CHAPTER TWO
The Calculation Matrix to Follow Up Recipes 2.1 THE FOLLOWING UP OF RECIPE MODIFICATIONS IN A CALCULATION MATRIX When talking about recipes and recipe modifications, a tool is required to follow up any modification of the caloric and nutritional values in a clearly arranged way. That is even more important as the modern consumer requires more information than in the past. Typical issues are: • How much of those nutrients being favourable in our diet, such as proteins, fibre, or some minerals and micronutrients are in the product based on the recipe. Nutrients are considered to be essential for improving our well-being and assisting in reducing the risk of some diseases. • How much of more critical nutrients to limit as much as possible are in the product based on the recipe, such as total fat and here primarily saturated fat and trans fat, added sugars, sodium or cholesterol. Overconsumption of any of these can increase the risk of certain diseases. • The impact of a recipe change on the nutrient density and the calories in the product based on the recipe. For nutrient density data, see the FAO/INFOODS Density Database Version 2.0 (2012). Directions for recipe modifications can be driven from different aspects, for example: a healthier composition as addressed above, clean labels with as few additives as possible. However, products, due to the influence of the ingredient ratios on baking processes, cream properties and the final taste and texture, are quite difficult to modify. Every ingredient has an important role in the final product. • Fats impart flavour and richness, improve texture, tenderness and moistness, promote flakiness and lightness, and make foods smooth and creamy. In baking masses, they regulate the gluten development in mixing and positively influence the taste and texture of bakery products. Fillings for crisp bakery products rely on a minimum fat level for a smooth and pleasant eating texture, so a general reduction of the high caloric component fat will be difficult to achieve. However, saturated fats can be reduced and trans fats eliminated. • Sugars contribute to the sweet taste of products, mostly an essential feature. They increase tenderness and browning in baked goods, act as a preservative in waffles The Technology of Wafers and Waffles II https://doi.org/10.1016/B978-0-12-809437-2.00002-2
© 2019 Elsevier Inc. All rights reserved.
13
14
The Technology of Wafers and Waffles II
• •
and similar intermediate moisture foods. Modifications of recipes can decrease the sugar content whilst still being tasty. Salt provides a round flavour in wafers and waffles. Fibre has an important role in bowel health. It can be easily incorporated to increase the overall fibre content of recipes and reduce the calories. When adding fibre to a baking mass recipe, the water content has to be adjusted.
2.1.1 The Informed Consumer: Improving Nutritional Information to Consumers Optimizing nutritional information to consumers is a key issue for food authorities worldwide. For consumers interested in nutritional information, a clear, comparable labelling is a precondition for good selections. At present, I rate the labelling system of the European Union, based on the EU Food Information Regulation 1169/2011, being fully in place since the end of 2016, as a valuable tool here. In a very transparent way for 100 g or 100 mL, product information on the ‘big seven’ nutrient values (Table 2.1) in tabular form is the minimum requirement: energy values in kilojoules (kJ)/kilocalories (kcal), fat, saturated fatty acids, carbohydrates, sugar, protein and salt. Optionally, a few further nutrient data and data on size/piece-related quantity can be displayed. Table 2.1 European Union: Elements and Their Sequence on Food Labels Information on Units, per 100 g/mL
Comment
Energy content Fat, total of which saturated of which monounsaturated of which polyunsaturated Carbohydrate, total of which sugars of which polyols of which starch of which fibre Protein Salt Vitamins and minerals
Big seven Big seven Big seven Optional Optional Big seven Big seven Optional Optional Optional Big seven Big seven Optional
kJ and kcal g g g g g g g g g g g Specified in EU regulation 1169/2011
EU Food Information Regulation 1169/2011.
The North American ‘nutrition facts’ labelling has also been updated recently in a positive way. However, it concentrates very much on ‘serving sizes’ that are defined somewhat arbitrarily which reduces the comparability and transparency.
2.1.2 The Big Seven—An Example For the mandatory European nutrient declaration for 100 g (mL) of a food product, Table 2.2 has an example for a ready-to-eat fresh egg waffle as found on the labels.
