The higher order derivatives of QK type spaces

The higher order derivatives of QK type spaces

J. Math. Anal. Appl. 332 (2007) 1216–1228 www.elsevier.com/locate/jmaa The higher order derivatives of QK type spaces ✩ Hasi Wulan a,∗ , Jizhen Zhou ...

149KB Sizes 0 Downloads 39 Views

J. Math. Anal. Appl. 332 (2007) 1216–1228 www.elsevier.com/locate/jmaa

The higher order derivatives of QK type spaces ✩ Hasi Wulan a,∗ , Jizhen Zhou b a Department of Mathematics, Shantou University, Shantou 515063, China b Department of Mathematics and Physics, Anhui University of Science and Technology,

Huainan, Anhui 232001, China Received 2 July 2006 Available online 4 December 2006 Submitted by S. Ruscheweyh

Abstract The higher order derivatives characterization of QK type spaces, the so-called QK (p, q) spaces, is given. Our result further means that the spaces QK (p, q) can be described by the K-Carleson measures. © 2006 Elsevier Inc. All rights reserved. Keywords: Higher order derivatives; QK (p, q) spaces; K-Carleson measures

1. Introduction In recent years a special class of Möbius invariant function spaces, the so-called Qp spaces, has attracted a lot of attention. We recall some facts about Qp spaces. Let g(a, z) = log(1/|ϕa (z)|) be the Green function on the unit disk Δ in the complex plane C, where ϕa (z) = (a − z)/(1 − az) is the Möbius transformation of Δ. For 0  p < ∞, the space Qp consists of analytic functions f on Δ for which  2   p 2 f Qp = sup f  (z) g(a, z) dA(z) < ∞, a∈Δ

Δ



The authors are supported by NSF of China (Nos. 10371069, 10671115) and NSF of Guangdong Province of China (Nos. 04011000, 06105648). * Corresponding author. E-mail addresses: [email protected] (H. Wulan), [email protected] (J. Zhou). 0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2006.10.082

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

1217

where dA is an area measure on Δ normalized so that A(Δ) = 1. It is easy to check that the space Qp is Möbius invariant in the sense that f ◦ ϕa Qp = f Qp for every f ∈ Qp and a ∈ Δ. We know that Q1 = BMOA, the space of all analytic functions of bounded mean oscillation [5,17], and for each p > 1, the space Qp is the Bloch space B [1] (for the case p = 2 see [15]) consisting of analytic functions f on Δ whose derivatives f  are subject to the growth restriction    f B = sup 1 − |z|2 f  (z) < ∞. z∈Δ

When p = 0, the space Qp degenerates to the Dirichlet space D. See [11,14] for a summary of recent research about Qp spaces. There are a number of ways we can further generalize the Qp spaces; see, for example, [16] for F (p, q, s), and [3,10] for QK . In this paper we are concerned with a more general generalization, the so-called QK (p, q) spaces, and we characterize the QK (p, q) spaces in terms of higher order derivatives. The higher order derivatives characterization of Qp spaces was given in [2]. The corresponding problems for QK and F (p, q, s) spaces were studied in [8] and [13], respectively. Our proof to ensure the higher order derivatives characterization of QK (p, q) spaces is new even for above special cases. Let K : [0, ∞) → [0, ∞) be a right-continuous and nondecreasing function. For 0 < p < ∞, −2 < q < ∞, the space QK (p, q) consists of analytic functions f defined in Δ satisfying  p   q   p f K,p,q = sup f  (z) 1 − |z|2 K g(z, a) dA(z) < ∞. a∈Δ

Δ

Equipped with the norm |f (0)| + f K,p,q , the space QK (p, q) is Banach when p > 1. The spaces QK (p, q) were introduced in [12] and some basic properties about QK (p, q) can be found there. Throughout this paper, we suppose that the nondecreasing function K is differentiable and satisfies that K(2t) ≈ K(t); that is, there exist constants C1 and C2 such that C1 K(2t)  K(t)  C2 K(2t). Also, we assume that 1

   q 1 r dr < ∞. 1 − r 2 K log r

(1.1)

0

Otherwise, QK (p, q) contains constant functions only (cf. [12]). We know that QK (p, q) = QK1 (p, q) for K1 = inf(K(r), K(1)) (see [12, Theorem 3.1]) and so the function K can be assumed to be bounded. To avoid QK (p, q) = F (p, q, 0) we assume that K(0) = 0 in this paper; see [12, Corollary 3.5]. The letter C denotes a positive constant throughout the paper which may vary at each occurrence. In order to obtain our main results in this paper, we define an auxiliary function as follows: ϕK (s) = sup K(st)/K(t),

0 < s < ∞.

