Synthesis of magnetically recyclable Fe3O4@NiO nanostructures for styrene epoxidation and adsorption application

Synthesis of magnetically recyclable Fe3O4@NiO nanostructures for styrene epoxidation and adsorption application

Author's Accepted Manuscript Synthesis of magnetically recyclable Fe3O4@NiO nanostructures for styrene epoxidation and adsorption application Tianyon...

757KB Sizes 1 Downloads 30 Views

Author's Accepted Manuscript

Synthesis of magnetically recyclable Fe3O4@NiO nanostructures for styrene epoxidation and adsorption application Tianyong Li, Chao Yang, Xuehui Rao, Feng Xiao, Jide Wang, Xintai Su

www.elsevier.com/locate/ceramint

PII: DOI: Reference:

S0272-8842(14)01547-8 http://dx.doi.org/10.1016/j.ceramint.2014.10.022 CERI9281

To appear in:

Ceramics International

Received date: Revised date: Accepted date:

21 August 2014 26 September 2014 1 October 2014

Cite this article as: Tianyong Li, Chao Yang, Xuehui Rao, Feng Xiao, Jide Wang, Xintai Su, Synthesis of magnetically recyclable Fe3O4@NiO nanostructures for styrene epoxidation and adsorption application, Ceramics International, http://dx.doi.org/ 10.1016/j.ceramint.2014.10.022 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

              

                  Ministry Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China *

Corresponding author. Tel. & fax: +86 991 8581018.

E-mail address: [email protected] (X. Su).      !   " #   $ %&'()& *     + %&' " # $     !    +  %&'(),&-./ *     #""   # " +   %&'()& *     #!0  %&'(),&-./" !"  " +  #   %&' #!/12 )& #%2  3+  %&'()& *  #  "!!0  0  , .0 #  4 !  " " 05/6+7  *+8  %&'()& *  " "  ""0 "40# 4    ,229.  ,779.,779.+ %&'()&  !    0  !  #  !  





 00  +    *"" *   !  ! 0 "40+ <ĞLJǁŽƌĚƐ%&'()& ": *  :":8     !:&0"4      &    !  3"  4 #  """  00       !   ;*1<+" 4  34,)&."   " *4! 04     !! + " "" 0 )&0   ;=*6<  ;7 2< !;*%<  " " ;'*=<  " 0!0  ;><+    #  )&" 3!""0   0  0?          ;6 7<+       "#3;/2 /<  )& #"  "0 0"4   4+-#    " 0     "   "! 0"" +      *  #         # 0 0   " 0  !4



/

  0;//*/=<+8   !#0 0      0    "0 0  *  " !0   00 ;// /%<+   +"  0!    !%&'( ( /& "0 # ! "  !;/'<++!0  %&'("( ! "! ",@)A.3  %&' 0  0 B;/1<+@+"    ! 00  " 0 "400! &/3+ ;/=<+A"0 0 ""   "!+  0! " "  *  4" ?  #0  #3 ,+ + !    ".+A   "   "    0#"    $0 "+ - #"0  0# ""%&'()& * 

   # 3 +  + #   "" 0 %&'()& *  "+ ! " "   # ""0 0 0  , .0? 4 !4    0 "4+8        0 00  0   +



%

! "   /++  0%&'()& *  "     %&' # $!      0 " # #   3 4   # " ;/><+  !%&'(),&-./" #0   %&'()& *  "!#*"   ?+ " " 0 ""0%&'" #0#C %D=-/&,+=1 . #   ,12 .0!  0#!  0 ,%+2 .  ,2+=1 .      "+ !  #0* * ,22 .+  # /22 02

+0  "  !" ## #  $#! ?    =2 0/  ;/6<+      *  %&'()& " #0! 0        +A" "  12 0 !   %&'" #"4   ,%2 .     ,/2 .    0%2+0# /0),)&%./#   ! 3+)4 0  0 %2  ! 4#00** ,22 .

