOP26

9,6.260266

266 lOP28

159

266 lOP26

-27

P 6 06)

-16.29227

266 10124

266 10124

266 lOP24

266 lOP24

266 10124

266 lOP24

266 lOP24

266 lOP24

266 lOP24

266 10124

266 1OP24

266 lOP24

266 lOP24

266 lOP24

266 lOP24

266 10P24

266 lOP24

266 lOP26

266 lOP26

266 1OP26

266 lOP26

266 1OP26

266 1OP26

266 lOP26

266 1OP26

266 lOP26

266 lOP26

266 lOP26 266 1OP26

2, -1

938.246954

P 5 (361 936.252954

-16.,5195

266 10126

P 4 061

-16.37160

266 lOP26

266 10126

P 6 140, 9,7.276456

-I4

P14 144, 9,6.,476,,

405

-61

Pl, (44, 936.369444

P 5 (40, 9,7.2711,*

-50

P12 (44, 9,6.,5,270

,49

-101

Pll (44, 916.337964

441

-214

9,6.3240,4

PlO 04,

P 4 (40, 937.265144

-239

P g (44, 916.311414

P , (40, 937.260494

-266

P 4 (44, 9,6.,00125

,29

-x25

P , (44, 936.290164

140

-,26

P 6 (44) 936.24151,

P 2 (40, 937.257164

-,50

P 5 ,441 916.274231

P , (40, 9,7.255164

-415

P 4 (44, 936.266255

,l

-24,

P , (44, 9,6.26,615

276

-392

P 2 (44, 9,6.260292

P o 140, 9,7.254501

-364

P , (44, 9,6.256,01

Pl5 (44, 9,6.407115

-436

P 0 (44, 9,6.2516,6

vj of PF5 : Observed Transitions

TABLE I

-13.22966

17.66014

17.53632

17.23676

16.97554

16.75451

16.57357

16.43294

16.,,251

16.2722,

16.25210

-11.3056,

-11.46645

-11.62678

-11.72722

-11.70735

-11.60741

17.65346

17.4324,

17.05166

16.71100

‘6.41046

16.14997

15.9297,

15.74941

15.6091,

15.50905

15.44904

15.42*91

-11.9,02*

-12.27022

-12.57016

-12.4,Oll

-1,.0499*

P,

PO (41

(41 945.5,710,

945.5,64,4

P 6 (16, 942.956646

P , (161 942.946567

P 6 (16, 942.939630

P 5 (16, 942.9,24,6

P 4 (161 942.926391

P , (161 942.921667

P 2 (16, 942.918329

P , (16, 942.916313

P o (16, 942.915640

-174

-120

-144

-159

-116

-,55

-105

-117

-192

266 lOP16

266 lOP16

266 lOP22

266 lOP22

266 lOP22

266 lOP22

266 10122

266 10122

266 10122

266 10122

266 10122

-13.28449

-1,.,0455

17.24725

16.9450,

16.6*,11

16.46149

16.26022

16.13919

16.03054

15.97610

15.95190

11.b6191

11.59521

266 lOP36

266 3OP1b

266 1OPlb

266 1OPU

-61

332

-6

11.13316

12.23776

12.Ib269

11.,920,

266 lOPl(1

266 1OPlb

266 lOP14

266 lOSlb

266 10916

266 lOPl6

266 1OPlb

266 1OPlb

126

-12

,011

2b

5

110

15

-350

9,

69

62

b4

51

122

(10) 946.191453

Q 9 (11, 946.,6,7,4

Q,, (11, 946.394709

,,,o 132, 946.366696

Qll 112) 946.3.92b33

Q12 (12) 946.390325

Qll (1,) 946.369912

Q12 (1,) 946.3b5446

QIJ (1,) 946.402296

946.366441

$0

$2

Q14 (141 946.406625

Pl, (151 946.173600

P14 (15) 946.391161

12.44b69

13.946,5

12.57013

266 ,013,

266 1011,

266 loPI*

266 1OPlb

266 1OPlb

266 1OPlb

39

8,

(5

52

33

Q16 (16) 946.416353

Q,5 (17) 946.17b654

Q16 (1,) 946.39952b

Q17 (11) 946.421154

a,, (lb1 946.36171,

12.03606

11.23644

13.07454

12.923,)

266 3OPlb

9,

120

12.33769

12.14796

11.68409

12.51406

12.06964

11.645b2

12.42566

Q,5 (16, 946.395471

266 1OPlb

266 lOPl6

266 lOP16

11.61611

12.32bO6

266 ,OP,b

266 1OPlb

11.94435

266 ,OP,b

Q15 (151 946.411311

Q,, (10

(14) 946.171609

12.65,12

266 ,OP,b

-3,

Q 9 (10, 946.37b654

12.24109

ll.b9Ib2

95

Q ,

946.3b6552

12.09924

266 3OPlb

35

Q 9 I 9)

946.1Ob21

Q , I 7)