15
The Calculation Matrix to Follow Up Recipes
Table 2.2 Example: European Nutrition Labelling for a Ready-to-Eat Fresh Egg Waffle Average Nutritional Value Per 100 g Comment
Energy (kJ/kcal) Fat, total (g) of which saturated fatty acids (g) Carbohydrates (g) of which sugars (g) of which fibre (g) Protein (g) Salt (g)
2070/496 29 3 49 35 1.8 8.8 0.78
Big seven Big seven Big seven Big seven Big seven Optional Big seven Big seven
Retrieved July 2018, Online shop in Austria.
2.1.3 European and American Carbs Are Different Methods for calculating carbohydrates for nutrition labelling are different in Europe and the United States (ESHA Research, 2015). In the European Union and other countries, ‘carbohydrates’ are defined as ‘available carbohydrate’, basically adding up sugar and starches. Fibre is not included and calculated separately at different caloric value. In the United States and Canada, carbohydrates are ‘carbohydrate by subtraction’, the total product weight after subtracting the analysed grams of protein, fat, alcohol, water, and ash. Then the carbohydrate value contains sugars, starch, fibre, plus small amounts of other compounds not fitting in one of the other groups. Table 2.3 illustrates the split in treatment of carbohydrate classes in Europe with respect to their caloric value. Due to some differences in caloric values of single carbohydrate substances in the United States, the caloric values on final products may differ.
Table 2.3 European Union Carbohydrate Classification Class
Examples
Monosaccharides Disaccharides Polyols
Glucose, fructose, galactose Sucrose, lactose, maltose Isomalt, maltitol, sorbitol, xylitol, erythritol Fructo-oligosaccharides, malto-oligosaccharides Amylose, amylopectin, maltodextrins Cellulose, pectins, hemicelluloses, gums, inulin
Oligosaccharides Starch polysaccharides Non-starch polysaccharides (dietary fibre)
Substantial differences in energy values to North American standards apply.
Energy Content (kJ/kcal)
17/4 17/4 10/2.4 17/4 17/4 8/2
16
The Technology of Wafers and Waffles II
In Table 2.4, for the same product, crisp wafer cookies, the European and North American labelling is shown in comparison. Table 2.4 Comparison of Nutrition Labeling in EU and North America for Butter Crisps (A) European Label Average Nutritional Value
Energy (Kj/Kcal) Fat, total (g) Of which saturated fatty acids, (g) Carbohydrates (g) Of which sugars (g) Protein (g) Salt (g)
Per 100 gram
Per 30 gram
1980/472 16 10 74 42 5.9 0.50
594/142 4.9 3.1 22 12 1.8 0.20
(B) North American Label
(A) Retrieved July 2018 www.mysupermarket.co.uk/tesco-price-comparison/Biscuits/Jules_Destrooper_Butter_ Crisps_100g.html. (B) Retrieved July 2018 www.walmart.com/ip/Jules-Destrooper-Cookies-Butter-Crisps-Case-of-123-5-oz/10423068- Serving size 28.57g (3.5 servings is one 100 g pack).
2.2 THE RECIPE CALCULATION TABLES When working in product development, I tried to design tools—recipe calculation matrices—for an easy overview of the composition and the nutrient content of a wafer or
The Calculation Matrix to Follow Up Recipes
waffle product. By their application, the impact of any recipe change is visible easily. The calculation of the main nutrients within a single page Excel sheet helps to keep any composition targets from the beginning within the desired ranges. These calculation matrices proved to be valuable in product characterization and new product development for wafers, waffles and filling creams. The nutritional data can be sourced from local databases in the different countries and regions. The references section has the respective links. The tables can be extended easily to include the costing, or to combine with a calculation of ingredient input vs. product output.