"0=2 0=  # "



'

+ !%&'(),&-./" ## # $ #! ?  # =2  +   " 0)/  *"" " #  %12 0/  " 0 * ! 3%&'()&     + /+/+  $0"  !"#  $!*00 ,E.  3EF4* *00   0/*/G  0262#  Hα ,λ =+1'>6I.+   ",J8. #! - -*=22#    0223K+      ",J8. J E""  ",JE.#  #  0 J&'12 K@  "+ /+%+0    "    #   " ##+  " "  2 0 %&'()& "#12 0     02*122  *+0 0/   " ?!  ?#"       #$!LK*!,LK*."  ", $/112.M4N'76+  #    0/2  *# " + 4"#"0 %&'" + 0!  ,  O. "  ,9.#  0 0# ?C



1

qe =

removal (%) =

( C0 − Ce ) × V  m

C0 − C ×100%  C0

  2   ,  *.:  ?!  ,  *.:     00  ",  *.:? ?! " " " # 0 !,  *.:K 0  , .: 0 !, .+ /+'+J"40"0      #  !4 2 0  0 1  0 %0*B "4,B-@.  4# ! 0462 0%2 +    #" ?  4#0!  !+  0#$!P *'B # AE, $. 4*1 " )/  +  #    %+  $0 %&'()& *  " "   $"  0 * $"# !J8+ + ! # J8 0 %&'()& *  " " +A ! !  " "   " 0 0/12+ J ""  ",JE.0  *  



=

0 " 0)  &     0 0   34 #* " , + .+  "  "0 * $%&'()&    " $!E , +.+4Q0  "" + !/θ N%2+R %1+1R '%+R  1%+'R 1>+2R=/+=R " +  B S?,/θNλ.  /θ ""  02+/7> 2+/1% 2+/2 2+>/ 2+=/ 2+'6 #   ! 4,//2. ,%. ,'22. ,'//. ,1. ,''2.0 0%&', @E)+=*2=7.  " +& Q"3!%>+2R ''+=R =/+=R + #  " B  0 0 ,. ,/22. ,//2."0  ! *" )&, @E)+'>*2'7.  " +)  "!      "0  ! %&')&+  +/"  "J8 0 %&'"  %&'(),&-./  " %&'()& *  "+ +//!  !!   * $%&'" "   "" 0  # 0$0!5/12+A +/ /  !    %&'(),&-./ "   0 05/62 +  0  0 0 %&' ##""!        30   #!/25%2+ +/ /0 # J8 0%&'()& *  "+A !0   %&'()& "  0$# 05/62 " 0 + 0  # 0   " 



>

0!" 3  + !   %&'()& *   " ! 0 $+ %+/"" ## 4 !F    "0##!";/7<+A ""  %&'()& " """" 0 "0 + "  " ""0%&' " #  + !# " " 0 ! 00  0  #!  "  +%+A !!  ?!0    "  4" " 0%&'()& "#0 !/6+7  O+%&'"   "!0  !!   + LK*!""  "# 4!"#  0 ,'76 . "3 +  +%! # # 2 0 %&'()& "#12 0 ,   /2  * 

.  "00  #""41>9# /2+     

000  0 #"==+>9# %12#  "+   00   ! !     *    0 0  "#     !#)&0  +     !#   !



6

"!" ""  0#  "0 3 %&'()& " ""  #+ %+%  "0 "40 A#*3#  )&   00   "4  ;/2< %&'"   $ 4000 ;%2<+  %&'"   "0  000    "!     "0 0 %&'()& "+   "0 0 %&'()& "0 "40 ! + +' #     0"4  +A !!!  %&'()& "4 !      0 "40+ " 062    0229#   0 779 # /6 + 0"4#779+  "    "0 0%&'" 0 "40   #, +'.+0     "  0/6  %&'"  #  0 %&'()& "+&!  00  "4 0 %&'" #   0 %&'()& "+   %&'()& "

"  "0   0 %&')&" +A"  #   %&' #  !0!*" , !$    "  .  4



7

!$ # ;%<+8   *  " 00        0 "40+ !"! E T ;%/<+ A  3    00  0    "      #  +    "  !" "0  4+     #!+0  !   #0 000   4"   7%904+ !0    %&'()& "

