The Transport, Chemical Transformation, and Removal of SO2 and Sulfate in the Eastern United States

The Transport, Chemical Transformation, and Removal of SO2 and Sulfate in the Eastern United States

Atmospheric Pollution 1980,Proceedings of the 14th International Colloquium, Paris, France, May 5--8,1980, M.M. Benarie (Ed.), Studies in Environmenta...

456KB Sizes 0 Downloads 42 Views

Atmospheric Pollution 1980,Proceedings of the 14th International Colloquium, Paris, France, May 5--8,1980, M.M. Benarie (Ed.), Studies in Environmental Science, Volume 8 0 Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

31

THE TRANSPORT, CHEMICAL TRANSFORMATION, AND REMOVAL OF SO2 AND SULFATE I N THE EASTERN UNITED STATES

GREGORY R . CARMICHAEL and LEONARD K. PETERS U n i v e r s i t y o f Iowa, Iowa City, I A and U n i v e r s i t y o f Kentucky, Lexington, KY (U.S.A.)

ABSTRACT

A r e g i o n a l model o f SOE and s u l f a t e t h a t includes a d v e c t i v e and d i f f u s i v e t r a n s p o r t , homogeneous and heterogeneous o x i d a t i o n , and d r y d e p o s i t i o n o f both species i s described. and wind f i e l d .

The model i n c o r p o r a t e s t e m p o r a l l y and s p a t i a l l y v a r y i n g m i x i n g l a y e r Studies on the dynamic response o f an e l e v a t e d plume t o daytime

v a r i a t i o n s i n v e r t i c a l m i x i n g show the s h i f t toward t h e surface o f the plume c e n t e r l i n e , t h e e x i s t e n c e o f a double maxima i n ground l e v e l concentration, and the t r a p p i n g o f p o l l u t a n t s i n t h e e a r l y evening.

INTRODUCTION S u l f u r d i o x i d e has l o n g been known t o be a major p o l l u t a n t , b u t s t u d i e s now i n d i c a t e t h a t t h e o x i d a t i o n product, s u l f a t e , may present a g r e a t e r h e a l t h hazard and produce a number o f adverse e c o l o g i c a l e f f e c t s ( r e f . 1 ) .

I t i s g e n e r a l l y accepted

t h a t most s u l f a t e i s formed i n t h e atmosphere by chemical conversion from SO2. Long range t r a n s p o r t models can be used t o t r a c e the sources o f SO2 and t o t e s t t h e o r i e s o f t r a n s p o r t , t r a n s f o r m a t i o n , and removal by comparing model p r e d i c t i o n s w i t h measurements from m o n i t o r i n g networks ( r e f . 2-7). I n a p r e v i o u s paper ( r e f . 8 ) , we presented a combined transport/chemistry/surface removal model t o d e s c r i b e t h e r e g i o n a l d i s t r i b u t i o n o f s u l f u r d i o x i d e and s u l f a t e w i t h i n t h e lower troposphere.

I n t h i s paper, we w i l l summarize t h a t development and

study t h e dynamic response o f an e l e v a t e d plume t o daytime v a r i a t i o n s i n v e r t i c a l m i x i n g u s i n g a subset o f t h e model. MODEL DESCRIPTION The r e g i o n a l t r a n s p o r t o f SO2 and s u l f a t e i s modeled w i t h i n an E u l e r i a n framework. The g r i d model i n c o r p o r a t e s chemical transformation,

dry deposition, spatial varia-

t i o n o f topography, and s p a t i a l and temporal v a r i a t i o n s o f m i x i n g l a y e r h e i g h t , wind f i e l d , eddy d i f f u s i v i t y , d e p o s i t i o n v e l o c i t i e s , and temperature and water vapor concentration profiles.

A photochemical SO2 o x i d a t i o n mechanism i s i n c o r p o r a t e d i n t o

32

t h e t r a n s p o r t model w i t h t h e r a t e p a r a m e t e r i z e d u s i n g d i u r n a l l y v a r y i n g r a d i c a l s p e c i e s c o n c e n t r a t i o n s and a f i x e d heterogeneous r a t e c o n s t a n t . The matheniatical a n a l y s i s i s based on t h e coupled, t h r e e - d i m e n s i o n a l a d v e c t i ond i f f u s i o n equations f o r

ack+ at

ac

k= Lax.[ K

U J. ax.