0t1

We further assume that 1 ϕK (s) 0

ds < ∞, s

(1.2)

1218

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

and that



I = sup a∈Δ

Δ

  (1 − |z|2 )p−2 1 K log dA(z) < ∞. |1 − az| ¯ p |z|

(1.3)

We know that (1.2) implies (1.3) for 1 < p < ∞. In fact, by [4, Lemma 2.1] the integral I is dominated by 1 1 1 K(log 1r ) K(1 − r) ds dr ≈ dr  K(1) ϕK (s) < ∞ 1−r 1−r s 0

0

0

whenever (1.2) holds. One of our main results in the paper is the following. Theorem 1. Let K satisfy (1.3) and 0 < p < ∞, −1 < q < ∞. Let n be a positive integer. Then f ∈ QK (p, q) if and only if sup HK,p,q (f, a, n) < ∞, a∈Δ

where



HK,p,q (f, a, n) =

 (n) p     f (z) 1 − |z|2 np−p+q K g(z, a) dA(z).

Δ

For a subarc I ⊂ ∂Δ, the boundary of Δ, let  S(I ) = rζ ∈ Δ: 1 − |I | < r < 1, ζ ∈ I . If |I |  1 then we set S(I ) = Δ. A positive measure μ on Δ is said to be a K-Carleson measure if    1 − |z| sup dμ(z) < ∞. K |I | I ⊂∂Δ S(I )

Here and henceforward supI ⊂∂Δ means the supremum taken over all subarcs I of ∂Δ. Clearly, if K(t) = t p , 0 < p < ∞, then μ is a K-Carleson measure if and only if (1 − |z|2 )p dμ(z) is a p-Carleson measure. Note that p = 1 gives the classical Carleson measure; see [5]. As a modification of p-Carleson measure our new K-Carleson measure has the following property; see [4]. Theorem A. Let K satisfy (1.2). A positive measure μ on Δ is K-Carleson if and only if   2   K 1 − ϕa (z) dμ(z) < ∞. sup a∈Δ

Δ

A geometric characterization of functions in QK (p, q) in terms of K-Carleson measure can be stated as follows, which is our second main result in this note. Theorem 2. Let K satisfy (1.2), (1.3), 0 < p < ∞ and −1 < q < ∞. Suppose n is a positive integer. Then f ∈ QK (p, q) if and only if  (n) p   f (z) 1 − |z|2 np−p+q dA(z) is a K-Carleson measure.

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

1219

2. Preliminaries The following lemmas will be used in the proof of our main theorems. Lemma 3. Let 0 < p < ∞, −2 < q < ∞. If f is analytic in Δ, then there exists a constant C = C(p, q) such that      p   f (z) 1 − |z|2 p+q K log 1 dA(z) |z| Δ    p    1 2 q   f (z) 1 − |z| K log C dA(z). |z| Δ

Proof. Suppose 1  p < ∞ and write z = reiθ ∈ Δ and ρ > r. By the Cauchy formula, 1 f (z) = 2πi





f (ζ ) dζ ρ = 2 2π (ζ − z)

|ζ |=ρ

2π 0

f (ρei(t+θ) )ei(t−θ) dt. (ρeit − r)2

By Minkowski’s inequality we have 1 Mp (r, f )  2π 

2π 0

where Mp (r, f ) =



1 2π

Mp (ρ, f ) Mp (ρ, f ) dt = 2 , ρ 2 − 2ρr cos t + r 2 ρ − r2

(2.1)

1/p 2π   iθ p f re  dθ . 0

For the case 0 < p < 1 we suppose f has no zero in Δ. Thus the function F (z) = (f (z))p is analytic and by (2.1), M1 (r, F  ) 

