The effect of electromagnetic fields on the evaporation of metals

The effect of electromagnetic fields on the evaporation of metals

Volume 24A. n u m b e r 9 THE EFFECT PHYSICS OF LETTERS ELECTROMAGNETIC 24 April 1967 FIELDS OF ON THE E VAPCRATION METALS K. SCHRETZMANN...

117KB Sizes 5 Downloads 84 Views

Volume 24A. n u m b e r 9

THE

EFFECT

PHYSICS

OF

LETTERS

ELECTROMAGNETIC

24 April 1967

FIELDS OF

ON

THE

E VAPCRATION

METALS

K. SCHRETZMANN I n s t i t u t e of N e u t r o n P h y s i c s and R e a c t o r T e c h n i c a l S c i e n c e Nuclear Research Center Karlsruhe

Received 16 March 1967

E x p e r i m e n t s with heat pipes heated by induction have shown the evaporation of m e t a l s in vacuum is r e duced by one third where an e l e c t r o m a g n e t i c field of about 0.6 V / e m and 60 g a u s s is p r e s e n t .

A h e a t p i p e [ 1 , 2 ] m a n u f a c t u r e d of s t a i n l e s s s t e e l and filled with s o d i u m w a s put into an e v a c u a t e d g l a s s t u b e c o o l e d by w a t e r a n d w a s h e a t e d b y i n d u c t i o n , s e e fig. 1. T h e i n d u c t i o n c o i l w a s 4 c m a b o v e t h e l o w e r e n d of t h e h e a t p i p e a n d w a s c o n n e c t e d to a 15 k W - g e n e r a t o r w o r k i n g a t a b o u t 4 0 0 k H z . T h e t u b e r a d i a t e s t h e p o w e r on t h e

Io~

~ '-~,,.

SICM

J0

I -30

q TOVACUUM PUMP 8) SECONDEVAPORATION

40. "G"R-/CM2

20, 10.

I

-30

[

C) THIRD EVAPORATION

HEAT PiPE

S/CM I

I

I B

D

4o P-G'E-"C:M2

10 CM

4CM

t

B

-30

A

q

30

J

INDUCTION COIL

Fig, 2. T h i c k n e s s of a cover m a d e by the evaporation of a s t a i n l e s s steel tube in a e l e c t r o m a g n e t i c field. O middle of the tube, A position of the coil during the e v a poration, B position of coil during the p r e v i o u s evaporation. WAT~I~ET

Fig. 1. A r r a n g e m e n t of the evaporation e x p e r i m e n t (A). 478

whole surface. The power was completely s o r b e d by the w a t e r and w a s m e a s u r e d by a n d r i s e of t e m p e r a t u r e . The temperature h e a t p i p e m e a s u r e d by t h e r m o c o u p l e s w a s

abits flow of t h e almost

Volume 24A, number 9

PHYSICS LETTERS

the s a m e all o v e r the s u r f a c e of the tube - 930 to 1055°C - with the e x c e p t i o n of the r e g i o n n e a r the c o i l , w h e r e it w a s h i g h e r by 57 to 77°C on a c c o u n t of the high s p e c i f i c i n w a r d h e a t flow. A f t e r one h o u r the g l a s s tube was s l i g h t l y c o v e r e d with m e t a l . The d e p o s i t was not s y m m e t r i c a l a r o u n d the m i d d l e of the h e a t pipe. On the s i d e of the h e a t e d r e g i o n it was l e s s d e n s e than on the o t h e r s i d e at the s a m e d i s t a n c e f r o m the m i d d l e . The o b s e r v a t i o n w a s c o n f i r m e d by p h o t o m e t r i c m e a s u r e m e n t s of the t h i c k n e s s of the c o v e r . With the t o t a l m a s s of the d e p o s i t e d m e t a l o b t a i n e d by c h e m i c a l a n a l y s i s we got the t h i c k n e s s in ~g/cm 2, shown in fig. 2 (A). The dashed line is the thickness on the left side. Thickness is reduced by one third near the coil. The peak above A is caused by the higher temperature near the coil. To test whether the observed effect is due to a not homogeneous tube material the heat pipe was turned and the experiment was repeated. We again obtain less deposit in the heated part of the tube than in the other part, see fig. 2 (B).