J

(71

SO2 and s u l f a t e

j j ax.

J

+ Rk + Sk

(11,

where c k i s t h e c o n c e n t r a t i o n o f s p e c i e s k, u . i s t h e v e l o c i t y v e c t o r , K is the J jj eddy d i f f u s i v i t y t e n s o r (K. .=O f o r i f j has been assumed), Rk i s t h e r a t e o f forma1J

t i o n o r l o s s b y chemical r e a c t i o n , and Sk i s t h e e m i s s i o n r a t e . V a r i a b l e t o p o g r a p h y i s h a n d l e d by mapping t h e i r r e g u l a r v e r t i c a l r e g i o n i n t o a d i m e n s i o n l e s s r e c t a n g u l a r r e g i o n w i t h t h e t o p s e t a t 3000 m e t e r s .

There a r e t e n

v e r t i c a l g r i d s w i t h h i g h e r r e s o l u t i o n between t h e s u r f a c e and 450 meters which p e r m i t s s i m u l a t i o n o f t r a n s p o r t i n s t a b l e l a y e r s a l o f t and i t s subsequent r e - e n t r a i n ment i n t o t h e m i x i n g l a y e r . The dynamic model uses a G a l e r k i n method f o r t h e n u m e r i c a l s o l u t i o n o f t h e p a r t i a l d i f f e r e n t i a l equations ( r e f . 9).

A t t h e b o u n d a r i e s , two cases a r e i m p o r t a n t .

m a t e r i a l t r a n s p o r t i n t o t h e model r e g i o n , and t h e second i s o u t f l o w .

One i s

I n b o t h cases,

t h e b e s t estimate o f t h e f l u x i s obtained from t h e concentration gradient a t the previous time step. CHEMISTRY OF SO2 AND SULFATE

SO2 o x i d a t i o n mechanism i n c o r p o r a t e d i n t o t h e model i s i n s u f f i c i e n t d e t a i l t o p r e d i c t a r e a l i s t i c o x i d a t i o n r a t e o f SO2 w i t h i n an a c c e p t a b l e c o m p u t a t i o n t i m e . The

Furthermore, b o t h homogeneous and heterogeneous processes a r e i n c l u d e d i n conversion t o sulfate. Homogeneous gas phase c h e m i s t r y A homogeneous gas phase mechanism f o r

SO2 o x i d a t i o n was developed by e v a l u a t i n g

t h e r a t e s o f i n d i v i d u a l r e a c t i o n s f r o m a d e t a i l e d k i n e t i c m o d e l i n g of two smog chamb e r s t u d i e s ( r e f . 10, 1 1 ) .

The r e s u l t s from t h e d e t a i l e d model were t h e n used t o c o n -

s t r u c t a s i m p l i f i e d scheme.

T h i s d e t a i l e d mechanism i n c l u d e d 72 r e a c t i o n s , and a com-

p l e t e d e s c r i p t i o n can be f o u n d elsewhere ( r e f . 7 2 ) .

The o v e r a l l r e s u l t s o f t h a t

s t u d y showed t h a t t h e d e t a i l e d k i n e t i c mechanism s i m u l a t e d w e l l t h e

SO2 o x i d a t i o n

r a t e s o b t a i n e d i n t h e two s t u d i e s . Based on t h e r e s u l t s , t h e most i m p o r t a n t r e a c t i o n s were r e t a i n e d . degree o f accuracy, t h e

To a h i g h

SO2 r a t e e x p r e s s i o n can be s i m p l i f i e d t o

The c o n c e n t r a t i o n s o f OH and H02 show d i u r n a l v a r i a t i o n s . The r a t e e x p r e s s i o n f o r SO2 i s uncoupled f r o m t h o s e f o r

OH and H02 by u s i n g t h e

33

SO2 c o n c e n t r a t i o n a t t h e p r e v i o u s t i m e s t e p i n t h e c a l c u l a t i o n o f OH and H o p .

