Tetrahedron printed in
Letters,Vol.27,No.l5,pp Great Britain
SYNTHESIS Klaus Institut
Hafner*,
Norbert
fiir Organische
Summary:
tives with electron
these substituents
crystals
unstable
L.
Knaup,
Hochschule,
and
Klaus-Peter
Petersenstrasse
by two different
to be, in contrast
and air sensitive
substituents
Meinhardt
22, D-6100
pathways.
to the parent
Darmstadt
The new compound,
of the recently
depending
prepared
on their number
12r-electron
system, were known
1,2,5,6,8,10-hexamethylheptalene5
heptalenes
to prepare
heptalene 192 only derival,;d,3,4 or 3-(58) positions , which
unsubstituted
in l-(:5,6,10)
of the bicyclic
lower methylated
so far. The
stimulated
in order to prove the stabilizing
ef-
effect of
and position.
these heptalenes
in a similar way as the hexamethyl
1,2_heptalenedicarboxylates
azulenes -lb-d with dimethyl hydride
PENTA-METHYL-HEPTALENES
were synthesized
stabilization
As it seemed promising tive5, the dimethyl
Giinter
7a-d and -10 proved --
withdrawing
stability
forts to synthesize
AND
and air stable.
from the thermally
cause an electronical
TETRA-
Hock,
Some methylheptalenes
thermally
unexpected
DI-,
Chemie der Technischen
hydrocarbons
Apart
OF
0040-4039/86 $3.00 + .OO 81986 Pergamon Press Ltd.
1669-1672,1986
2b-d - obtained by cycloaddition reaction -4 acetylenedicarboxylate - were reduced with diisobutylaluminum
to the 1,2-bis(hydroxymethyl)-heptalenes
3b-d, which
could be isolated
derivaof the
as stable yellow
(Tab. 1).
R2
R'
MeC$C-CnC-C$Me /'\
R3 207“C
*
c&3
T::;c--#R3
Q RL HO
1
2 l-3,6,7 ---_
Attempts
to synthesize
3
a
b
c
d
Me Me Me Me
H Me Me Me
Me Me H Me
H H H Me
1,3,5,6,7_pentamethylheptalene
i - generated
via the 1,2-bis(chloromethyl)-heptalene
from the diol -3b with phosphorus pentachloride - failed as -l, eliminates spontaneously HCl to give the 1,2_bis(methylidene)-heptalene 5. - This result prompted us to study the
1669
1670
3b
pc’5 CHC$
I-60
OC r
‘c,rJy
:-c,&
Cl
dehydration
of 1,2-bis(hydroxymethyl)-heptalenes
2, which
(similar to 2, OH instead of Cl) to the 2-heptalene As expected, amounts
the heptalene
carbaldehydes
diols 2 can easily be converted acid (Tab. 1).
of p-toluenesulfonic
R’
Decarbonylation
':&R3
5 with tris(triR2
(Ph3Pl3RhCI CgHfj
phenylphosphine)rhodium(I)choride stable compounds
of the aldehydes
with catalytic
R’
CfjHfj I 8OOC
unsymmetrically
structure
-6.
into 5 by reaction
R*
TsOH 2-4
should lead via an enolic
yields
(Tab. 1 and 2). Similar substituted
e
hydrocarbon
I 8OOC
the desired methylheptalenes
1 as thermally
to the heptalene
2, 3, and 5, even the
derivatives
7b exists at 25'C as a mixture
Y&R3
and air
of the bond shift isome!rs
m
X
In addition rent pathway
to -7a-d we also could synthesize
1,6_dimethylheptalene
after the cis-l,Sa,6,lOa-tetrahydroheptalene
derivative
-10 by an entirely -8 became
diffe-
easily accessible
1671
by a new rearrangement reaction.6 -10 is obtained by reduction of the diester 5 with diisobutylaluminum hydride and subsequent two-fold dehydration of 2 (Tab. 1 and 2). The surprising stability of the described methylheptalenes- even of the dimethylheptalenes 192 can not only be the result of a kinetic -7d and -10 - in comparison with the parent compound stabilization due to a steric shielding of the heptalene system, but rather to an enhancement of twisting of the nonplanar12n-perimetercaused mainly by a steric interaction of an increasing number of methyl groups in the peri-positions.This reduces the cyclic conjugation and increases the HOMO-LUMO gap of the [4n]-x-system.