M1 (ρ, F ) (Mp (ρ, f ))p = . ρ2 − r 2 ρ2 − r 2

By Hölder’s inequality,  p 1 Mp (r, f  ) = 2π

2π    iθ p f re  dθ 0

  2π 1 1 p   iθ 1−p    iθ p F re F re dθ = 2π p 0

1−p 2π

p   2π   iθ     iθ  1 1 p     dθ dθ F re F re  2π p 0 0  p 1−p   1  p M1 (r, F ) M1 (r, F  ) , = p

(2.2)

1220

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

which together with (2.2) gives  1 −1 Mp (ρ, f ) 1 . Mp (r, f  )  M1 (r, F ) p M1 (r, F  )  p p(ρ 2 − r 2 ) If f has zeros, for a fixed s, 0 < s < 1, let fs (z) = f (sz). By Lemma 2 in [6, p. 79] there exist two nonvanishing functions f1 and f2 in H p such that fs (z) = f1 (z) + f2 (z),

fi p  2fs p ,

i = 1, 2.

Since f1 and f2 are nonzero functions, for ρ > r     sMp (sr, f  )  Mp r, f1 + Mp r, f2   1 Mp (ρ, f1 ) Mp (ρ, f2 )  + p ρ2 − r 2 ρ2 − r 2 2Mp (ρ, fs )  . p(ρ 2 − r 2 ) Let s → 1 and then 2Mp (ρ, f ) . Mp (r, f  )  p(ρ 2 − r 2 ) Thus for all p, 0 < p < ∞,   Mp (ρ, f ) 2  +1 Mp (r, f )  , ρ > r. p ρ2 − r 2 By the assumption of K we have       1 4 2 K log  K log  CK log . r 1+r 1+r Choosing ρ = 1+r 2 we obtain      p   f (z) 1 − |z|2 q+p K log 1 dA(z) |z| Δ

1 =2

   q+p p  1 r dr Mp (r, f  ) 1 − r 2 K log r

0

    p  1 2 q ρ dρ C Mp (ρ, f ) 1 − ρ K log ρ 0    p    1 2 q   f (z) 1 − |z| K log dA(z). C |z| 1

Δ

The proof is complete.

2

Lemma 4. Let f be analytic in Δ and 0 < p < ∞, −2 < q < ∞. Then  np−p+q+2  (n) p f (a)  CHK,p,q (f, a, n) 1 − |a|2 holds for all positive integers n and a ∈ Δ.

(2.3)

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

1221

Proof. Set

   1 E(a, 1/e) = z ∈ Δ: |z − a| < 1 − |a| , e

a ∈ Δ.

It is easy to see that       1  1  1 − |a|  1 − |z|  1 + 1 − |a| 1− e e

(2.4)

whenever z ∈ E(a, 1/e). Since |f (n) (z)| is subharmonic in Δ and E(a, 1/e) ⊂ Δ(a, 1/e) for any a ∈ Δ, by (2.4) we have   (n) p     f (z) 1 − |z|2 np−p+q K g(z, a) dA(z) Δ



 (n) p   f (z) 1 − |z|2 np−p+q dA(z)

 K(1) Δ(a, 1e )



 (n) p   f (z) 1 − |z|2 np−p+q dA(z)

 K(1) E(a, 1e )



np−p+q   CK(1) 1 − |a|2

 (n) p f (z) dA(z)

E(a, 1e )

np−p+q+2  (n) p  f (a) .  C 1 − |a|2 This means that (2.3) holds.

2

Lemma 5. [7, p. 758] Let 1  k < ∞, μ > 0, δ > 0, and let h : (0, 1) → [0, ∞) be measurable. Then k

 r 1 1 (1 − r)kμ−1 0

(r − t)δ−1 h(t) dt

C

0

(1 − r)kμ+kδ−1 hk (r) dr. 0

Lemma 6. [9, p. 626] Let f be analytic in Δ and 0 < r < 1. If p  1, then

r   −1    Mp (r, f )  C f (0) + r Mp (s, f ) ds .

(2.5)

0

If 0 < p < 1, then

  Mp (r, f )  C f (0) + r −1

1

r (r − s)

p−1

0

p Mp (s, f  ) ds

p

.