THE

QUINTET

STATE

OF

24April 1967

To t e s t w h e t h e r the e f f e c t is due e i t h e r to an e q u a l i n n e r d i a m e t e r of the g l a s s tube o r to the r i s e in t e m p e r a t u r e of the c o o l i n g w a t e r (4°C) o r to the c h a n g e a b l e p r e s s u r e in the e v a c u a t e d s p a c e b e t w e e n h e a t p i p e and g l a s s tube, the g l a s s tube and the w a t e r f l o w w e r e turned. H e r e , too, we obtain an u n s y m m e t r i c a l c o v e r a s in the f i r s t and s e c o n d e v a p o r a t i o n , s e e fig. 2(C). The s m a l l e r t h i c k n e s s n e a r the c o i l is a c c o u n t e d to the e l e c t r o m a g n e t i c field. E l e c t r i c and m a g n e t i c f i e l d s t r e n g t h e v a l u a t e d f r o m p o w e r [3] w e r e about 0.6 V / c m and 60 g a u s s . I e x p r e s s my thanks to Dr. H e l g a S c h n e i d e r , N. R. C. K a r l s r u h e , f o r c h e m i c a l a n a l y s i s .

1 . G . M . G r o v e r . T . P . C o t t e r and G.F.Erickson. J.Appl. Phys.35 (1964) 1990. 2.S.Dorner, F . R e i s s and K.Schretzmann. KFK 512 (1966). 3.K. Schretzmann, Elektrow~lrme (Germany) 24 (1966) 415.

THE

PYRENE

EXCIMER

J. B. BI1RKS

Departrnent of Physics, Uniz,ersity of Baghdad, Baghdad. Iraq Received 16 March 1967 5D*, 3D* and 1D*, the quintet, dissociated triplet, and singlet excimer states of pyrene are produced by triplet-triplet association. 5D* is long-lived and undergoes intersystem crossing, after thermal activation. into 1D*. The experimental data agree with the theory.

The d e l a y e d f l u o r e s c e n c e of p y r e n e (M) in s o l u tion is due to t r i p l e t - t r i p l e t (3M* +3M*) a s s o c i a tion [1] to p r o d u c e an e x c i t e d e x c i m e r D** [2]. A f r a c t i o n a/(1 +a) of D** is c o n v e r t e d to the l o w e s t e x c i m e r s i n g l e t s t a t e 1D*, and the r e m a i n i n g f r a c t i o n 1/(1 + a ) d i s s o c i a t e s r a p i d l y into 1M* + M. In e t h a n o l [1,2] o r e y c l o h e x a n e [3] s o l u t i o n s at T >i 2 9 0 ° K , a = 2.0; at l o w e r t e m p e r a t u r e s a is r e d u c e d [4]. A s i m p l e m u l t i p l i c i t y a r g u m e n t [5] e x p l a i n s the On short leave of absence from Atomic and Molecular Physics Group, The Schuster Laboratory, University of Manchester, England (from which address reprints should be requested).

v a l u e of a = 2.0. T h e r e a r e 9 s t a t e s of D**, 1 s i n g l e t 1D**, 3 t r i p l e t s 3D**, and 5 q u i n t e t s 5D**, which it is a s s u m e d a r e f o r m e d with e q u a l p r o b a b i l i t y . 3D** (i. e. ~ of D**) d i s s o c i a t e s i m m e d i a t e l y into 1M* + M , as the l o w e s t e x c i m e r t r i p l e t s t a t e 3D* is d i s s o c i a t e d [6]. 1D** and 5D** are internally converted through their respective m a n i f o l d s into the c o r r e s p o n d i n g l o w e s t e x c i t e d s t a t e s 1D* and 5D*. If, at T >/ 2 9 0 ° K , 5D* c o n ~ e r t s c o m p l e t e l y into 1D*, then ~ of D** y i e l d D*, i . e . a = 2 . 0 . A r e d u c t i o n in t e m p e r a t u r e is u n l i k e l y to a f f e c t the b e h a v i o u r of 3D** of 1D**, s o that the e f f e c t of T on a is to be a t t r i b u t e d to 5D**. By 479