11.b3694

266 1OPlb

122

946.377102

946.315071

Q 6 1 I)

11.62250

12.04456

266 lOP,b

266 ,OP,b

137

101

11.61bI6

Q 6 ( 9)

946.361997

Q 6 1 61

266 1OPlb

11.67796

946.367OOb

946.374569

Q 5 , 6)

I9

266 1OPlb

Q , , 9,

946.374465

Q 4 ( 5,

590

11.625bO

11.94435

l,.b4,4,

946.375904

946.369169

Q , I 5)

266 3OP3b

266 lOP3b

6,

134

266 1OPlb

I6

f 61

946.374699

Q , C 4)

946.37526*

946.316654

3,

Q , C 31

p2t

(191 946.433627

(201 946.3bb904

60

-15

Q21 (2,) 946.402,66

946.407566

-76 -43

Q,, (27) 946.425304

60

3b

-45

-90

99

-4

-19

-166

I6

11

-36

-6

90

Q24 (211 946.392303

Q26 (26, 946.4b642b

Q25 (26) 946.452050

Q24 126) 946.419034

P2, (26) 946.367301

P25 (25) 946.4IIb14

Q24 (25) 946.444717

Q2, 125) 946.413123

P22 (25) 946.302615

Q24 (24, 946.46955,

42, ,241 946.411661

022 120

Qzl (24, 946.,76613

92, (2,) 966.461656

43

-55

Q20 (23) 946.,,4759

Q22 (231 946.433,32

42

P22 (22) 946.45411,

266 ,OPlb

266 lOP16

266 10116

266 lOP16

266 10116

266 1OPlb

266 1OP3b

266 lOP16

266 1OPlb

266 1OPlb

266 lOPl6

266 lOPl6

266 lOI,

266 ion*

266 lOPlO

266 IOPl.9

266 lOPl6

266 lOPlO

266 lOPl6

a66 lOPl6

266 1OP36

2,

-5,

(22, 946.425140

Q20 (22, 946.,9,522 ,,21

266 lOP16

266 IOP16

266 lOPl6

266 3OP,b

266 10110

266 1OPlb

266 lOP16

266 1OPlb

266 10116

266 LOP16

266 1OP16

266 10116

266 lOPI

266 1OPlb

-7b

,l

1

-51

-64

71

-36

-26

-53

51

20

31

113

Q19 (22) 946.371262

Q23 (21) 946.646927

Q2o (21) 946.41930,

Q19 (21) 946.393034

Q16 (21) 946.366123

Q20 (20, 946.460100

Q16 (20) 946.3bb904

$6

Q3, (20) 946.365340

Q

Q,b 119) 946.606101

QII (19) 946.365131

Q36 (16) 946.427514

Q,, (16) 946.403936

946.391576

946.504725

Q2b (201

00,

946.373505

946.503109

01) 01) 02) 02) (32) 1121 132, (33) (33) 031

Q,. Q,3 Q24 Q,, Q3o 931 Qj2 P29 P31 Q32

13.342b6

12.35349

15.17530

l4.,44IO

13.15492

12.20591

14.917Ob

1,.92695

12.97771

12.06911

14.66952

11.71993

12.83110

11.94312

14.4327,

946.512b66

946.512b67

946.4703b9

946.3b9546

946.565605

946.422231

946.30643

946.534150

946.493107

946.45,9,1

(34, 946.4,6690

946.395607

Q,2 (34, 946.479147

Qjl

Q30 00

P,, (33) 946.556116

P32 03)

946.4619b6

(11,

Q29

13.52360

16.31529

13.6b422

14.95703

266

3OPlb

266 1OPlb -33

-114

12.45259

266 10136

-bI

1,.2b24b

15.96Ibb

15.96792

266 lOPl4

266 1OPlb

14.69446

12.27095

16.949,)

15.67540

14.44256

11.25015

12.09992

16.62694

lb6

I5

266 lOP16

266 1OPlb

3

115

266 lOPl6

266 lOPlO

266 1OP16

266 lOPl6

266 lOPl6

266 lOP36

IOPlb

15.39354 266

14.20127 266 1OPlb

13.04999 266 1013)