This

approach agrees w e l l w i t h t h e e x p e r i m e n t a l d a t a and t h e v a l u e s p r e d i c t e d b y t h e det a i l e d model.

The r e l a t i v e c o m p u t a t i o n t i m e s f o r t h e d e t a i l e d and s i m p l i f i e d m o d e l s

a r e a p p r o x i m a t e l y 40: 1. Heterogeneous c h e m i s t r y

I n t h e atmosphere, t h e heterogeneous o x i d a t i o n o f SO2 occurs v i a o x i d a t i o n by i n t h e absence o f c a t a l y s t , c a t a l y t i c o x i d a t i o n by 02, and o x i d a t i o n by 0 3 . p o r t e d r a t e c o n s t a n t s f o r t h e u n c a t a l y z e d o x i d a t i o n by d i s s o l v e d

O2

O2

The r e -

v a r y b y two o r -

d e r s o f magnitude, w i t h most r e p o r t s on t h e l o w end i n d i c a t i n g t h a t t h i s r e a c t i o n i s n o t e x t r e m e l y i m p o r t a n t i n t h e atmosphere.

The c a t a l y z e d o x i d a t i o n o f

SO2 i s most

i m p o r t a n t i n urban a r e a s and s t a c k plumes under c o n d i t i o n s of h i g h h u m i d i t y and h i g h c a t a l y s t concentrations;

i t i s u n l i k e l y t o be s i g n i f i c a n t i n r u r a l areas.

Recent

measurements o f t h e r a t e o f o x i d a t i o n o f SO2 b y d i s s o l v e d O3 a l s o d i f f e r by two o r d e r s o f magnitude.

I f t h e h i g h e r r a t e c o n s t a n t i s c o r r e c t , t h e n t h e o x i d a t i o n by

O3 i s i m p o r t a n t even a t a t m o s p h e r i c background ozone c o n c e n t r a t i o n s . Assuming o x i d a t i o n by d i s s o l v e d 0 3 ,

02,and m e t a l c a t a l y s t s o c c u r s i m u l t a n e o u s l y ,

t h e combined heterogeneous r a t e e x p r e s s i o n can be w r i t t e n as d [SO,2-]

= -1.5

dt

d[SO,] -

60 KIHv*

dt

[H'I

h K

( h K P '3 '3 '3

+ - 02

[Hf]

+

kcatK2[M+I)Cso21

(3) >

i s i n ppm min-', [SO2] i n ppm, H i s H e n r y ' s l a w c o n s t a n t , v* i s t h e 5 aqueous volume p e r volume o f a i r , ho =1x10 -3.3x105L m o l - l s - ' , K - 2 . 2 ~ 1 0 - ~ m o l L - ~ a t m - ~

where d[S04'-]/dt

O3-8 L 2mol - 2 s -1, [M+] Po3 i s t h e O3 p a r t i a l p r e s s u r e , ho =36 ~ 1 O - ~ s -fl o r 3
By c h o o s i n g t y p i c a l r u r a l v a l u e s o f [03]d0ppb 1 a pH o f 4.6 f o r m o d e r a t e l y p o l l u t e d c o n t i n e n t a l c l o u d s , [M+]=5~1O-~mol R- ,

k -2x105R m o l - l s - ' , 03-

T=300°K,

,

and v * = ~ x ~ O - ~ ,Eq. ( 3 ) reduces t o

d[S021 - -3.69~1O-~[SO~] dt

--

(4).

The c o n t r i b u t i o n b y t h e ozone r e a c t i o n i s 92%, 5% by t h e u n c a t a l y z e d r e a c t i o n , and 3% by t h e m e t a l c a t a l y z e d o x i d a t i o n . METEOROLOGICAL DATA The f o l l o w i n g i n p u t m e t e o r o l o g i c a l d a t a a r e r e q u i r e d t o s o l v e t h e atmospheric d i f f u s i o n equation:

mean w i n d v e l o c i t y , eddy d i f f u s i v i t y , temperature, s o l a r r a d i a t i o n ,

p r e c i p i t a t i o n , d r y d e p o s i t i o n v e l o c i t i e s , and w a t e r vapor c o n c e n t r a t i o n .