(2.6)

1222

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

Lemma 7. Let 0 < p < ∞, −1 < q < ∞. Then there exists a constant C = C(p, q) such that        f (z)p 1 − |z|2 q K log 1 dA(z) |z| Δ      p   p  p+q 1 dA(z) K log  C f (0) + f  (z) 1 − |z|2 |z| Δ

holds for all analytic functions f in Δ. Proof. We first show that for all p, 0 < p < ∞, we have the following estimate: 1

   p 1 dr (1 − r) Mp (r, f ) K log r q

0



p   C f (0) +

1 (1 − r)

p+q

    1  p Mp (r, f ) K log dr , r

0

which gives the proof of Lemma 7 by setting r = ρ 2 . To use (2.5) and (2.6) in our estimates, it is easy to see that the integrals 1

   p 1 dr (1 − r) Mp (r, f ) K log r q

0

and 1

   p 1 dr (1 − r)q r p Mp (r, f ) K log r

0

are comparable. For the case 1  p < ∞, by (2.5) and Lemma 5, 1

   p 1 dr (1 − r) Mp (r, f ) K log r q

0



p   C f (0) +

1



1 (1 − r)q K log r

0



p   C f (0) + p   C f (0) +

(1 − r)q

Mp (s, f  ) ds

dr

1/p p   1 Mp (s, f  ) K log ds dr s

0

1 (1 − r)

p+q

0

p

0

r

1 0



 r

    1  p Mp (r, f ) K log dr . r

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

1223

On the other hand, for the case 0 < p < 1, (2.6) and Lemma 5 give 1

   p 1 (1 − r)q Mp (r, f ) K log dr r

0



p   C f (0) +

r

1 (1 − r)

(r − s)

q

p−1

0



p   C f (0) + p   C f (0) +

r (1 − r)

(r − s)

q

0



0

1

1

p−1

    1  p dr Mp (s, f ) ds K log r

    1  p ds dr Mp (s, f ) K log s

0

    1 p dr . (1 − r)p+q Mp (r, f  ) K log r

0

Thus, as we mentioned above the proof is complete.

2

3. The proof of Theorem 1 Our goal is to prove that sup HK,p,q (f, a, n) < ∞ a∈Δ



sup HK,p,q (f, a, n + 1) < ∞. a∈Δ

We write HK,p,q (f, a, n + 1)  p   np+q   = f (n+1) (z) 1 − |z|2 K g(z, a) dA(z) Δ

   2 np+q+2  (n+1)  p  dA(z) 1 f ϕa (z)  1 − ϕa (z) K log |z| (1 − |z|2 )2 Δ   = + {·} 

=

|z|< 12

1 2 |z|<1

= I1 + I2 . On one hand,     2 np+q+2  (n+1)  p  dA(z) 1     f ϕa (z) 1 − ϕa (z) I1 = K log |z| (1 − |z|2 )2 |z|< 12

 2 np+q+2   p   sup f (n+1) ϕa (z)  1 − ϕa (z) |z|< 12

p   np+q+2  C sup f (n+1) (a) 1 − |a|2 . a∈Δ



|z|< 12

 dA(z) 1 K log |z| (1 − |z|2 )2 

(3.1)

1224

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

By Lemma 4 and the following estimate (cf. [18]): p  p    np−p+q+2 np+q+2 ≈ sup f (n+1) (a) 1 − |a|2 , sup f (n) (a) 1 − |a|2 a∈Δ

(3.2)

a∈Δ

we have

p   np−p+q+2 I1  C sup f (n) (a) 1 − |a|2  sup HK,p,q (f, a, n). a∈Δ

a∈Δ

On the other hand,     2 np+q+2  (n+1)  p  dA(z) 1 f I2 = ϕa (z)  1 − ϕa (z) K log |z| (1 − |z|2 )2 1 2 |z|<1

   |f (n+1) (ϕa (z))|p  1 2 np+q dA(z). 1 − |z| K log |z| |1 − az| ¯ 2(np+q+2)



np+q+2  = 1 − |a|2

1 2 |z|<1

Consider the function f (n) (ϕa (z)) g(z) = 2(np−p+q+2) p (1 − az) ¯ and then     p (1 − |a|2 )p |f (n+1) (ϕa (z))|p |f (n) (ϕa (z))|p g (z) + .  C |1 − az| ¯ 2(np+q+2) |1 − az| ¯ p+2(np−p+q+2) Hence, by Lemma 3,      p   |f (n) (ϕa (z))|p 2 np−p+q+2   I2  C 1 − |a| g (z) + |1 − az| ¯ p+2(np−p+q+2) 1 2 |z|<1