2.2.1 Variant A—Calculating the ‘Big Seven’ Fig. 2.1 displays such a ‘big seven’ calculation matrix for ‘fresh egg’ waffles. Optionally, columns on costing of the recipe can be included as well. As we are talking primarily about technology and new product development, I refrained from adding these here in order not to reduce the readability. Such a calculation matrix can be added later. For an explanation of the columns and areas carrying circles with a number, see the annotations below. All other areas at the bottom of Fig. 2.1 and their data are selfexplanatory. 2.2.1.1 Annotations to the Columns of the Recipe Calculation Matrix in Fig. 2.1 The numbers highlighted in black circles mostly relate to the ‘input’ areas that are important for the calculations. ❶ Sequence of ingredient addition, as recommended best. ① Ingredient list. ❷ Quantity of the single ingredients, here in kilograms ❸ Moisture content figures for the single ingredients in % ❹ Energy content figures for the single ingredients, here in kilojoules ❺ Total fat content figures for the single ingredients in % ❻ Saturated fat content figures for the single ingredients in % ❼ Total carbohydrate content figures for the single ingredients in % ❽ Sugar content figures for the single ingredients in % ❾ Protein content figures for the single ingredients in % ❿ Sodium content figures for the single ingredients in % ⓫ Target moisture content figure for the waffles as packed after cooling in % The numbers in white circles mostly relate to areas with calculation results. ② Percentage of the single ingredients, adding up to 100% ③ Ingredients in bakers’ percentage format, related to flours ¼ 100% ④ Percentage of the single ingredients in the final product ⑤ Percentage of dry matter the single ingredients contribute to the batter/dough ⑥ Percentage of moisture the single ingredients contribute to the batter/dough
17
18 The Technology of Wafers and Waffles II
Fig. 2.1 Recipe calculation matrix variant A: big seven data for fresh egg waffles. Diagram: © Karl Tiefenbacher 2015.
The Calculation Matrix to Follow Up Recipes
⑦ Estimation of the energy in kilojoules the single ingredients contribute to the final product ⑧ Energy content of the single ingredients in kcal/100 g ⑨ Contribution of the single ingredients to the total fat content of the final product in % ⑩ Contribution of the single ingredients to the saturated fat content of the final product in % ⑪ Contribution of the single ingredients to the carbohydrate content of the final product in % ⑫ Contribution of the single ingredients to the sugar content of the final product in % ⑬ Contribution of the single ingredients to the protein content of the final product in % ⑭ Contribution of the sodium content in the single ingredients, expressed as ‘sodium chloride’ in the final product in % ⑮ Space to enter the sources of the data and for comments. ND28 refers to the ‘USDA National Nutrient Database for Standard Reference’ in its latest release No. 28 ⑯ Calculated percentage of fresh eggs in the waffle recipe according to the ‘quantitative ingredients declaration’ (QUID) regulations in the European Union
2.2.2 Variant B—Calculating No/Low Sugar Wafer Batters Fig. 2.2 displays a calculation matrix for batters or doughs, such as for no/low sugar wafers, wafer cookies/biscuits, or other bakery products. Optionally, columns on costing of the recipe can be included as well. As we are talking about technology and new product development primarily, I refrained from adding these here in order not to reduce the legibility. Such a calculation matrix can be added later. For an explanation of the columns and areas carrying circles with a number, see the annotations below. All other areas in Fig. 2.2 and their data are self-explanatory. 2.2.2.1 Annotations to the Columns of the Recipe Calculation Matrix in Fig. 2.2 The numbers highlighted in black circles mostly relate to the ‘input’ areas that are important for the calculations. ❶ Sequence of ingredient addition, as recommended best ① Ingredient list ❷ Quantity of the single ingredients, here in kilograms ❸ Moisture content figures for the single ingredients in % ❹ Total fat content figures for the single ingredients in % ❺ Protein content figures for the single ingredients in % ❻ Total carbohydrate content figures for the single ingredients in % ❼ Minerals (ash) content figures for the single ingredients in % ❽ Fibre content figures for the single ingredients in % ❾ Final moisture content figure for the wafers after baking and cooldown in %
19
20 The Technology of Wafers and Waffles II
Fig. 2.2 Recipe calculation matrix variant B: batter/dough for no/low sugar wafers or other bakery products. Diagram: © Karl Tiefenbacher 2011.