266 3OPlb

266 1OPlb

11.9,966

15.1224b lop,*

266

13.97065

12.b59b6

11.7699b

16.01416

14.b619b

33.15071

12.6bO3b

11.65091

l5.,23b5

14.61217

13.5414b

12.53162

11.52256

15.44411

14.,7301

266 3OPlb

266 10136

266 lOP16

-144

163

70

-3

-bb

-204

137

4,

-22

-,oe

946.415534

01,

Qzb

11.b2I59 12.6552,

209

113

-44

-132

266 lOP16

266 lOP3.9

6b

-161

266 1OPlb

266 1OPlb

266 lOPl6

266 IOPlb

266 1OPlb

266 1OPlb

266 10116

266 1OPlb

266 10116

266 1OPlb

266 10116

41

-56

-137

-21*

I4

16

-4

-06

-366

3b

-2

-166

,,3o (30, 946.524454

Q29 (301 946.464666

Q2( (30) 946.446245

Q2, (101 946.409192

Q26

Q29 (29, 946.514409

!,2b (29, 946.475976

Q,, (29) 946.43b9Ob

P2( (29) 946.403205

Q25 (29) 946.36bb66

946.461664

Q21 (20

P26 (20) 946.431929

Q25 I20

Q24 (20) 966.364564

Q2, (27) 966.495396

Q26 (27) 946.459666

Q2, (31, 946.3Ib49I

14.20655

1,.3,795

12.51000

11.72276

13.99311

13.16297

12.,7546

11.62b64

13.76643

12.25163

12.25164

11.54522

1,.5923b

12.b451,

12.13053

13.40932

12.10229

-121

9

Qj2 (35, 946.444452

Q,, (I51 946.4**263

54

212

-179

Q,, t,*) 946.56699,

a,5 (391 946.431207

254

-122

946.550411

,,,*(42, 946.456*21

3,

,,,*(41) 946.49*4*2

01,

-,4*

Qj7 (41) 946.447929

Q

14*

-22,

Qj6 (41) 946.,9*761

-1*7

t,,6(40, 946.439391

t,,,(40, 946.5,9170

-192

2*2

Q,5 (40, 946.391676

946.57***4

*9

Q,, (39, 946.521277

Q,* 09,

-25

946.47905,

(39,

266 lOPl*

1,*

946.51774,

Q,6 00

Qj6

266 lOPl*

-47

12.5471,

14.02115

15.5,66(

266 lOPl*

266 lOP,*

266 lOPl*

14.2*772

11.0936*

16.75646

Q2,

140

946.516244

*,* III) 945.4,*4,9

Q4( (47) 946.565272

-64

-177

,26

33

-140

P4, (47) 946.5065*4

-22,

Q42 (471 946.449294

-26

-69

-154

4,s

-19,

22,

20

-165

no

-22

-9*

-95

-104

15*

-57

-171

-310

11

-149

-112

111

-56

-20,

-,07

,1*

61

-*7

-207

**

15.*4,*4

266 ,OPl*

266 lOPl*

266 lOPl*

266 lOPI*

266 ,OPl*

266 lOP,*

266 lOPI*

266 lOPl*

266 tOPI*

266 lOPI*

266 lOPl*

266 lOPl*

266 1OPl*

266 lOPI*

266 lOPI*

266 lOPI*

266 lOPI*

266 lOP,*

266 lOPl*

266 lOPI*

266 1OPl*

266 lOPl*

266 lOPl*

945.509110

-1,.909*4

Q45 (52) 946.37716,

P29 (52) 945.584556

Q2* (52) 945.5466,7

p27 (52, 945.510017

Q25 (52, 945.440*65

Q24 (52, 945.400306

Q47 (511 946.552755

P47 (51) 946.552753

P46 (51) 946.4900,7

16.77957

-16.24215

-13,

-150

-264

,*5

65

-77

-350

-15

-45

-,*

199

-49

-22*

-6,

-9*

14,

-117

-197

-130

75

,*

-264

-119

694

-34

-25

-77

-160

21,

20,

-24

Q45 (51, 946.4211722 -172

PI4 (51, 946.,6**02

Q2? (51) 945.560965

Q2( (51) 945.525690

Q25 (51, 945.491165

Q46 (50, 946.5406*,

P45 I501 946.47932,

Q14 (501 946.419362

tJ24 no,

tt2, I501 945.419,5*

Q45 (49) 946.52*964

Q14 t491 946.46*960

P4, (49) 946.410356

p25 (49, 945.590712

Q2( (491 945.55*094

Q2, (49) 945.526*11

t,26 (52) 945.474769

17.5,*97

-11 -229

Q,, (491 945.4611269 -2*,

p20 (49) 945.441019

Qlg (49) 945.415102

PI* (49) 945.390520

14.0620*

12.,*629

-12.5002*

-1,.,1*4*

-14.09652

-14.*,,74

-16.10712

17.17*67

15.46004

1,.7*313

12.14132

-11.9,*02

-12.71656

-1,.454*2

-14.1529*

16.02902

15.1510,

11.51475

11.92000

-12.10,*6

-13.46105

266 lOPI* 266 lOPl*

-14.07942

16.49000

14.*526*

266 lOPl*

266 lOPl*

266 lOPl*

1,.25696

-12.75169

266 lOPl*

266 lOPlO

P45 (40) 946.577642