The temper-

a t u r e p r o f i l e s and s o l a r r a d i a t i o n d a t a a r e used t o e s t i m a t e t h e atmospheric s t a b i l -

i t y and r e a c t i o n r a t e c o n s t a n t s .

P r e c i p i t a t i o n d a t a a r e used t o e s t i m a t e wet deposi-

t i o n processes, and t h e w a t e r vapor c o n c e n t r a t i o n i s an i n p u t t o t h e p h o t o c h e m i s t r y mechanism.

34

Wind f i e l d and eddy d i f f u s i v i t i e s

To provide a mass-consistent wind f i e l d , a v e r t i c a l v e l o c i t y component i s found by numerically solving t h e c o n t i n u i t y equation using an e x p l i c i t second-order f i n i t e d i f f e r e n c e procedure with t h e c o n s t r a i n t t h a t i = O a t p=O.Ol.

The procedure t o c a l c u l a t e eddy d i f f u s i v i t i e s c o n s i s t e n t with theory and observation i s based on the work of Myrup and Ranzieri ( r e f . 1 3 ) . This model estimates t h e Monin-Obukhov length scale based on s t a b i l i t y c l a s s , aerodynamic roughness length, and t h e evaporation r a t e a t the surface. The s t a b i l i t y c l a s s i s estimated from r o u t i n e l y measured meteorological v a r i a b l e s - s u r f a c e w i n d speed, cloud cover, and cloud c e i l i n g ( r e f . 14). The surface roughness and evaporation r a t e s a r e estimated from a map of land use, and mixing l a y e r height within the t r a n s p o r t model i s fusivity profile.

taken i n t o account via t h e eddy d i f As a r e s u l t , eddy d i f f u s i v i t i e s a r e c a l c u l a t e d a t three-hour

i n t e r v a l s t o t r e a t v a r i a t i o n s i n mixing l a y e r heights r e a l i s t i c a l l y . The horizontal d i f f u s i v i t i e s a r e c a l c u l a t e d a s multiples of t h e v e r t i c a l c o e f f i c i e n t s . Deposi t i on vel oci t i e s Dry deposition v e l o c i t i e s a r e c a l c u l a t e d a t three-hour i n t e r v a l s from estimates o f the aerodynamic and s u r f a c e r e s i s t a n c e s based on surface windspeed, surface roughness, evaporation r a t e , and s t a b i l i t y . The a v a i l a b l e data on dry deposition of SO2 t o grass indicated t h a t the s u r f a c e r e s i s t a n c e v a r i e s from 1 t o 3 s cm-l and can be correlated with s u r f a c e roughness ( r e f . 1 2 ) . Surface r e s i s t a n c e s f o r non-grass surfaces a r e estimated from a v a i l a b l e d a t a , and t h e s u l f a t e deposition v e l o c i t i e s a r e calculated a s a l i n e a r function of f r i c t i o n v e l o c i t y ( r e f . 1 6 ) . Average values of the calcul a t e d deposition v e l o c i t i e s ( a t 20-30m) throughout t h e modeling region f o r t h e period of July 4 - J u l y 10, 1974 a r e vS02=0.44cm s-l and vS04=0.26cm s-’. 9 9 MIXING LAYER DYNAMICS An important aspect of the long range t r a n s p o r t of SO2 and s u l f a t e s concerns the i n t e r a c t i o n of elevated plumes with t h e dynamics of t h e mixing l a y e r and the overall v e r t i c a l m i x i n g . These f e a t u r e s a r e included i n the long range t r a n s p o r t model and have been studied using an i s o l a t e d two-dimensional plume from an elevated source. The plume was i n f i n i t e l y wide so t h a t crosswind d i f f u s i o n could be neglected. Convection dominated in t h e d i r e c t i o n of the wind and v e r t i c a l mixing was s o l e l y due t o t u r b u l e n t d i f f u s i o n . The emissions a r e from a 500m e f f e c t i v e source height f o r the period from 8:OOAM t o 9:OOPM. The r e a c t i o n r a t e was fixed a t 3.5% h r - ’ and the depos i t i o n v e l o c i t y was lcm s-’.