The Calculation Matrix to Follow Up Recipes
The numbers in white circles mostly relate to areas with calculation results. ② Percentage of the single ingredients, adding up to 100% ③ Ingredients in bakers’ percentage format, related to flours ¼ 100% ④ Percentage of the single ingredients in the final product ⑤ Percentage of moisture the single ingredients contribute to the batter/dough ⑥ Percentage of dry matter the single ingredients contribute to the batter/dough ⑦ Contribution of the single ingredients to the total fat content of the final product in % ⑧ Contribution of the single ingredients to the protein content of the final product in % ⑨ Contribution of the single ingredients to the carbohydrate content of the final product in % ⑩ Contribution of the single ingredients to the minerals (ash) content of the final product in % ⑪ Contribution of the single ingredients to the fibre content of the final product in % ⑫ Space to enter the sources of the data and for comments. ND28 refers to the ‘USDA National Nutrient Database for Standard Reference’ in its latest release No. 28 ⑬ Summation of the composition data ❸ to ❽ entered from the data source for checking the correctness of these entries ⑭ ‘Area density’ figure for flat wafer sheets, calculated from sheet weight and sheet area data
2.2.3 Variant C—Calculating Sugar Wafer Batters Fig. 2.3 displays a calculation matrix for all kinds of sugar wafer batters, such as for sugar cones, flute wafers, fan wafers, or similar bakery products. Optionally columns on costing of the recipe can be included as well. On the subject of technology and new product development, I refrained from adding these here in order not to reduce the legibility. Such a calculation matrix can be added later. For an explanation of the columns and areas carrying circles with a number, see the annotations below. All other areas in Fig. 2.3 and their data are self-explanatory. 2.2.3.1 Annotations to the Columns of the Recipe Calculation Matrix in Fig. 2.3 The numbers highlighted in black circles mostly relate to the ‘input’ areas that are important for the calculations. ❶ Sequence of ingredient addition, as recommended best ① Ingredient list ❷ Quantity of the single ingredients, here in kilograms ❸ Moisture content figures for the single ingredients in % ❹ Total fat content figures for the single ingredients in % ❺ Protein content figures for the single ingredients in % ❻ Total carbohydrate content figures for the single ingredients in %
21
22 The Technology of Wafers and Waffles II
Fig. 2.3 Recipe calculation matrix variant C: batter for sugar wafers. Diagram: © Karl Tiefenbacher 2011.
The Calculation Matrix to Follow Up Recipes
❼ Minerals (ash) content figures for the single ingredients in % ❽ Fibre content figures for the single ingredients in % ❾ Final moisture content figure for the wafers after baking and cooldown in % The numbers in white circles mostly relate to areas with calculation results. ② Percentage of the single ingredients, adding up to 100% ③ Ingredients in bakers’ percentage format, related to flours ¼ 100% ④ Percentage of the single ingredients in the final product ⑤ Percentage of moisture the single ingredients contribute to the batter/dough ⑥ Percentage of dry matter the single ingredients contribute to the batter/dough ⑦ Contribution of the single ingredients to the total fat content of the final product in % ⑧ Contribution of the single ingredients to the protein content of the final product in % ⑨ Contribution of the single ingredients to the carbohydrate content of the final product in % ⑩ Contribution of the single ingredients to the minerals (ash) content of the final product in % ⑪ Contribution of the single ingredients to the fibres content of the final product in % ⑫ Space to enter the sources of the data and for comments. ND28 refers to the ‘USDA National Nutrient Database for Standard Reference’ in its latest release No. 28 ⑬ Summation of the composition data ❸ to ❽ entered from the data source for checking the correctness of these entries
2.2.4 Variant D—Calculating Waffle Batters Optionally, columns on costing of the recipe can be included as well. On the subject of technology, I refrained from adding these here in order not to reduce the legibility. For an explanation of the columns and areas carrying circles with a number, see the annotations to the columns of the recipe calculation matrix in Fig. 2.4. All other areas in Fig. 2.4 and their data are self-explanatory. 2.2.4.1 Annotations to the Columns of the Recipe Calculation Matrix in Fig. 2.4 The numbers highlighted in black circles mostly relate to the ‘input’ areas that are important for the calculations. ❶ Sequence of ingredient addition, as recommended best ① Ingredient list ❷ Quantity of the single ingredients, here in kilograms ❸ Moisture content figures for the single ingredients in % ❹ Total fat content figures for the single ingredients in % ❺ Protein content figures for the single ingredients in % ❻ Total carbohydrate content figures for the single ingredients in % ❼ Minerals (ash) content figures for the single ingredients in % ❽ Fibre content figures for the single ingredients in %
23
24 The Technology of Wafers and Waffles II
Fig. 2.4 Recipe calculation matrix variant D: batter for waffles. Diagram: © Karl Tiefenbacher 2013.