 1 × 1 − |z| dA(z) K log |z|    p      1 2 np−p+q+2 2 np−p+q   g(z) 1 − |z| dA(z)  C 1 − |a| K log |z| 

 2 np+q



Δ

  |f (n) (ϕa (z))|p (1 − |z|2 )np+q 1 dA(z) K log |z| |1 − az| ¯ p+2(np−p+q+2) Δ     2 np−p+q+2  (n)  p  dA(z) 1  C f ϕa (z)  1 − ϕa (z) K log |z| (1 − |z|2 )2  np−p+q+2 + 1 − |a|2



Δ

= CHK,p,q (f, a, n). Combining above estimates for I1 and I2 we get sup HK,p,q (f, a, n + 1)  C sup HK,p,q (f, a, n). a∈Δ

a∈Δ

Conversely, consider the function g(z) =

f (n) (ϕa (z))(1 − |a|2 ) (1 − az) ¯

np−p+q+2 p

2(np−p+q+2) p

.

(3.3)

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

Thus by Lemma 7, HK,p,q (f, a, n)     2 np−p+q+2  (n)  p  dA(z) 1     f = ϕa (z) 1 − ϕa (z) K log |z| (1 − |z|2 )2 Δ    p   np−p+q 1 dA(z) = g(z) 1 − |z|2 K log |z| Δ      p p    np+q 1 dA(z) .  C g(0) + g  (z) 1 − |z|2 K log |z| Δ

We finish the proof by showing      p   p    1 2 np+q     g (z) 1 − |z| sup g(0) + dA(z) K log |z| a∈Δ Δ

 C sup HK,p,q (f, a, n + 1). a∈Δ

In fact, since       g(0)p = f (n) (a)p 1 − |a|2 np−p+q+2 , by Lemma 4 and the estimate (3.2) we have p p    np−p+q+2 sup g(0) = sup f (n) (a) 1 − |a|2 a∈Δ

a∈Δ

p   np+q+2 ≈ sup f (n+1) (a) 1 − |a|2 a∈Δ

 C sup HK,p,q (f, a, n + 1). a∈Δ

Note that      p   g (z) 1 − |z|2 np+q K log 1 dA(z)  J1 + J2 , |z| Δ

where



J1 = Δ

and

 J2 = Δ

Obviously,

     |(f (n) (ϕa (z))) |p  1 2 np−p+q+2 2 np+q dA(z) 1 − |a| 1 − |z| K log |z| |1 − az| ¯ 2(np−p+q+2)    |f (n) (ϕa (z))|p (1 − |a|2 )np−p+q+2  1 2 np+q dA(z). 1 − |z| K log |z| |1 − az| ¯ 2(np−p+q+2)+p 

J1  C Δ

   2 np+q+2  (n+1)  p  dA(z) 1    f ϕa (z) 1 − ϕa (z) K log |z| (1 − |z|2 )2

= CHK,p,q (f, a, n + 1).

1225

1226

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

By Lemma 3 and the assumption (1.3) we have    |f (n) (ϕa (z))|p (1 − |a|2 )np−p+q+2  1 2 np+q dA(z) 1 − |z| K log |z| |1 − az| ¯ 2(np−p+q+2)+p

 J2 = Δ

   2 np−p+q+2 (1 − |z|2 )p−2  (n)  p  1 f dA(z) ϕa (z)  1 − ϕa (z) K log |1 − az| ¯ p |z|



= Δ

 np−p+q+2  (n) p f (a)  sup 1 − |a|2 a∈Δ

 Δ

  (1 − |z|2 )p−2 1 dA(z) K log |1 − az| ¯ p |z|

 C sup HK,p,q (f, a, n + 1). a∈Δ

Combining this and the estimate for J1 we obtain sup HK,p,q (f, a, n)  C sup HK,p,q (f, a, n + 1), a∈Δ

(3.4)

a∈Δ

which together with (3.3) shows that (3.1) holds. Theorem 1 is proved. 4. The proof of Theorem 2 By Theorem A it suffices to prove that f ∈ QK (p, q) if and only if for any positive integer n  p   2   np−p+q  sup f (n) (z) 1 − |z|2 (4.1) K 1 − ϕa (z) dA(z) < ∞. a∈Δ