11.7999,

266 lOPl*

946.517597

PII (40

16.16156

946.45*952

946.401699

266 lOPl*

PI, 00

PI2 (40

*22 (40) 945.544*5*

14.6649,

13.00976

266 lOPI*

266 IOP,*

266 lOPl*

I-Continued

P41 (47) 946.393396

Q21 (471 945.563262

1,.7651*

Ql) (47) 945.510017

17.94706 *2o (47, 945.535970

PI* (47, 945.485426

16.42990

12.3317,

PI5 (47, 945.419594

14.95422

P4, (46) 946.55325,

17.59057

1,.519*4

PI1 (46, 946.4,99*9 P42 (461 946.495926

16.11409

Q20 (461 945.5*2017

P,g (461 945.556040

QIo (461 946.,*545*

266 lOPl*

266 lOPl*

Q17 (46, 945.500134 Ql* (46, 945.531422

14.67*96

13.2*51,

266 lOPl*

266 lOPl*

266 lOPl*

266 lOPI*

266 lOPI*

266 ,OPl*

266 lOPI*

266 lOPI*

266 lOPl*

-,*4

946.469*11

11.93250

266 lOPlO

346.423171

17.24411

15.*0**2

266 ,OPl*

266 lOPI*

Q,5 00

250

Q,4 00

946.666466

Q42 (45) 946.541590

Q41 (45) 946.4*561*

,,.0610*

14.41432

Q,, (45) 946.411037

Pjg (45) 946.377042

Ql* (45) 945.576405

P16 (45) 945.511214

p15 (45) 945.510507

Q41 (44, 946.5,02*2

PI0 (44) 946.475666

P,g (44) 946.422430

Ql5 (44) 945.554646

Q41 (43, 946.573977

PI0 (43) 946.519126

Pjg (43) 946.466067

Q,, (43) 946.414192

Pjg (42) 946.50*12*

,,.I4901

16.9094,

15.51424

14.16027

12.04756

12.*475*

11.57595

n.s*o*r

16.5*4*9

15.2,0,,

1,.91691

12.64474

17.62636

16.27109

266 ,OPl*

-261

946.507560

Q,5 07,

c,,~(,I,

-6,

266 lOP,*

266 lOP,*

266 lOP,*

266 ,OPl*

266 lOPI*

266 lOPl*

266 lOPI*

266 lOPl*

266 ,OPl*

266 lOPI*

266 lOPl*

266 ,011)

266 lOPl*

Q,, t,*, 946.,7*261

946.461044

-141

Q,, (371 946.415904

Qj4 07)

-210

946.,721,*

137,

I*

Qj4 (16, 946.497734

,,,2

-111

Q,, (161 946.452570

136

-1*0

C,,2(16, 946.40*1*2

(36) 946.644272

-160

,,,2(36, 946.4067*,

Q,6

,05

-261

(15, 946.5*0011

*7

Q,, (16, 946.366365

$5

Qj4 05,

946.53,441

-162

946.402011

05l

266 lOPl*

Q,,

266 lOPlO

291

946.560101

Qj4 041

110

946.5229*0

Q,, 04)

TABLE

16.*01*1

266 lOPI*

266 10110

266 lOPl*

266 lOPl*

266 lOPl*

266 lOPl*

266 lOPI*

266 lOP,*

266 lOP,*

266 lOP,*

266 lOPl*

266 lOP,*

266 lOPI*

266 ,OPl*

,1.*9966

-11.*6,91

-12.99060

-14.09652

-15.15,21

-16.1696,

-17.14572

17.1637,

,7.16,66

,5.2*,5,

1,.445,5

11.64901

-12.56916

-13.62664

-14.64,70

266 lOPl*

266 lOPI*

13.16476 14.96232

266 ,OP,*

-14.12371

-16.01439

16.45049

14.65164

12.*9416

-11.67737

-12.6552,

-11.59304

-15.,4*09

-16.16502

-,6.94,9*

-17.67*9,

17.909*1

16.1097,

14.15162

12.63523

-13.05203

266 ,OP,8

266 ,OP,*

266 lOPl*

266 lOP,*

266 lOPl*

266 10110

266 ,OPl*

266 lOPI*

266 ,OPl*

266 ,OPl*

266 10110

266 lOPl*

266 lOPI*

266 lOPl*

266 lOPl*

266 lOPI*

266 lOPl*

266 lOPl*

n

k % k

956PI'tt

1906C.91

61299’91

L6‘96~91

‘Lsoz’st

11099~st

ZIdOI 992

ZIIOI 991

ZIdOI 992

ztaol 99z

Z11OI 99z

z1101

z**oc

zt101

992

Z1dO1 992

992

991

9tl

IL1

cct

CL

ZIZ

6YI

CIZ

LYI

6IZ

zz-

56

CII‘19'tS6 t9Z, ' II

569059'156

9Wc59'156

S,LO69'tS6

(92, ' 1

t9Zl ' I

1921 6 6

SYIZOL'IS6 t9Zl 6 Y

006YIL'IS6

(9Z, ' 6

0961‘9'156 (c)Z,9 I

6L9069.156

(92, ' II

SYP'd59'156 l9Z, Y 6

OzF.99'156

ttz, 0'11

699106'0S6 112, I'll

SW699'156

ttz, 6 II

PFZCY'L1

09LZL'ZC-

COL69'ft-

SicM'zt-

IOZW',1-

c*c9t'ct-

tsco,'ct-

00966'St-

euot

9tmt

stm,

s,mt

992

992

992

99z

8Cd01 99z

6IdOC 99z

#Idol 99z

BIdOl 99z

161

OS

t6

sz

Sl.1

6Zt

61.