  ! !+  $   A # ""    !%&'()&    0  *  + %&'()& *  "4 !    " " ,/6+7  *. !00 "0?+ 8  %&'()& *  ""4    0  "40+  " !   0   !4  0 #!00  0      !0 + "*"0   *    *0  " #    00  0  0   00   0 "  "0 0 +    " #! 00 "" #   " +



2

% &   #3#""!) ,)+//==2%/=%2/2. @ J  A@Q 0Q @ ,PA/2%26.J4 Q  @ ,/2%>/21.+ References [1] W.Y. Li, L.N. Xu, J. Chen, Co3O4 Nanomaterials in lithium–ion batteries and gas sensors, Adv. Funct. Mater. 15 (2005) 851–857. [2] C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E.G. Walsh, J.R. Morgan, Y.E. Chin, S. Sun, Au–Fe3O4 dumbbell nanoparticles as dual–functional probes, Angew. Chem. Int. Ed. 47 (2008) 173–176. [3] M. De, P.S. Ghosh, V.M. Rotello, Applications of nanoparticles in biology, Adv. Mater. 20 (2008) 4225–4241. [4] Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate, Thermochim. Acta 437 (2005) 106–109. [5] D. Wang, R. Xu, X. Wang, Y. Li, NiO nanorings and their unexpected catalytic property for CO oxidation, Nanotechnology 17 (2006) 979. [6] Y. Li, B. Zhang, X. Xie, J. Liu, Y. Xu, W. Shen, Novel Ni catalysts for methane decomposition to hydrogen and carbon nanofibers, J. Catal. 238 (2006) 412–424. [7] N.D. Hoa, S.A. El-Safty, Synthesis of mesoporous NiO nanosheets for the detection of toxic NO2 gas, Chem. Eur. J. 17 (2011) 12896–12901. [8] T. Zhu, J.S. Chen, X.W. Lou, Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area, J. Phys. Chem. C 116 (2012) 6873–6878. [9] C. Luyo, R. Ionescu, L.F. Reyes, Z. Topalian, W. Estrada, E. Llobet, C.G. Granqvist, P. Heszler, Gas sensing response of NiO nanoparticle films made by reactive gas deposition, Sens. Actuators, B 138 (2009) 14–20. [10] N.G. Cho, I.S. Hwang, H.G. Kim, J.H. Lee, I.D. Kim, Gas sensing properties of p–type hollow NiO hemispheres prepared by polymeric colloidal templating method, Sens. Actuators, B 155 (2011) 366–371. [11] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano–sized transition–metal oxides as negative– electrode materials for lithium–ion batteries, Nature 407 (2000) 496–499.





[12] B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V.R. Chowdari, A.T.S. Wee, C.T. Lim, C.H. Sow, Fabrication of NiO nanowall electrodes for high performance lithium ion battery, Chem. Mater. 20 (2008) 3360–3367. [13] M.Y. Cheng, B.J. Hwang, Mesoporous carbon–encapsulated NiO nanocomposite negative electrode materials for high–rate Li–ion battery, J. Power Sources 195 (2010) 4977–4983. [14] C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile synthesis and self–assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors, J. Mater. Chem. 19 (2009) 5772– 5777. [15] S. Ding, T. Zhu, J.S. Chen, Z. Wang, C. Yuan, X.W. Lou, Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance, J. Mater. Chem. 21 (2011) 6602–6606. [16] S. Xiong, C. Yuan, X. Zhang, Y. Qian, Mesoporous NiO with various hierarchical nanostructures by quasi– nanotubes/nanowires/nanorods self–assembly: controllable preparation and application in supercapacitors, CrystEngComm 13 (2011) 626–632. [17] Z.Y. Wang, H.C. Chou, J. Wu, D.P. Tsai, G. Mul, CO2 photoreduction using NiO/InTaO4 in optical–fiber reactor for renewable energy, Appl. Catal. A 380 (2010) 172–177. [18] L. Ai, Y. Zeng, Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution, Chem. Eng. J. 215 (2013) 269–278. [19] J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, K.W. Kim, H.J. Noh, J.H. Park, C.J. Bae, J.G. park, T. Hyeon, Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self–assembled superlattices, and catalytic applications in the Suzuki coupling reaction, Adv. Mater. 17 (2005) 429–434. [20] V.R. Choudhary, R. Jha, P. Jana, Selective epoxidation of styrene to styrene oxide by TBHP using simple transition metal oxides (NiO, CoO or MoO3) as highly active environmentally–friendly catalyst, Catal. Commun. 10 (2008) 205–207. [21] S. Ren, C. Yang, C. Sun, Y. Hui, Z. Dong, J. Wang, X. Su, Novel NiO nanodisks and hollow nanodisks derived from Ni(OH)2 nanostructures and their catalytic performance in epoxidation of styrene, Mater. Lett. 80 (2012) 23–25. [22] D.H. Zhang, G.D. Li, J.X. Li, J.S. Chen, One–pot synthesis of Ag–Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene, Chem. Commun. 29 (2008) 3414–3416.