Δ

We need only to prove by Theorem 1 that (4.1) is equivalent to  p   np−p+q   K g(a, z) dA(z) < ∞. sup f (n) (z) 1 − |z|2 a∈Δ

(4.2)

Δ

Indeed, since K is nondecreasing and the fact that 1 − t 2  2 log 1t for 0 < t  1, (4.2) implies (4.1). We now show the converse. Let (4.1) hold and we divide the integral in (4.2) into two parts on Δ(a, 14 ) = {z ∈ Δ: |ϕa (z)|  14 } and Δ \ Δ(a, 14 ), respectively. Since  2   g(a, z)  4 1 − ϕa (z) ,

  ϕa (z)  1/4

and 

 (n) p     f (z) 1 − |z|2 np−p+q K g(a, z) dA(z)

Δ\Δ(a, 14 )



C Δ\Δ(a, 14 )

    (n) p    f (z) 1 − |z|2 np−p+q K 1 − ϕa (z)2 dA(z).

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

1227

On the other hand,   (n) p     f (z) 1 − |z|2 np−p+q K g(a, z) dA(z) Δ(a, 14 )

 np−p+q+2  (n) p f (z)  sup 1 − |z|2 z∈Δ





1 − |z|2

−2   K g(a, z) dA(z)

Δ(a, 14 )

 np−p+q+2  (n) p f (z)  sup 1 − |z|2 z∈Δ



 −2   1 − |z|2 K g(0, z) dA(z)

Δ(0, 14 )

 np−p+q+2  (n) p f (z) .  C sup 1 − |z|2 z∈Δ

Similar to the proof of Lemma 4 we have  np−p+q+2  (n) p f (z) sup 1 − |z|2 z∈Δ



 C sup a∈Δ

    (n) p    f (z) 1 − |z|2 np−p+q K 1 − ϕa (z)2 dA(z).

Δ

Hence, (4.1) implies (4.2). The proof is complete. Acknowledgments The authors thank the referees for their helpful comments.

References [1] R. Aulaskari, P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, in: Complex Analysis and Its Applications, in: Pitman Res. Notes Math., vol. 305, Longman Scientific & Technical Harlow, 1994, pp. 136–146. [2] R. Aulaskari, M. Nowak, R. Zhao, The nth derivative characterization of the Möbius bounded Dirichlet space, Bull. Austral. Math. Soc. 58 (1998) 43–56. [3] M. Essén, H. Wulan, On analytic and meromorphic functions and spaces of QK type, Illinois J. Math. 46 (2002) 1233–1258. [4] M. Essén, H. Wulan, J. Xiao, Function-theoretic aspects of Möbius invariant QK spaces, J. Funct. Anal. 230 (2006) 78–115. [5] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1982. [6] P. Duren, Theory of H p Spaces, Academic Press, New York, 1970. [7] T. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972) 746–765. [8] J. Rättyä, On some complex function spaces and classes, Fenn. Ann. Aced. Sci. Fenn. Math. Diss. 122, 2000. [9] J.H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of Cn , Trans. Amer. Math. Soc. 328 (1991) 619–637. [10] H. Wulan, P. Wu, Characterizations of QT spaces, J. Math. Anal. Appl. 254 (2001) 484–497. [11] H. Wulan, Möbius invariant Qp spaces: Results, techniques and questions, Adv. Math. (China) 34 (2005) 385–404. [12] H. Wulan, J. Zhou, QK type spaces of analytic functions, J. Funct. Spaces Appl. 4 (2006) 73–84. [13] H. Wulan, K. Zhu, QK spaces via higher order derivatives, Rocky Mountain J. Math., in press. [14] J. Xiao, Holomorphic Q Classes, Lecture Notes in Math., vol. 1767, Springer, Berlin, 2001.

1228

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

[15] J. Xiao, Carleson measures, atomic decomposition and free interpolation from the Bloch space, Ann. Acad. Sci. Fenn. Ser. AI Math. 19 (1994) 35–46. [16] R. Zhao, On a general family of function spaces, Fenn. Ann. Aced. Sci. Fenn. Math. Diss. 105, 1996. [17] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990. [18] K. Zhu, Bloch type spaces of functions, Rocky Mountain J. Math. 23 (1993) 1143–1177.