Chinese Astronomy
4 (1980) 251-257
Pergamon Press. Printed in Great Britain 0146-6364/80/0901-0251-$07.50/0
Acta Astr. Sinica 20 (1979) 254-280
SOME
EVOLUTIONARY
NITH
DOUBLE
CHARACTERISTICS
OF R ~ D I O
GALAXIES
STRUCTURES
Qian S h a n - j i e
Liang B a o - l i u
Beijing Observatory, Academia Sinica Fang
Li-zhi
University of Science and Technology of China
ABSTRACT
In this paper a statistical investigation has been made on
some characteristics of the evolution of radio galaxies with double structure.
77 radio galaxies with known redshifts are selected.
results are as follows:
The main
I. In the angular size-redshift diagram, there
appears to be a lower bound (Smi n - z), which corresponds to a minimum linear size D . = 40 kpc. mln
It looks as though all double structures are
initially formed with this size.
2.
The radio luminosity
(L), volume (V)
and total energy (E) of individual components vary with the linear separation D.
There may be a critical separation D c : 600 kpc such that
when D < Dc, L, V and E increase steadily with the increasing D; while for
D > Dc, L, V and E remain essentially constant.
Somewhat unexpectedly,
there seems to be no correlation between E/V (or L/V) and D.
3.
Among
radio galaxies with the largest linear size, the absolute visual magnitudes appear to get fainter with increasing D at the rate of about +4.8m/Mpc.
i.
INTRODUCTION
Quasars and radio galaxies play an important role in the study of cosmic radio sources.
As
far as radio morphological structures are concerned, a majority of quasars and radio galaxies (~ 60%) have double structures, which is very remarkable.
There have been many
papers dealing with the formation, energy supply and evolution of double sources.
Wardle
and Miley [I] have investigated the relationship between radio size and redshift (z) of quasars and found that there appears to be a rather well-defined upper envelope (Sma x - z) in the (8, z)-distribution and that it passes over continuously to the envelope for radio galaxies
[2].
Lately, Hooley et al. [3] have obtained a more detailed (8, z) diagram for
3CR quasars and radio galaxies with known redshifts.
The data they used are taken from the
results of observation made with the 5 GHz synthesis-aperture telescope of ~ l l a r d Radio Astronomy Observatory.
In [4]
Zhou et at. concentrated on the evolution of quasars with
the largest angular sizes and, with the help of the redshift-distance [5]: d = C/H(z- 0.19z2),
formula derived in
they suggested that the radio linear size D of quasars may be an
252
Double Radio G a l a x i e s
important evolutionary parameter and found that, for the quasars, both the optical and the radio absolute magnitudes increase numerically with increasing D at a rate ~+lOm/Mpc.
In
this paper, we selected o~er 70 radio galaxies with double structures and known redshifts in an investigation of their evolution.
2.
DATA SELECTION
We c o l l e c t e d journals
high resolution
maps o f r a d i o g a l a x i e s p u b l i s h e d i n v a r i o u s a s t r o n o m i c a l
( a t two f r e q u e n c i e s
2"-10")and selected double structures the optical
the radio galaxies with typical
and d o u b l e - s t r u c t u r e s
Those s o u r c e s which a r e l i s t e d
maps were o m i t t e d a l t o g e t h e r .
o f g a l a x i e s w i t h common s t r u c t u r a l values.
Altogether,
redshifts,
o f 1 0 " - 5 0 " and
(including double-
For t h o s e s o u r c e s i n which
were made o n l y a f t e r
sample i s a w e l l - d e f i n e d
A l s o we r e q u i r e
the redshifts
77 r a d i o g a l a x i e s w i t h d o u b l e s t r u c t u r e s
spectrum index, for both components.
careful
a s d o u b l e i n some p a p e r s b u t h a v e no h i g h -
and 63 o f them h a v e s u c h p a r a m e t e r s a s f l u x d e n s i t y ,
we s h a l l n o t d e t a i l
3.
components).
T h u s , our s e l e c t e d
properties.
we h a v e s e l e c t e d
respectively
double structures
with central
c o i n c i d e s w i t h one o f t h e components s e l e c t i o n s
consideration. resolution
1 . 4 GHz and 5 GHz w i t h r e s o l u t i o n
T h e s e d a t a were c o l l e c t e d
diameter,
group
t o be m e a s u r e d and known
separation
and
from o v e r 30 s o u r c e s which
f o r want o f s p a c e .
(0 - 8) RELATION AND EVOLUTION OF RADIO GALAXIES WITH DOUBLE STRUCTURES
The (e - z) d i a g r a m f o r t h e r a d i o g a l a x i e s w i t h d o u b l e - s t r u c t u r e s (logarithm scale).
