SOLUTIONS TO CHAPTER 22 PROBLEMS S.22.1
From Ex. 22.1 and noting that there are two rivets/pitch in double shear ðb 3Þ 2:5 465 ¼ 2 2 which gives
π 32 370, 4
b ¼ 12 mm:
From Eq. (22.5), the joint efficiency is η¼ S.22.2
12 3 100 ¼ 75% 12
The loading is equivalent to a shear load of 15 kN acting through the centroid of the rivet group together with a clockwise moment of 15 50 ¼ 750 kNm. The vertical shear load on each rivet is 15/9 ¼ 1.67 kN. From Ex. 22.2, the maximum shear load due to the moment will occur at rivets 3 and 9. Also qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r ðrivets 1, 3, 7, 9Þ ¼ ð252 þ 252 Þ ¼ 35:4 mm r ðrivets 2, 4, 6, 8Þ ¼ 25 mm r ðrivet 5Þ ¼ 0 Then
X
r 2 ¼ 4 35:42 þ 4 252 ¼ 7500
From Eq. (22.6) Smax ¼
750 35:4 ¼ 3:54 kN 7500
Therefore, the total maximum shear force on rivets 3 and 9 is given by (see Ex. 22.2) 1=2 Smax ðtotalÞ ¼ 1:672 þ 3:542 þ 2 1:67 3:54 cos 45° ¼ 4:87 kN Then 350 ¼
4:87 103 , πd 2 =4
which gives d ¼ 4:2 mm: The plate thickness is given by 4:87 103 ¼ 600 td
e449
e450
Solutions Manual from which t ¼ 1:93 mm:
S.22.3
The single shear value of one rivet is given by Single shear value ¼ 140
π 202 103 ¼ 44:0 kN 4
The bearing value of one rivet is given by Bearing value ¼ 400 20 15 103 ¼ 120 kN Therefore, shear is the critical condition and the safe load is Safe load ¼ 4 44:0 ¼ 176:0 kN: S.22.4
The angle rivets are in double shear and the gusset plate rivets are in single shear. The double shear value of one 20 mm diameter rivet is Double shear value ¼ 2 140
π 202 103 ¼ 88:0 kN 4
The bearing value of one rivet in the 12-mm-thick gusset plate within the angle is Bearing value ¼ 400 20 12 103 ¼ 96:0 kN Therefore, the shear load is critical and the total safe load on the angle rivets is Safe load ðangle rivetsÞ ¼ 3 88:0 ¼ 264 kN The single shear value of one gusset plate rivet is 44.0 kN. The bearing value of one rivet in the 10 mm plate is Bearing value ¼ 400 20 10 103 ¼ 80:0 kN Therefore, the shear load is critical and the total safe load is Total safe load ¼ 4 44 ¼ 176:0 kN: The safe load on the joint is therefore 176.0 kN, but the plate strength should be checked. Plate tensile strength ¼ ð120 20Þ 10 275 103 ¼ 275 kN Therefore, the safe load is 176.0 kN. S.22.5
The total length of weld is 140 mm. Therefore, the force/mm is Force=mm ¼
100 103 ¼ 714:3 N=mm 140
Solutions to Chapter 22 Problems
e451
The stress in the weld ¼ 100 ¼ 714.3/t, which gives t ¼ 7.1 mm. Then pffiffiffi Size of weld ¼ 2 7:1 ¼ 10:0 mm: S.22.6
I 0 for the fillet welds is given by I 0 ¼ 2 100 1002 þ
2 2003 ¼ 3:33 106 mm3 12
The bending moment on the welds is M ¼ 75 500 ¼ 37500 kNmm Load=mm due to bending ¼
37500 103 100 ¼ 1126:1 N=mm 3:33 106
Load=mm due to direct load ¼ The resultant force=mm ¼
75 103 ¼ 125 N=mm 600
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1126:12 þ 125:02 ¼ 1133:0 N=mm
pffiffiffi 2 1133:0 ¼ 16 mm: The size of weld required ¼ 100 S.22.7
Referring to Fig. S.22.7, the centroid of the weld is found by taking moments about the left hand vertical weld. i.e. 200 mm y 50 kN
200 mm
C x
150 mm
FIGURE S.22.7
x
e452
Solutions Manual ð2 150 þ 200Þ x ¼ 2 150 75, which gives x ¼ 45 mm The torque applied to the weld is then given by T ¼ 50ð200 þ 105Þ ¼ 15250 kNm Also J 0 ¼ Ix 0 þ Iy 0 where Ix 0 ¼ 2 150 1002 þ
2003 ¼ 3:67 106 mm3 12
3 45 1453 ¼ 2:50 106 mm3 Iy ¼ 200 45 þ 2 þ 3 3 0
2
Then J 0 ¼ 6:17 106 mm3 Also Rmax ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1452 þ 1002 ¼ 176:1 mm
Then the load/mm due to the torque is Load=mm ðtorqueÞ ¼
15250 103 176:1 ¼ 435:3 N=mm 6:17 106
The load/mm due to direct stress is Load=mm ðdirect stressÞ ¼
50 103 ¼ 100 N=mm 500
The resultant load/mm is then 145 1=2 Resultant ¼ 435:32 þ 1002 þ 2 435:3 100 176:1
Solutions to Chapter 22 Problems i.e. Resultant ¼ 520:7 N=mm pffiffiffi 2 520:7 ¼ 6:1 mm The required weld size is then ¼ 120 Say, a weld size of 7 mm. S.22.8
Referring to Fig. P.22.8, for the butt welds IB 0 ¼ 2 150 1902 ¼ 10:83 106 mm3 The moment taken by the butt welds is given by MB ¼
120 10:83 106 20 ¼ 130:0 kNm 200 106
Therefore, the moment resisted by the fillet welds is MF ¼ 200 130 ¼ 70 kNm For the fillet welds IF 0 ¼ 2 135 1802 þ 2
3603 ¼ 16:52 106 mm3 12
The force in the fillet welds is then FF ¼
70 106 180 ¼ 762:7 N 16:52 106
The required thickness of the fillet weld is then 762:7 ¼ 6:9 mm 110 pffiffiffi and the weld size is ¼ 2 6:9 ¼ 9:75 mm: t¼
Say, a 10 mm fillet weld.
e453