(91

Y6c895'9Y6 ((91 "b

CL~SSS'FI~ (991 "b

6S66W'SP6

6I‘CW'SP6

zZtttS'S,6 (69) 9'b

cCtCc5'S116 (IL, '=b

9599W’S96

(‘9, "b

TzYOPS'SY6 tL9, "b

CCCL')'If- 8IdO1 99z

BCPIL'Z1

COCL9'~1

BLCL9‘91

6z96O'Lt-

ISS19'9I-

YZ6tc'ct-

919oo'st

ZWY8'LI-

t‘ssz'9t-

I‘C66'01-

S66OC'CI

L86,C'Gt

6609C'St-

error 99z

etdot 992

*Mot

SldOI 992

OIdOl 992

SIdOI 992

Old01 992

9IdOI 99z

BIdOI 992

ewot

ertor 992

euot

euot

992

99z

99z

cc

u*-

zt-

051

62.

ZC

OL

es-

6c-

oz

LO1

9YZ-

oc-

0‘

91606S'W6

OPcVO1'9V6 (50 6+b

VL969Y'9P6 155, 6Yb

Z1,9cS'9V6 (551 '*b

WZOIY'W6

SOLZ~.'W~

9:1069'9*6 (9s) "0

01096c'*Y6 (LSI

c699c9'596 (1s)

152269’9.6

ILSI

,641

"b

"b

"b

9029ZY.996 (1s) "b

0‘0‘99'S96

(9s) "b

1~6sc5'5~6 (951 "b

OOIOW'S96

(95, Orb

tsb

"b

19z, otn

P9616'Ct

ZIdOI 992

ZOLOSLC6L‘OS6

s9e“'eI

CC999'LI

Ozt96'ct-

ztt16'ct-

S9OW'CI-

OooIL'ct-

cO6c9'ct-

tw,s9'ct-

ZC9CZ'CI-

t*YL6'zt-

zCzL9'zt-

YIdOI 99z

vu01

YIdOI 991

9t.30199z

tuot

ZIdOI 99z

ZIdClI992

ZUOI

992

ZIdOI 992

ZIdClI992

ZIdClI99z

zuot

992

992

ZIdOI 992

zldot 992

CLZ

622

ctz

s9z

stz

CYI

551

06t-

SZZ-

c91-

cet-

PLI-

‘LI-

ZCZ-

BLZ-

‘6t-

ZOSZ66'6Y6

C5SW6'6Y6

OWVIO'OS6

ILt, 9 I

S959ZL'OS6 ttZ) ' II

ttzl ' II

zSz6zL'OS6 IIZI z II

609ZcL‘OS6 ItZ, ' II

ttcLCL'OS6 (IZ, ' II

9ScCDL'OS6 IIZ)

WLOSL'OS6

IL11 ' 1

~09690'016 (,.I,"1

HZLZL'OS6

III, s Y

CtZ9ZO‘OS6 UI, ' II

S668C0'0S6

III, b Y

966566'666 (111 g Y

069PO0'056

(11) z II

C6LLl.6'616 (I.11c II

ttZ, ' II

‘L96SL'OS6 (IL, L II

LSS69L.056 112) * II

9Yrz9'cI

6I‘ZO.LI

69Z60'Lt-

sO*IL'sI-

YZLW'ZI-

LW90'II

C9196'Ct

too19'9t-

COW,'91

LWSY'LI-

LO906'Vt-

OStLc'ct-

96929'Vt

19629'91

OCC6,'St-

OstBL'z,

Z6SZZ‘Lt

OOCYO'LT-

SZ661'ZI-

6OWC'St

9IdOI 992

8UOI

6IdOI 992

*Mot

*taOI 992

*Idol 992

etdol 992

SIdOI 99z

OIdOI 992

9uot

992

BldOI 99z

etdot 99z

BldOl 99z

DldOl 991

BldOI 99z

81.40199z

6ldOI 992

BldOI 99z

BldOI 991

BldOl 99z

81dOC 991

WC

LSZ

WC

CL-

OZI

6Zt

9tv

OL-

961

621

c5

BZT

197

tzt

6P

UI

9l.c

9zz

t5t

tot

622

C‘9991'9,6 t63, -b

C999C.'996 tSS, "1)