Tab. 1: Yields and Physical Data of the Compounds 2, 2. 2, 2, 1, 2, and 10.7 Compound
Yield[%l
mp[“Cl
ratio A:B 4:l
Uv)Imax(lgE)Inml 268(4.19), 323shc3.571, 393sh(2.791b)
-2bd) 2c
56
99-100
32
113-114
>’ -
35
-3b -3c
86
124-129
1:2
246sh(4.22),
86
130-131
9:l
253(4.32),
300sh(3.491b)
-3d
33
128-130
7:s
255(4.34),
317(3.53jb)
-5
18
133-136
223(4.37),
286(3.82), 247sh(4.19),
113
>98:<2
262(4.19),
273sh(4.17),
205(4.40),
264(4.21), 258(4.33),
326sh(3.381b) 323sh(3.52),
405sh(2.66ja)
316(3.581b)
389(4.011b)
-6a
94
132-134
1:2
218(4.26), 372sh(2.92)b)
-6b
67
112-114
1:20
253(4.25),
271(4.29),
328(3.63),
396sh(2.851b)
1:6
253(4.27),
271(4.30),
330(3.65),
394sh(2.841b)
248(4.11),
254(4.11)=)
6c
56
90-91
Zf) -
28
oil
-7a
86
78-83
-7b
63
59-61
-7c
46
73-74
-7d
44
-9
76
-10
32
oil
252(4.36),
299sh(3.49)a)
252(4.36),
317sh(3.57)a)
251(4.34),
295sh(3.47ja)
oil
250(4.33),
333(3.59ja)
140-142
236(4.11),
243(4.12),
251(4.34),
332(3.59)a)
1:3
256sh(4.23),
271(4.28),
a) in hexane b) in dioxane c) in methanol d) in contrast to an earlier publication4a the reaction affords no dimethyl 5,6,8-trimethyl-2,3_heptalenedicarboxylate e) additionally 13% dimethyl 6-methyl-1,2-heptalenedicarboxylate (orange plates, m.p.: 139-14O’C)
can be isolated
f) could not be obtained as pure compound so far
Tab. 2: -7a:
6=
300 MHz-~H~NMR spectra of the methylheptalenes1 and -10 (in CDC13);TMS as int.stand.): 1.72,
1.74(2s;
3H each, l/6-Me), 1.97(d, J= 1.4Hz; 3H, lo-Me), 1.98(d, J= 1.6Hz; 3H,
S-Me), 1.98(d, J= 0.6Hz; 3H, g-Me), 6.00, 6.10c2br.s; 1H each, 7/9-H), 6.10(m; lH, Z-H), 6.28(m; 2H, 3/4-H). 7bA: 6= 1.71, 1.74(2s; 3H each, l/6-Me), l.gS(covered;3H, S-Me), 1.98(d, J=1.3Hz; 3H, 3-Me),
1672
5.78(d,
J= 10.4Hz;
7-H), 6.20-6.40(m;
IH, 10-H), 5.93(br.s;
1.95(d, J= 1.3Hz; 3H, l-Me), 2.0l(br.s;
7bB: 6= 1.71(s; 3H, 5-Me), 3H, 3-Me),
5.71(d,
7c:
lo,
J= 6.OHz;
IO-H),
IH, 7-H), 6.27(ddd,
6.14(d, J= 5.8Hz; 6.OHs;
IH, Z-H), 6.07(br.s;
lH, 4-H), 6.lO(covered;
IH,
2H, 8/9-H).