I t c a n be s e e n t h a t t h e r e
lower l i m i t
linear
for the
Dmin z 40 kpc ( i n t h i s
separation
a r e shown i n F i g .
1
i s a lower bound emin ~ 1/z, i . e . . t h e r e
between
t h e two c o m p o n e n t s .
is a
The v a l u e i s
p a p e r , we t a k e H u b b l e ' s c o n s t a n t H= 50 k m / s e c . M p c , and u s e t h e
f o r m u l a d= (C/H)Z f o r t h e d l s t a n c e .
The e x i s t e n c e o f t h i s
a selection
f o r r a d i o g a l a x i e s w i t h s m a l l e r z, t h e a v a i l a b l e
synthesis
effect,
because at least
aperture
telescopes
lower l i m i t
d o e s n o t seem t o be
could r e s o l v e even s m a l l e r double s t r u c t u r e s
if they existed.
z, D . = c o n s t . I t t h e r e f o r e s u g g e s t s t h a t d o u b l e s t r u c t u r e s a r e formed a t a mn s e p a r a t i o n ~D . a t t h e b e g i n n i n g b e f o r e t h e y s t a r t e v o l v i n g . mzn The u p p e r bound (emax - z) shown i n F i g . 1 a p p l i e s o n l y t o r a d i o g a l a x i e s w i t h d o u b l e For d i f f e r e n t
structures situated shall
(cf.[1],
[2] and [ 5 ] ) .
w e l l above t h i s b o u n d , i t
Such g i a n t r a d i o g a l a x i e s w i t h a s 3c256 and D240 a r e is likely
not i n c l u d e then i n our p r e s e n t
satisfactory
e x p l a n a t i o n on t h e o v e r a l l
example, the e - d i s t r i b u t i o n evolution etc.).
t h a t t h e y have v e r y s p e c i a l p r o p e r t i e s ,
consideration. distribution
At p r e s e n t ,
and we
i s no
o f p o i n t s i n t h e ( 0 - z) d i a g r a m .
f o r a f i x e d z v a l u e may be due t o a v a r i e t y
of effects
For
(projection
In t h e f o l l o w i n g d i s c u s s i o n we s h a l l n o t d e a l w i t h t h e s e e f f e c t s .
For t h e s e l e c t e d
77 r a d i o g a l a x i e s w i t h d o u b l e - s t r u c t u r e s ,
absolute visual magnitudes M applied the K-corrections galactic
there still
absorption correction
Av.
we h a v e c a l c u l a t e d
their
a s g i v e n by S c h i l d and Oke [4] and t h e
Double Radio G a l a x i e s
3000
The M-D d i a g r a m t h u s o b t a i n e d i s shown i n F i g . 2.
253
DA240
3C2..~ •
I t can be s e e n t h a t t h e r e a p p e a r s t o
be a c o r r e l a t i o n
|0Q0
b e t w e e n M and D f o r t h e
r a d i o g a l a x i e s which have D> D : 0.6Mpc ( i . e . C
t h o s e which have t h e l a r g e s t a n g u l a r s i z e s i n t h e (0 - z) diagram o f F i g . 1.
300
The e q u a t i o n
Z'.
of regression is
o~q
27.5. The correlation coefficient is ~0.67. M =
4.76D
-
I0(
-
standard deviation is ~0.77 m.
The
c.
Thus, it seems
3O
oO
that, for double-structure radio galaxies with
60g k pe
the largest angular sizes (or the largest linear sizes),
lO
the separation is a significant
parameter of evolution, and the optical 3
absolute visual magnitude M increases
,O=40kpc
algebraically with increasing separation D at a rate of ~+4.8m/Mpc.
0.01
0.03
()1.3
0'.|
'l
z
For a better comparison with the results
ei~ 1 The 0 - Z r e l a t i o n radio galaxies
from quasars, a new analysis with the same
f o r double
method was made t a k i n g t h e q u a s a r d a t a g i v e n i n [4] and [5] as a b a s i s and adding a n o t h e r f i v e w i t h d o u b l e - s t r u c t u r e s 3c154, 4c34.13 and 3c212). t h e method g i v e n i n
The diagram o b t a i n e d i s shown i n F i g . 3.
[4] t o c a l c u l a t e
the distances,
made c o r r e c t i o n s o f Au and Kv, and
d e r i v e d t h e a b s o l u t e v i s u a l m a g n i t u d e s and s e p a r a t i o n s . shown i n F i g . 4. i n [4].