966YLS.996 t99, "b

SLOOIY'SY6 (65, Ycb

LZ6SW'SY6

669ISG'St6 (6'4,Lcb

9ZI9Lc'9,6 (65, "b

LLYSCY'9lr6 (65, "b

666Z6P'SD6 (09, “0

WL6ZS'9,6

tS')lSC'W6 tt9, "b

986291'sM

BLtYCS'SC6 tt9, 'Cb

LCI89V.996 tt9, '*b

019115'9k6 tC9, *'b

ZCIcLI'St6 tZ9, "b

BLS90t'9Y6 tZ9, tSb

OCWPS'9Y6

(09, "9

ZCLIIP'S96 ((9, 'Cb

COcCLS'SV6 ((9, "b

t6tz6b'9Y6 ((9, "b

CY9C“CI

ocsI9'*I

OZ9CS'L1

9160L.9,-

YZZP9'51-

OPSS'YI-

60611'C1-

LLIPZ'ZT-

zIeco'tt

‘SLS6'ST

tz6t6'Ll

L9O)I'91-

ICzcP'Zt

ocosc'9t

SYOIC'91

*9et9.9t-

9lCW'ST-

*OLZZ'Dt-

8SOL6'Zt-

*raor 992

6TdO1 99z

9IdO1 992

8IdOI 992

DIdOI 992

8IdOI 992

8IdOI 992

*uot

error 992

81dOI 992

ml01

Sl.C00'5I- *laoI 99z

ZCOZB'CI-

SIdOI 99z

6IdOC 992

SIdOI 99z

suet

99z

SldOl 99z

st*ot 99z

81.301992

*t*ot 991

Btdot 99z

WI-

er

WC

VS-

v-

9c-

02

59

9tt-

ZL

ZLC

9-

6

CC

TZZ-

BL-

s9t

62

19

V8

PI

ZcWcY'9Y6

SOIIO5'916 (ES, 'Yb

6LtS95.996 (ZS, 9Yb

t06~2.'596 1~5, "b

cZt659'5Y6 CC51 LZb

t69)61'W6

119ZCS'S~6 (25) 6zb

SWtLS'W6

56tW6'9Y6

SS6‘LS'9P6 ICS, 6'b

tZ,,6L9'W6 OS, "b

C968tS'SC6 051 Orb

tc6Y6c'9Y6 OS, "b

8068SY‘9t6 05, 6'b

C6z)zS'9P6 OS1 6Yb

988521‘5,6 (55, 6zb

960599'5V6 (55, Orb

Z99505'06

ICS, "b

ZZPZtS‘9B6 (CO 9'b

tc6tW'St6

CCS, Orb

YLSLF,'S+6 (55, "b

($5, "b

ILS)

*LLw'cI

ZIdOI 99z

08608L'OS6

69*6C'91

tIdO1 99z

LLZ

ZCWL6'696

BIS0S'II

99z

ZcLcL'rI

z,.Jot992

uz-

69z-

“9

9OLL9'CI

991

t9Ll

06959'cI

zuot

Ci.ZSO'9I

9IdOl 992

09,

(11)

192, ' 6

LLCZS'II-

ztdot 99z

5ZOSL'PI

9IdOI 992

l.*t

9I.ZL6'696

(89, "b

616ZC.ZI-

s0‘16'tt-

9t*w'*t

99z

LILIl.6'696 (11, O II

11

(Ll, 0'11



992

(19, 9'b

(6s) 'Cb

992

(ZS, 'Yb

((5, *'b

115) 6'b

(55, 'lb

W99Z'SI

,wot

SLZ

tZ9, =b

6oseo'sI

YIiOI 992

16Z

’ II

6*c,6'*C

.I.iOI992

99z

SICW'91

91101 992

992

LLZ91'9I

99L

19Z9L'iI

17.6004a

-15.40542

-15.,*5,3

-15.32516

-15.22411

266 lOPl2

266 lOPlO

266 lOPlO

266 lOPlO

266 lOPlO

-11

16.12150

16.221100

16.36792

16.54all

16.76a40

ll.OZaa6

17.329,5

17.66997

266 lOPlO

266 lOPlO

266 lOPlO

266 lOPlO

266 lOPl0

266 lOPlO

266 lOPlO

266 lOPl0

162

953.412a40

953.4401aa

95,.44076

I 5 061

I 6 061

I 7 06)

-99

-97

-177

-129

-15,

(40) 954.096555

I 2 ,401 954.09a555

I , ,401 954.101aa5

I 4 (40) 954.106554

I 5 (40) 954.112553

I ,

-17,

227

I g ,161 951.470262

I o (40) 954.095aa6

199

I a ,161 953.45a900

2111

156

255

I 4 (16, 953.426430

-13.44655

I 4 ,461 955.0967a9

I 6 (46) 955.110012

9 2 (50, 955.729476

II, 150, 955.727490

-12.96694

-I,.14619

266 1OP 4

I 9 ,461 955.139994

-425

-401

-491

31,

2a5

241

7a 166

I , ,461 955.092135

I 5 ,461 955.102771

226 2,a

202

241

107

,25

2a2

296

119

229

304

254

299

241

212

200

237

221

243

114

202

191

-153

-179

-137

I 2 146) 955.oaaaii

IIo (50) 955.126a26

266 1OP 6

-139

-167

II1 146) 955.Oa6825

I o ,461 955.Oa6160

RI4 ,451 955.139245

2,, 145) 955.115917

rt16(451 955.09392a

RI5 (45, 955.073275

R14 (45) 955.053962

n,, ,451 955.0359)6

Ill2,451 955.019341

ItI1 (45, 955.004036

-13.2a675

-13.3a659

954.977423

ill0 (45) 954.990061

P g 05)