The Calculation Matrix to Follow Up Recipes
❾ Target moisture content figures for the waffles as packed after cooling in % The numbers in white circles mostly relate to areas with calculation results. ② Percentage of the single ingredients, adding up to 100% ③ Ingredients in bakers’ percentage format, related to flours ¼ 100% ④ Percentage of the single ingredients in the final product ⑤ Percentage of moisture the single ingredients contribute to the batter/dough ⑥ Percentage of dry matter the single ingredients contribute to the batter/dough ⑦ Contribution of the single ingredients to the total fat content of the final product in % ⑧ Contribution of the single ingredients to the protein content of the final product in % ⑨ Contribution of the single ingredients to the carbohydrate content of the final product in % ⑩ Contribution of the single ingredients to the minerals (ash) content of the final product in % ⑪ Contribution of the single ingredients to the fibre content of the final product in % ⑫ Space to enter the sources of the data and for comments. ND28 refers to the ‘USDA National Nutrient Database for Standard Reference’ in its latest release No. 28 ⑬ Summation of the composition data ❸ to ❽ entered from the data source for checking the correctness of these entries ⑭ Percentage of fresh eggs in the waffle recipe according to the QUID (quantitative ingredients declaration) regulations of the European Union
2.2.5 Variant E—Calculating Sugar-Fat Filling Creams Optionally, columns on costing of the recipe can be included as well. On the subject of technology, I refrained from adding these here in order not to reduce the legibility. For an explanation of the columns and areas carrying circles with a number, see the annotations to the columns of the recipe calculation matrix in Fig. 2.5. All other areas in Fig. 2.5 and their data are self-explanatory. 2.2.5.1 Annotations to the Columns of the Recipe Calculation Matrix in Fig. 2.5 The numbers highlighted in black circles mostly relate to the ‘input’ areas that are important for the calculations. ❶ Sequence of ingredient addition, as recommended best ① Ingredient list ❷ Quantity of the single ingredients, here in kilograms ❸ Moisture content figures for the single ingredients in % ❹ Total fat content figures for the single ingredients in % ❺ Protein content figures for the single ingredients in % ❻ Total carbohydrate content figures for the single ingredients in % ❼ Minerals (ash) content figures for the single ingredients in % ❽ Fibre content figures for the single ingredients in %
25
26 The Technology of Wafers and Waffles II
Fig. 2.5 Recipe calculation matrix variant E: sugar-fat filling creams. Diagram: © Karl Tiefenbacher 2015.