/

[23] C. Wang, H. Daimon, S. Sun, Dumbbell–like Pt−Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction, Nano Lett. 9 (2009) 1493–1496. [24] S.K. Li, F.Z. Huang, Y. Wang, Y.H. Shen, L.G. Qiu, A.J. Xie, S.J. Xu, Magnetic Fe3O4@C@Cu2O composites with bean–like core/shell nanostructures: synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants, J. Mater. Chem. 21 (2011) 7459–7466. [25] S. Xuan, Y.X.J. Wang, J.C. Yu, K.C.F. Leung, Preparation, characterization, and catalytic activity of core/shell Fe3O4@ polyaniline@ Au nanocomposites, Langmuir 25 (2009) 11835–11843. [26] M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon, A magnetically recyclable nanocomposite catalyst for olefin epoxidation, Angew. Chem. 119 (2007) 7169–7173. [27] P. Jeevanandam, Y. Koltypin, A. Gedanken, Synthesis of nanosized Į–nickel hydroxide by a sonochemical method, Nano Lett. 1 (2001) 263–266. [28] Z. Liu, M. Li, F. Pu, J. Ren, X. Yang, X. Qu, Hierarchical magnetic core–shell nanoarchitectures: non–linker reagent synthetic route and applications in a biomolecule separation system, J. Mater. Chem. 22 (2012) 2935– 2942. [29] M. Purkait, A. Maiti, S. DasGupta, S. De, Removal of Congo red using activated carbon and its regeneration, J. Hazard. Mater. 145 (2007) 287–295. [30] C. Huang, H. Zhang, Z. Sun, Y. Zhao, S. Chen, R. Tao, Z. Liu, Porous Fe3O4 nanoparticles: Synthesis and application in catalyzing epoxidation of styrene, J. Colloid Interface Sci. 364 (2011) 298–303. [31] M.M. Schubert, S. Hackenberg, A.C. Van Veen, M. Muhler, V. Plzak, R.J. Behm, CO oxidation over supported gold catalysts–“inert” and “active” support materials and their role for the oxygen supply during reaction, J. Catal. 197 (2001) 113–122. [32] Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Zhao, Multifunctional mesoporous composite microspheres with well–Designed nanostructure: A highly integrated catalyst system, J. Am. Chem. Soc. 132 (2010) 8466–8473.

 

%

   '     0  "" 0 %&'()& *  "+ Fig. 1. (a) and (b) SEM images of the obtained Fe3O4@NiO core-shell composite microspheres. (c) A typical EDS spectrum of the Fe3O4@NiO microspheres. (d) XRD pattern of Fe3O4@NiO microspheres.  ! J8 0 ,!.*""%&'"  , .%&'(),&-./

   "  ,0.%&'()& *  "+   ,." 0 %&'()& *  "%&'" : ,!."0 %&'()& *  ":" 0   # %&'()& "  "+,"-N>:N/1 .+    "0 0 %&'()& " %&'" 0 "40 +



'

(       0  %&'()& " "40;< 

(       0  %&'()& " "40;<  



/

%

' 

1 

0&;!<;9<; <

76

76

7=

71

7%

;<  C2 0  0 1 0  %0 *B "4,B-@. /6 04+ ;!<&N4+ ; < #!   " # "  , !$.+



1

Figure

Figure

Figure

Figure

Figure