IIa ,451 954.966113

II7 (45) 954.956136

R 6 ,451 954.947491

R 5 ,451 954.940176

II4 1451 954.93419,

I , (451 954.929541

II2 (45) 954.926215

II‘ 145) 954.924222

IIo ,451 954.921557

RIO ,401 954.162575

9 9 ,401 954.149a99

2 a (40) 954.1X1560

P , (40) 954.12(556

I 6 ,401 954.119am

266 1OP a

266 1OP a

266 1OP 2

-13.46659

16.06750

266 lOPlO

266 101 6

16.04749

266 lOPlO

517

-11.46751

266 lOPlO

-39,

I,( (10) 952.49*3,2

951.422162

-12.01039

266 lOPI

-,*,

hl, ,301 952.4*022,

I , 06)

-12.51294

266 lOPlO

-405

L12 ,101 952.46,456

197

-12.97522

266 lOPlO

-369

952.44ao40

Lll 00)

275

-I,.,9719

266 lOPlO

-354

RIO (10) 952.43,964

I 2 ,161 953.41aal3

-1,.77*19

266 lOPlO

-332

I ) (JO1 952.421232

II1 ,161 953.416411

-l4.12034

266 lOPlO

-,,I

I a ,101 952.409641

211

-14.42159

266 lOPlO

-252

130, 952.,99794

RI

953.416141

-14.66262

266 lOPlO

I o 06)

-14.90357

266 lOPI

-226

9 4 (IO, 952.311690

-225

-275

R 6 (JO, 952.391006

-255

I 2 (10) 952.369653

I , ,101 952.,1,001

I 5 ,301 952.3113716 -290

-191

952.361646

9 1 00)

-201

952.,66976

I 0 00,

-15.08422

17.056al

266 lOPI

,a

266 lOI

16.55,57

266 lOPl2

"I1 (26) 951.77935a

16.09056

266 10112

-19

"I1 (26) 951.761225

951.12a992

I6

,261

"12 ,261 951.144436

k,,

266 1OP 6

266 10s 6

266 1OP 6

266 1OP 4

266 10) 6

266 1OP a

266 1OP a

266 10s a

266 ,OP 6

266 1OP a

266 1OP a

266 IOP 2

266 ,OP 6

266 10s a

266 1OP a

266 1OP a

266 1OP 2

266 10s 4

266 101 a

266 10s a

266 1OP 6

266 1OP 6

266 1OP 4

266 1OP 8

266 1OP 4

266 101 a

266 10s a

266 IOP a

266 ,OP II

266 1OP 6

266 1OP 2

266 1OP 4

266 109 6

266 1OP a

266 1OP 6

TABLE I-Continued

-12.7470,

-13.65559

-11.71511

-1,.1,510

17.a341,

16.93100

14.,1**1

16.53946

16.39994

16.,0049

16.24075

16.22oa2

17.al227

17.11292

16.45370

15.113456

15.25556

14.71665

14.21165

1,.75a*4

1,.,,9*9

12.96100

12.62194

l2.,22a4

12.06166

11.8444,

11.66502

11.52555

11.4258,

,1.,6600

11.34614

-11.4673,

-11.641,4

-12.12726

-12.4a717 -353

955.143396 955.750690 955.759,0* 955.769255 955.780530

1 5 ISO) P 6 (50) II 7 (50) I 2 ,501 150) ,501

I g RIO

955.79,1,1

-3aa

I 4 ,501 955.1,1432

-139

-193

-230

-289

-,40

-316

II, ,501 955.732793 101 6

101 6

6

266 101 6

266 101

266 101 6

266 101 6

266 101 6

266 101 6

266

266

-,,.747,2

-12.12511

-12.46,lO

-12.16130

-1,.0196a

-13.23627

-13.4171,

-I,.55620

213

uj OF PFs

The spectrum of the u3fundamental (parallel band) shows a symmetric top rotational structure. The lines observed are collected in Table I. Four hundred sixty-seven transitions have been assigned ranging in the rotational quantum number from J” = 2 up to J” = 76. In the fit we used the Hamiltonian H = BJ(J + 1) + (.4 - B)K2 - &J*(J + H5J3(J