The mixing l a y e r height was changed hourly. Carmichael, Yang, and Lin ( r e f . 17) have presented d e t a i l e d r e s u l t s of these calc u l a t i o n s . Concentration i s o p l e t h s f o r d i f f e r e n t times a r e shown in Figure l . Between 9:OOAM and 12:OOPM t h e mixing l a y e r was b e l w t h e source height, and ground level concentrations were correspondingly low. A t noon the mixing l a y e r height reached 600m with fumigation occurring and t h e ground level concentrations increasing. The mixing l a y e r height was maximum (1200m) a t 3:OOPM and then decreased.

M V N W l N D DISTANCE. K Y

F i g . 1. C o n c e n t r a t i o n i s o p l e t h s r e s u l t i n g f r o m e m i s s i o n s f r o m a 500m e l e v a t e d s o u r c e d u r i n g t h e growth and d i s s i p a t i o n o f t h e m i x i n g l a y e r a t t i m e s c o r r e s p o n d i n g t o a ) 9:59 AM, b ) 10:59 AM, c ) 1:59 PM, d ) 3:59 PM, e ) 5:59 PM, f ) 7:59 PM, and g ) 8:59 PM.

m

$-

m

MVNWINO OISIANCE. K Y

F i g u r e s l c and l e show t h e c o n c e n t r a t i o n f i e l d s a t 1:59 and 5:59PM,

respectively.

A t t h e s e t i m e s t h e d i f f u s i v i t y p r o f i l e s were s i m i l a r , b u t t h e c o n c e n t r a t i o n f i e l d s were q u i t e d i f f e r e n t .

When mass reached h i g h a l t i t u d e s , i t remained a l o f t u n t i l

being advected from the region.

I n t h e r e g i o n above t h e m i x i n g l a y e r , s t a b l e atmo-

s p h e r i c c o n d i t i o n s and maximum w i n d v e l o c i t i e s o f t e n o c c u r , e s p e c i a l l y a t n i g h t . T h i s m a t e r i a l can r e m a i n a l o f t and be t r a n s p o r t e d l o n g d i s t a n c e s w i t h l i t t l e v e r t i c a l spread u n t i l f u m i g a t i o n o c c u r s t h e n e x t a f t e r n o o n .

This i s important i n the transport

o f secondary p o l 1 u t a n t s such as s u l f a t e s .

I n t h e e a r l y e v e n i n g ( s e e F i g u r e I f ) m a t e r i a l n e a r t h e s u r f a c e was t r a p p e d , and h i g h ground l e v e l c o n c e n t r a t i o n s p e r s i s t e d .

T h i s m a t e r i a l would remain u n t i l i t i s

removed by d r y d e p o s i t i o n , chemical r e a c t i o n , and/or h o r i z o n t a l c o n v e c t i o n .

The i n -

f l u e n c e o f d r y d e p o s i t i o n on plume geometry i s a p p a r e n t i n F i g u r e s l c and I d .

Mass

was t r a n s f e r r e d t o t h e s u r f a c e , w h i c h caused t h e plume c e n t e r l i n e t o s h i f t downward. C a l c u l a t e d ground l e v e l c o n c e n t r a t i o n s o f t h e p r i m a r y p o l l u t a n t a t d i f f e r e n t downw i n d l o c a t i o n s a r e shown i n F i g u r e 2 as a f u n c t i o n o f t i m e . curred a t a l l locations.

Note t h a t two maxima oc-

The f i r s t o c c u r r e d as t h e m i x i n g l a y e r h e i g h t i n c r e a s e d j u s t

above t h e s o u r c e h e i g h t , w h i l e t h e second one o c c u r r e d as t h e m i x i n g l a y e r h e i g h t r e turned t o t h a t l e v e l i n t h e l a t e afternoon.

The d e c r e a s i n g c o n c e n t r a t i o n s i n mid-

a f t e r n o o n were due t o d i l u t i o n caused b y c o n t i n u e d growth o f t h e m i x i n g l a y e r .