5.9o(q,
J= 1.2Hz;
3H, 6-Me);
2.05(d,
IH, 2-H), G.ll(br.s;
J= 11.1, 6.0, 0.6Hz;
lH, 8-H), 6.38(dd,
J= 1.2Hs;
lH, 4-H), J= 11.1,
IH, 9-H).
6= 1.74(~; 6H, 5/10-Me),
1.99(d, J= 1.4H.z; 6~, l/6-Me),
6.13(m;
2H, 2/7-H),
6.3O(m;
4H,
3/4/8/9-H). 7d:
6= 1.73(s; 3H, l-Me), 1.99(d, J= 0.9Hz;
IH, 5-H), 5.86(d, J= 10.9Hz;
(d, J= 6.OHz; 10:
,+ 2.1O(d, 2/7-H),
3H, IO-Me), 5.44(br.d,
J= 0.5~2;
6.12(dd,
6H, l/6-Me),
J= 11.1,
6.3Hz;
J= 5.9Hs;
IH, 6-H), 5.94-6.40(m;
5.64(d,
J= 6.3Hz;
2H, 3/8-H),
5H, 3/4/7/8/9-H).
2H, 5/10-H),
6.32(dd,
J= 11.1,
lH, 2-H), 5.66
5.99(br.d,
6.3Hz;
2H,
J= 6.3Hs; 2H,
4/9-H).
ACKNOWLEDGEMENT Support
of this work by the Deutsche
REFERENCES
AND
L.A. Paquette,
2.
a) H.J. Dauben,
Engl. __-
D.J. Bertelli,
J. Wassen,
J. Am. Chem. Sot. -83 (1961)
K. Miillen, J.F.M. Oth, Angew.
J. Am. Chem. Sot. 102 (1980) 643;
hoff, J. Wassen, E. Vogel,
Angew.
A.R. Browne,
D. Kerimis,
Chem. Int. Ed. (1979) 581;
E. Chamot,
N.T. Allison,
J.F.M. R. Zeller-
(1979) 545.
Chem. Int. Ed. Engl. 13
Chem. -86 (1974) 779; Angew.
H. K8nigs-
Chem. 91
Chem. Int. Ed. Engl. 18
Chem. -86 (1974) 778; Angew.
Angew.
b) E. Vogel,
E. Chamot, Angew.
d) E. Vogel,
Chem. -91 (1979) 579; Angew.
J. Ippen, Angew.
E. Vogel, F. Hogrefe,
4659;
Chem. -86 (1974) 777; Angew.
A.R. Browne,
Chem. Int. Ed. Engl. -18 (1979) 546; L.A. Paquette,
Blount,
Industrie,
acknowledged.
Isr. J. Chem. -20 (1980) 233.
13 (1974) 732; c) L.A. Paquette,
Angew.
3.
is gratefully
NOTES
1.
hofen,
the Fonds der Chemischen
Forschungsgemeinschaft,
and the Dr. Otto RGhm Gedachtnisstiftung
(1974) 734;
Chem. Int. Ed. Engl. 12
(1974)
735. 4.
a) K. Hafner,
H. Diehl,
H.U. S&s,
-15 (1976) 104; b) K. Hafner, 209; Angew.
Chem. -88 (1976) 121; Angew. H.J. Lindner,
K. Hafner
6.
K.-P. Meinhardt andK.
7.
All new compounds
and G.L. Knaup,
Tetrahedron
Hafner,
Lett. -27 (1986),preceding
unpublished
Chem.
Angew.
Int. Ed. Engl. Chem. 97
(1985)
have been characterized
(G.L. Knaup, Dissertation
in
Germany
4 February
paper.
results. by IR, 'H NMR (300 MHz), MS, and elemental
TH Darmstadt
1986). (Received
H.-C.FlGter,
Chem. Int. Ed. Engl. 24 (1985) 212.
5.
analysis
Angew.
G.L. Knaup,
1986)
1985; N. Hock, Diplomarbeit
TH Darmstadt