The M-D diagram f o r t h e q u a s a r s i s
I t can be s e e n t h a t , when D > De : 600 kpc, t h e r e i s s t i l l
i n c r e a s i n g w i t h i n c r e a s i n g D.
( 3 c 6 8 . 1 , 4c28.40.
In a d d i t i o n , we used
a hint of M
The r a t e o f +gm/Mpc i s somewhat s m a l l e r t h a n t h e v a l u e g i v e n
But t h e a d d i t i o n o f a few q u a s a r s w i t h l a r g e l i n e a r s i z e s and t h e n e g l e c t o f
p r o j e c t i o n e f f e c t have g r e a t l y weakened t h e c o r r e l a t i o n . For r a d i o g a l a x i e s and q u a s a r s w i t h 0max, t h e above e v o l u t i o n a r y c h a r a c t e r i s t i c s i n c r e a s i n g s e p a r a t i o n s h o u l d be examined f u r t h e r by e x t e n d i n g t h e i n v e s t i g a t i o n
with
to f a i n t e r
objects.
4.
RELATIONS BETWEEN RADIO LUMINOSITY, VOLUME, TOTAL ENERGY OF COMPONENTS AND D
With t h e c o l l e c t e d d a t a on i n d i v i d u a l components o f r a d i o g a l a x i e s as a b a s i s , a statistical (V), t o t a l
investigation
on t h e r e l a t i o n s
b e t w e e n D and t h e r a d i o l u m i n o s i t y (L), volume
e n e r g y (E) and L/V, E/V o f t h e r a d i o components.
synchrotron radiation, L ~ 4~d 2 =
I
the formulas for c a l c u l a t i n g
Under t h e a s s u m p t i o n o f
t h e s e p a r a m e t e r s a r e as f o l l o w s [6]:
lO uO
l0T
we have made
( l + Z)l+%-~dv
0"431Z2(1 + Z)t+"s";'~ [10 s(t-~) - - 1] • 1042 e r g / s e c l--a
Double Radio G a l a x i e s
254
0(arcsec) 200
1.8
10o
®
1.5
•:
~
50
~¢ • •
1.2
•
X
X K x
. ! I
,
i
•
•
\
II
.-,"
I
,..., 0.9
10~
eel
•
~"
o•
_
•
•
• ." • ~.
•
.
•
oe
•
•
0.6
5 •
0.3
•
•t o e
•
~ = S O k p c
•
ee~ •
i
•
~
I
1
I lll~l
0.I 1
--25
T
--24
--23
I
I
--21
--22
O~
I
l
.T
2
I
l
.3 4 5
Fig. 3 The O-Z r e l a t i o n f o r q u a s a r s w i t h d o u b l e s o u r c e s : x 8ma x s o u r c e s c h o s e n from [4]: • v a r i a b l e s o u r c e s : ~ newly added s o u r c e s : l a r g e a n g u l a r - s i z e s o u r c e s d e l e t e d i n [4].
--2(}
M Fig. 2 The r e l a t i o n between t h e a b s o l u t e m a g n i t u d e H and l i n e a r s e p a r a t i o n D f o r double radio galaxies
4 F = - - ~ w l t ~ d 3 = 0.303wtjm~Z 3 • 1070 cm 3 3 9
E ~
4
Ct3R ~ L ~ =
3
0.541C~sV ~ L {
erg
Here, v 0 i s t h e f r e q u e n c y i n 107 Hz, 80, t h e f l u x d e n s i t y i n dy a t t h i s spectral
index,
f r e q u e n c y , a, t h e
~,, ( ~ ! ) , t h e a n g u l a r d i a m e t e r o f components i n a r c s e c ,
energy (including the energy of relativistic
electrons
E t h e minimum t o t a l
and t h e m a g n e t i c e n e r g y i n
equipartition). The statistical relations obtained are shown in Fig. 5 and 6. that, radio luminosity, D when D < 600 kpc.
It is clear from Fig. 5
volume and total energy of radio components increase with increasing
When D > 600 kpc, Lj V and E remain essentially constant.
It should be
emphasized that the critical separation here is also about 600 kpc the same as that arisen in our M-D analysis.
I t can be s e e n
from F i g . 6 t h a t a t l e a s t o v e r a c o n s i d e r a b l e r a n g e (up t o ~1 } ~ c ) , e n e r g y
d e n s i t y and r a d i o l u m i n o s i t y p e r u n i t volume o f r a d i o components do n o t seem t o v a r y w i t h i n c r e a s i n g D and t h i s These two r e s u l t s
is contrary to the usual expectation. provide a statistical
components move away from t h e i r volume and t o t a l unchanged.
energy both increase,
But a f t e r
picture
while their
reaching the separation
approximately constant,
o f e v o l u t i o n o f r a d i o components: when t h e
parent galaxy, within a certain D,
distance
energy density remains essentially t h e volume and t o t a l
energy both remain
and t h e e n e r g y - l o s s due t o s y n c h r o t r o n - r a d i a t i o n
compensated by t h e e n e r g y s u p p l i e d .