The

o c c u r r e n c e o f t h e second maximum was delayed, and t h e ground l e v e l c o n c e n t r a t i o n s a t 9:OOPM were h i g h e r a t t h e i n t e r m e d i a t e downwind l o c a t i o n s .

T h i s ground l e v e l concen-

t r a t i o n b e h a v i o r has been observed i n t h e f i e l d . W o l f f e t a l . ( r e f . 1 8 ) found ground l e v e l SO2 c o n c e n t r a t i o n p r o f i l e s s i m i l a r t o t h o s e i n F i g u r e 2. I n t h e i r work, a

36 E .7

-GROUND LEVEL CONCENTRATION\

1400

1300 Ix)o 1100 1000

900

z.

;

:

- 2w 700

600 -0

400 300 200

3 z

R

e 2

100 0

Fig. 2. Calculated ground level concentrations a s a function of time of day a t d i f f e r e n t downwind p o s i t i o n s r e s u l t i n g from emissions from a 500m elevated source during t h e growth and d i s s i p a t i o n of the mixing l a y e r . s i n g l e p r o f i l e ( t h e i r Figure 2b) obtained by averaging nine days of observational data showed t h e presence of t h i s double maxima. ACKNOWLEDGEMENTS Computer time has been provided by the NASA Langley Research Center. The a s s i s tance of Dr. Henry G . Reichle, J r . i n making t h i s possible i s appreciated. REFERENCES 1 U.S. Dept. Ag., Proc. 1 s t I n t . Symp. Acid Precip. and Forest Ecosystem, USOA Forest Service Gen. Tech. Rep. WE-23, 1976. 2 M.C. MacCracken, Atmos. Environ., 12(1978) 649-659. 3 W.E. Wilson, Atmos. Environ., 12(1978)537-547. 4 R . M . Perhac, 2nd Plat. Conf. on Interagency EnergylEnviron. R & D Program, Washington, D . C . , June, 1977. 5 J.P. Bromberg and T.G. Fox, Intergovernmental cooperation in "up-valley'' pollut i o n t r a n s p o r t management, Final Rep. of Ohio River Valley Assembly, 1978. 6 5. O t t a r , Atmos. Environ., 12(1978)445-454. 7 G.M. Hidy, E . Y . Tong, P.K. Mueller, S. Rao, I . Thomson, F. Berlandi, D. Muldoon, D. McNaughton and A. Majahad, Design of t h e S u l f a t e Regional Experiment, PB-251701, 1976. 8 G . R . Carmichael and L . K . P e t e r s , Proc. 4th Symp. Turbulence, Diffusion, Air P o l l u t i o n , Reno, Nevada, January, 1979, Amer. Meteor. SOC. 9 G.R. Carmichael, T. Kitada and L . K . P e t e r s , Comp. and Fluids, (1980) in press. 10 W.C. Kocmond and J.Y. Yang, S u l f u r dioxide photooxidation r a t e s and aerosol format i o n mechanisms: A smog chamber study. Calspan Corp., PB-260-910, 1976. 11 J.W. B r a d s t r e e t , 66th Ann. APCA Meeting, Chicago, IL, June, 1973. 12 G.R. Carmichael, Development of a regional transport/transformation/removal model f o r SO2 and s u l f a t e in the Eastern United S t a t e s , Ph.D. D i s s . , Univ. of K Y , 1979. 13 L.O. Myrup and A.J. Ranzieri, A c o n s i s t e n t scheme f o r estimating d i f f u s i v i t i e s t o be used i n a i r q u a l i t y models, PB-272-484, 1976. 14 D.B. Turner, J . Air P o l l u t . Control Assoc., 11(1961)483-489. 15 G . C . Holzworth, Mon. Wea. Rev., 92(1964)235-242. 16 W . G . N . S l i n n , Symp. Atmospheric-Surface Exchange of P a r t i c u l a t e and Gaseous Pollut a n t s , Richland, Washington, 1974. 17 G . R . Carmichael, D-K Yang, and C . Lin, Atmos. Environ. (1980) s u b . f o r pub. 18 G.T. Wolff, P.R. Monson and M.A. Ferman, Environ. S c i . Tech., 13(1979)1271-1276.