The influence of mutual friction between the two fluids in liquid helium II on the energy dissipation by an oscillating disc

The influence of mutual friction between the two fluids in liquid helium II on the energy dissipation by an oscillating disc

P h y s i c a X V I , n o 10 O c t o b e r 1950 THE INFLUENCE OF MUTUAL FRICTION BETWEEN THE TWO FLUIDS I N LIQUID HELIUM II ON THE ENERGY DISSIPATI...

95KB Sizes 4 Downloads 39 Views

P h y s i c a X V I , n o 10

O c t o b e r 1950

THE INFLUENCE OF MUTUAL FRICTION BETWEEN THE TWO FLUIDS I N LIQUID HELIUM II ON THE ENERGY DISSIPATION BY AN OSCILLATING DISC b y G. C. J. Z W A N I K K E N Bisschoppelijk College, Roermond, Nederland Communications from the Kamerlingh Onnes Laboratory, Suppl. No. 103a

Synopsis T h e d i s s i p a t i o n s b y m u t u a l f r i c t i o n b e t w e e n t h e t w o fluids in l i q u i d h e l i u m I I a n d b y v i s c o u s f r i c t i o n are c o m p u t e d for t h e case t h a t oscillat i o n s a r e c a u s e d b y a n o s c i l l a t i n g disc.

The dissipations b y m u t u a l friction and b y viscous friction are c o m p u t e d for the case t h a t the two fluids describe oscillations about a vertical z-axis, caused b y an" oscillating disc with radius a. In absence of gradients of t e m p e r a t u r e or c o n c e n t r a t i o n the equations of m o t i o n of the two fluids are 1) ~,1 A vn - - ~ grad div v . + Ae.~s [ v S- - vn [2 (v s __ v.) = Qn~;n, -- Ae.es

[ v s - - v. 12 (vs - - Vn) = esL,

with ~/n the viscosity of the n o r m a l fluid, en and 9, the densities of the n o r m a l fluid and the superfluid respectively, v . and v s the velocities and A a constant for the m u t u a l friction. I n t r o d u c i n g cylindrical coordinates and a n g u l a r velocities b y v= :

--yu,

vy :

XU, v= :

O,

X2 +

y2 :

and assuming v -----0 for r > a, the equations read ~1. /1 u. + e.es Ar2 (us - --

e . e s A r 2 (us - --

805

--

u.) 3 =

enU,,,

u,,) 3 ~

e,us.

r 2,

806

G.C.J. ZWANIKKEN

The motion is in first a p p r o x i m a t i o n determined b y t h a t of the disc

cos (o~t

u. ~ C e-~'--~ 'Us

-

6z),

-

~ 0 .

Substitution gives

(6 2 _ --

+

7 2) ~]n

2 y6q. +

aen •

o~e.

N o w , since i n t h e e x p e r i m e n t s

0, 0.

=

a "~ 10 --3 sec - l

a n d a~ -~ 1 sec - 1 ,

we shall take a = 0, and thus 2 76 = 2 62 = °~e"

(1)

The second approximation then reads u.

-

-

~3 ~esrZA - C3 e__~8s cos (oJt - - 6z) +

Ce -~" c o s (o,t - - 6z) +

3 Qsr2A 1 ~sr2A C3e-38s sin (o~t--~z), (2) + -- -C3e- ° ~ sin (or - - 6z) + - - - 40 oJ 24 oJ us=-~3 gnr2A C3e--3~" sin (wt--6z) + l e"r2~A C3e-33s sin 3 (oJt--6z). (3) w 12 oJ The m e a n energy dissipation in a ring-shaped volume of radius r caused b y m u t u a l friction is given b y 2~r dr dz. A q.qsr 4 (u s u,) 4. -

N°w (us--u")4

-

3 C4e_~,21- 9 qsr2A_AC6e___6~"+ .....

= g

40

o,

I n t e g r a t i o n over space, i.e. 2 × over z from 0 to co and over r from 0 to a, gives the total dissipation b y m u t u a l friction

~a : z-(-~ ~a6 AOnOs C 4 (I + 103esaZAo9 C2 + . . . . )"

(4)

The m e a n dissipation b y viscous friction of the normal fluid in the

(OUn~2,

same volume is 2~r dr dz.~nr 2 \-~z /

(Ou.~ 2 -~z/

62C2e-2~, ----

9 + 20

with

osr2A62 C4e--4~, +

....

co

I n t e g r a t i n g over space we find the dissipation b y viscous friction

~o,~-

7~a4cgqn~2 ( 3Osa2ac2-[) ~ c 1+2-6-L-7 ....

(5) ,.

ENERGY DISSIPATION BY MUTUAL FRICTION IN HELIUM II

807

The above approximations are permitted only if 3 Q~az$ C2<~" 1. (6) 20 ~o The velocity u, of the normal component will have its maximum value when, according to (2) and (6), cos ( o J t - Oz)~ + 1, and so this m a x i m u m value will be the sum of the amplitudes of the cosinus terms, i.e. for z = 0 Unm,x.=C

( 1 +20

)

o~

Putting r = a, and neglecting the slip between disc and normal fluid, we m a y put

"3 osr2A

C ( I + ~ - 0 -~

C2)=O~o,

(7)

if the oscillation of the disc is given approximately by ~v ---- ~o0 sin o~t. The ratio Wa/%j of the dissipations is the quotient of (4) and (5). Making use of (1) and (6), this ratio reads

YJ_a= ¼ o#2A

°JCpo

1 -- -~ o~a2A oxp~ + . . . .

(8)

The total energy dissipation is

m4~"C ~( 1 + -2- -~sa2A c2 + . . . ) V'a + V",l- -

~

5

(9)

o~

and making use of (7) I

This latter formula, in which the dissipation is given as a function of the amplitude ~0o is suited for comparison with measurements on the damping of the oscillating disc. Received 7-9-50 REFERENCES 1) G o l ] t e r , C. J . , a n d M e l l i n k , J.H.,Commun. KamerlinghOnnesLab.,Leiden Suppl. No. 99a; Physiea, 's-Gray. 15 (1949) 523. G o r t e r , C.J., K a s t e l e y n , P . W . , a n d M e l l i n k , J. H.,Commun. Suppl. No. 100b; Physiea, 's-Gray. 16 (1950) 113. 2) S m i t h, P. I.., Commun. No. 282c; Physiea 16 (1950) 808.