Certainly,
(D
we can e x p e c t
that,
is precisely
a t even l a r g e r
Double Radio Galaxies
255
T
72
. ; . j
71
~
"
_~
T '
":.
70
[i
°vt
lIT ' :."
;
:
:.
!
T
; 69-
=
:'
-
)f
68 1
I
0.5
T
1.0 D(MP ¢)
__
1.5
F i g . 5 . 1 R e l a t i o n b e t w e e n volume and l i n e a r f o r d o u b l e r a d i o ~ a l a x i e s a t 1.~ CPz
separation
45
"•4
4 .o
4s
:
.' "
z -: |
-- 42 .:
•
.
:;.:*
:t :
"
"s"
•
;
""**•'"
*
,
o
:
41
40 t
!
0.5
I
1.0 D(gP~c)
1.5
F i g . 5 . 2 R e l a t i o n b e t w e e n r a d i o l u m i n o s i t y ~nd l ~ n e a r s e p a r a t i o n f o r d o u b l e r a d i o g a l a x i e s a t 1 . 4 GHz.
60
,,'
.
:
!
$9
-~ s8
• :
|,.
:
*
o. °: "°, !
......
.:....-
•
." •
.
*
57
s6
!
ols
1.o
,.
I
].s
D(Mpc)
F i g . 5 . 3 R e l a t i o n b e t w e e n s o u r c e e n e r g y and l i n e a r s e p a r a t i o n f o r d o u b l e r a d i o g a l a x i e s a t 1 . 4 GHz
256
Double Radio Galaxies
-23 -24
-a
-2!
~1~ .
.
:
•
--28
I;
"
l
t
:
~
i
-i : : ~
4"t:..
:
oO ,~:
i"
' 1°
•
I
30 O
,
0.5
~(MPC)
.*
.I,,.
1,0
1.5
Fig. 6.1 Relation between luminosity per unit volume and linear separation for double radio galaxies at 1.4 @Iz
9I ~-lo L t x
11
f
. •
".
i
1
~ " ~::
:. , ,
-IzI'r
:,
--13
:.:
....
I
0.5
1.0
1J5
D(Mpc) Relation between energy density and linear for double radio galaxies a t 1 . 4 GHz
Fig. 6,2 separation
--8
g-9 .r.
$ --11
.'. •
•
•
- ~.i •
.
.
.
*
L k
t
L
-12
i
i
0.5
1.0
A
1.5
D(Mpc) - l t , r per u n i t volume ~i~. 6 . 3 Relation between 11~Ino~i_ linear separation for double radio galaxies at 5 CHz •
and
Double Radio Galaxies
257
1.8
I.S
1.2
Q 4
0.9
• .
0.6
•
03
%
e
: : ";~ • e,"• ¢" •
i
• e 1°
--2|
--27
I
~
ee 1
I
I
--26 --~$ --24 --23 --22 " 2 1 M Fig. 4 Relation between the absolute optical "magnitude M and linear separation D for quasars with double sources (symbols as in Fig. 3) separations
(for example D ~ 1.5 Mpc), E/V and E would decrease with increasing D, but at
present the lack of data makes it impossible for us to deduce such a picture. Finally, we would like to thank Jiang Shu-hui and Liu Bu-lin for their help with calculations.
REFERENCES [ 1] [2]
[ 3"] [4 ] [5 ] [6 ]
Wardle, J. F. C & Miley, G. K . : Astr(m. ~ Astrophy~. 30(1974), 305. Mfley, G. K. (1975) : i~l " T h e phymcs of non-~ermal radio ~ u r c e s " (ed. G. Settl), p. 9. Hooley, A. et al.: Moa. Not. Roy.. Astron. 8oe., 182(1978), No. 1. Zhou You-yuan et al., Acta Astronomica Sinica ]8 (1977) 115-128. English translation in Chinese Astron. 2 (1978) 147-164. Fang Li-zhi et al., Acta Astronomica Sinica ]7 (1976) 154-146. English translation in Chinese Astron., ] (1977) 278-291. Pacholczyk, A. G., "Radio Astrophysics".
(Translated
b y Mr. O i a n S h a n - j i e )