The Calculation Matrix to Follow Up Recipes
The numbers in white circles mostly relate to areas with calculation results. ② Percentage of the single ingredients, adding up to 100% ③ Percentage of the single ingredients in the final product ④ Percentage of moisture the single ingredients contributing to the cream filling ⑤ Percentage of dry matter the single ingredients contributing to the cream filling ⑥ Contribution of the single ingredients to the total fat content of the cream filling in % ⑦ Contribution of the single ingredients to the protein content of the cream filling in % ⑧ Contribution of the single ingredients to the carbohydrate content of the cream filling in % ⑨ Contribution of the single ingredients to the minerals (ash) content of the cream filling in % ⑩ Contribution of the single ingredients to the fibre content of the cream filling in % ⑪ Space to enter the sources of the data and for comments. ND28 refers to the ‘USDA National Nutrient Database for Standard Reference’ in its latest release No. 28 ⑫ Summation of the composition data ❸ to ❽ entered from the data source for checking the correctness of these entries ⑬ Calculated percentage of sugars in the recipe ⑭ Calculated ratio of non-fat solids to fat in the recipe
2.3 FOOD COMPOSITION DATABASES In the United States, the Department of Agriculture (USDA) within its Agricultural Research Service (ARS) maintains the worldwide biggest food products databases, the USDA Food Composition Databases. A new initiative from 2016 is the ‘USDA Branded Food Products Database’, the goal of which is to enhance public health and the sharing of open data by complementing the USDA National Nutrient Database (NND) with the nutrient composition of branded foods and private label data provided by the food industry. The submission of data to the USDA Branded Food Products Database is voluntary. These data are publicly available and updated continuously. The ‘Branded Food Products Database’ can be retrieved together within the USDA National Nutrient Database (NND): 76,666 foods https://ndb.nal.usda.gov/ndb/ or https://ndb.nal.usda.gov/ndb/search/list See also the Private American Nutrition Value Database www.nutritionvalue.org/ Canadian Food Composition Database, Version 2016 https://food-nutrition.canada. ca/cnf-fce/newSearch-nouvelleRecherche.do?action¼new_nouveau Danish Food Composition Database, Version 2018 https://frida.fooddata.dk/index. php?lang¼en Dutch Food Composition Database, Version 2016, 2389 food items http://www. rivm.nl/en/Topics/D/Dutch_Food_Composition_Database
27
28
The Technology of Wafers and Waffles II
Finnish Food Composition Database, Version 2016, over 3600 foods https://fineli.fi/ fineli/en/index? French Food Composition Database, Version 2013, over 1500 foods and dishes https://pro.anses.fr/tableciqual/ German Food Composition Database http://www.ernaehrung.de/lebensmittel/ Swedish Food Composition Database, Version 2015, over 2000 foods and dishes http://www.livsmedelsverket.se/en/food-and-content/naringsamnen/ livsmedelsdatabasen/ Swiss Food Composition Database, Version 2015, 10,500 food items http://www. naehrwertdaten.ch/request?xml¼MessageData&xml¼MetaData&xsl¼Start& lan¼en&pageKey¼Start United Kingdom: Composition of Foods Integrated Dataset (CoFID) 2015 https:// www.gov.uk/government/publications/composition-of-foods-integrated-datasetcofid?utm_source¼MW7+List+March+2015&utm_campaign¼947c9d4b28Newsletter_2_December_2013_FINAL12_13_2013&utm_medium¼email&utm_ term¼0_3b8ecbdaea-947c9d4b28-95444717; www.gov.uk/government/uploads/ system/uploads/attachment_data/file/417175/McCance___Widdowson_s_Comp_ of_Foods_Integrated_Dataset_User_Guide.pdf
FURTHER READING ESHA Research, 2015. How Carbs Are Calculated in Different Countries. https://www.esha.com/howcarbs-are-calculated-in-different-countries/. European Commission, Health and Consumers Directorate-General, 2012. Guidance document for competent authorities for the control of compliance with EU legislation on regulation (EU) No 1169/2011. https://www.fsai.ie/uploadedFiles/guidance_tolerances_december_2012.pdf. FAO/INFOODS Density Database Version 2.0, 2012. http://www.fao.org/docrep/017/ap815e/ap815e. pdf. Roe, M.A., Bell, S., Oseredczuk, M., Christensen, T., Westenbrink, S., Pakkala, H., Presser, K., Finglas, P.M., 2013. Updated Food Composition Database for Nutrient Intake, EFSA Supporting Publication 2013-EN-355. 34 pp http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2013.EN-355/pdf.