+ 1)2 - DJKJ(J + l)K2 - DKK4

+ 1)3 + HJKJ2(J + 1)2K2 + HKJJ(J + 1)K4 + HKK6,

where the last two terms were found not to contribute significantly to the fit. From the observed frequencies 11 parameters have been determined (Table II). The root mean square of the fit was 207 kHz 4 6.90 X 10P6 cm-‘. From the spectrum no triplet structure due to Berry pseudorotation has been found. Application of DC voltage up to approximately 3000 V cm-’ on some of the lines did not show any indication of a Stark effect. 4. DISCUSSION

The advantages and limitations of the laser sideband technique have been demonstrated by the observation of IR transitions of the v3 fundamental of phosphorous pentafluoride. The spectral brightness of this source is high enough to saturate transitions and to completely resolve the Q branch, with all its K structure, up to fairly high J values. This technique has the advantage that, unlike a beam method, obser-

TABLE II Spectroscopic Constants of the us Fundamental -1 cm

"0 B"

B’_ B”

946.378527(5)

0.104516(l)

0.10451904(2)

6.7330(2) x 1O-4

2.03 0)

x lo-*

2.000 (2) x 10-8

- D;'

-1.37 (2) x 10-Y

-1.418(15)x 10-9

DS

-1.06 (9) x lo-*

-8 -1.288 (5) x 10

4.26 (9) x lo-'

4.51 (5) x 10-Y

-2.97 (9) x lo-'

-2.998 (1) x 10-Y

- 0;;

El" J

-6.4 (4) x lo-l4

";

-6.2 (5) x lo-l4

- HiI;

a) V.Dana.J.Bord4.L

b, &KJ

946.37847(7)

6.732(l) x 1O-4

0; - D;'

";K

b

-4.9460(Z)x 1O-4

D" J

D;K

Thia work

-4.9431(6)x 1O-4

A’_A”_(B’_B”)

D;

Dana et al?

2.7 (4) x lo-l5

ctrosc.ll4,42 (1985)

and blIKErrors in the order of constants

214

PRINZ AND KREINER

vation is not confined to low rotational quantum numbers. However, the low power levels presently available limit application to strongly absorbing bands. The resolution so far achieved is still considerably lower than that achieved with sophisticated waveguide lasers (6). In the vicinity of the vg fundamental (between 936 cm-’ and 952 cm-‘) our spectrometer covers =55% of this spectral range, employing MW modulation from 12 to 18 GHz. 5. ACKNOWLEDGMENTS

Substantial support of the Deutsche Forschungsgemeinschaft fessors Dr. H. Jones and Dr. A. Ruoff for critical comments. RECEIVED:

is gratefully acknowledged. We thank Pro-

April 24, 1989 REFERENCES

1. J. E. GRIFFITHS,R. P. CARTER,JR.,AND R. R. HOLMES,J. Chem. Phys. 41,863-876 (1964). 2. J. S~HATZ AND S. REICHMANN,J. Chem. Phys. 57,4571-4575 (1972). 3. M. L. PALMA, J. BORD~,J. DUPR~, AND C. MEYER,J. Phys. Les U/is, Fr. 43,869-874 (1982). 4. V. DANA, J. BORD~, L. HENRY, AND A. VALENTIN,J. Mol. Spectrosc. 114,42-48 (1985). 5. M. TAKAMI AND H. KUZE, J. Chem. Phys. 80,23 14-2318 (1983). 6. CH. BORDB,C.R. Hebd. St!ances Acad. Sci. 271,371-374 (1970). 7. CH. BORDB,J. BORDB,CH. BRYANT, CH. CHARDONNET,A. VAN LERBERGHE,AND CH. SAL~MON, Springer Ser. Opt. Sci. 49, 108-l 14 (1985). R. S. BERRY,J. Chem. Phys. 32,933-938 (1960). B. J. DALTON, J. Chem. Phys. 54,4745-4762 (1971). K. W. HANSENAND L. S. BARTELL,Znorg. Chem. 4, 1775 (1965). H. KURIMURA,S. YAMAMOTO,T. EGANEA,AND K. KUCHITSU,J. Mol. Struct. 140,79-86 (1986). R. WYATT, J. T. ROBERTS,R. E. WENTZ, ANDP. M. WILT, J. Chem. Phys. 50,255Z (1969). L. S. BERNSTEINAND IRA W. LEVIN, J. Chem. Phys. 64,3228-3236 (1976). J. BR~CASAND D. FASTENAKEL, Mol. Phys. 30, 193-198 (1975). G. MAGERL,W. SCHUPITA,J. M. FRYE, W. A. KREINER,AND T. OKA, J. Mol. Spectrosc. 107,72-83 (1984). 16. S.-C. HSU, R. H. SIZHWENDEMAN, ANDG. MAGERL,ZEEEJ. Quantum Electron. 24,2294-2301(1988). 17. W. A. KREINER,G. MAGERL,B. F~RCH, AND E. BONEK,J. Chem. Phys. 70,5015-5020 (1979). 8. 9. 10. II. 12. 13. 14. 15.