The vapour pressures of saturated aqueous solutions of magnesium, calcium, nickel and zinc acetates and molar enthalpies of solution of magnesium, calcium, zinc and lead acetates

The vapour pressures of saturated aqueous solutions of magnesium, calcium, nickel and zinc acetates and molar enthalpies of solution of magnesium, calcium, zinc and lead acetates

J. Chem. Thermodynamics 2001, 33, 113–120 doi:10.1006/jcht.2000.0731 Available online at http://www.idealibrary.com on The vapour pressures of satura...

66KB Sizes 60 Downloads 127 Views

J. Chem. Thermodynamics 2001, 33, 113–120 doi:10.1006/jcht.2000.0731 Available online at http://www.idealibrary.com on

The vapour pressures of saturated aqueous solutions of magnesium, calcium, nickel and zinc acetates and molar enthalpies of solution of magnesium, calcium, zinc and lead acetates Alexander Apelblata and Eli Korin Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel

Vapour pressures of water over saturated solutions of magnesium, calcium, nickel and zinc acetates were determined as a function of temperature. The vapour pressures served to evaluate the water activities, osmotic coefficients and molar enthalpies of vaporization. Molar enthalpies of solution of magnesium acetate tetrahydrate, 1sol Hm (T = 294.71 K; m = 0.01 mol · kg−1 ) = −(15.65 ± 0.97) kJ · mol−1 ; calcium acetate, 1sol Hm (T = 297.18 K; m = 0.01 mol · kg−1 ) = −(28.15 ± 0.28) kJ · mol−1 ; zinc acetate dihydrate, 1sol Hm (T = 297.36 K; m = 0.01 mol · kg−1 ) = −(22.49 ± 0.90) kJ · mol−1 and lead acetate trihydrate, 1sol Hm (T = 297.36 K; m = 0.0086 mol · kg−1 ) = c 2001 Academic Press (22.46 ± 0.94) kJ · mol−1 , were determined calorimetrically. KEYWORDS: vapour pressures; saturated solutions; water activities; osmotic coefficients; molar enthalpies of vaporization and solution

1. Introduction Magnesium, calcium, nickel, zinc, and lead acetates are used in many various industrial processes,(1) but our knowledge about thermodynamical properties of these acetates in aqueous solutions is limited. Vapour pressures of saturated solutions as a function of temperature are completely unknown in the literature. O’Brien(2) quotes one value for magnesium acetate at room temperature and one value for calcium acetate monohydrate at T = 297.65 K, but this is probably the vapour pressure over the solid Ca(CH3 CO2 )2 · H2 O. Few known thermal properties of aqueous solution of metal acetates have rather historical interest.(3, 4) Berthelot(5) (1873), Marignac(6) (1878) and Thomsen(7) (1883) reported heat capacities and enthalpies of dilution but temperatures are not specified or results are attributed to a large temperature interval. Only one modern determination of molar enthalpy of dilution is given by Plake(8) (1932) for calcium acetate. a To whom correspondence should be addressed (E-mail: [email protected]).

0021–9614/01/010113 + 08 $35.00/0

c 2001 Academic Press

114

A. Apelblat and E. Korin

Continuing our previous determinations of properties of aqueous solutions of metal acetates (solubilities of Mg, Ca, Ba, Co, Ni, Cu, Zn, Mn, Cd, Hg, and Pb acetates in water(9, 10) ), in this work systematic measurements of vapour pressures of water over saturated solutions of magnesium, calcium, nickel and zinc acetates are presented as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vaporization at saturation. Calorimetric determinations of molar enthalpies of solution of magnesium, calcium, zinc and lead acetates are also reported.

2. Experimental Magnesium acetate tetrahydrate, Mg(CH3 CO2 )2 · 4H2 O; nickel acetate tetrahydrate, Ni(CH3 CO2 )2 · 4H2 O; zinc acetate dihydrate, Zn(CH3 CO2 )2 · 2H2 O all mass fraction > 0.99 and calcium acetate Ca(CH3 CO2 )2 mass fraction 0.935 to 0.945 were supplied by Merck and lead acetate trihydrate, Pb(CH3 CO2 )2 · 3H2 O (mass fraction > 0.99) by Fluka. These metal acetates were used without futher purification. The vapour pressures over saturated solutions of magnesium, calcium, nickel and zinc acetates were determined using the Rotronic Hygroskop DT1 which is equipped with a measuring station WA-14TH. Saturated solutions with an excess of solid phase were placed in the measuring station in disposable polystyrene sample cups. The change of temperature was obtained by an external-mantle of the station which was heated or cooled by running water from an external thermostat. After the thermal equilibrium was attained, the system needed about 1 h to reach the (vapour + liquid) equilibrium. Thermal stability of the measuring system is estimated to be ±0.05 K and the sensitivity of the used hygrometer is about ±0.003 kPa. The applied procedure(10–16) was frequently checked by determining vapour pressures of saturated solutions of sodium chloride. The enthalpies of solution of magnesium acetate tetrahydrate, calcium acetate, zinc acetate dihydrate and lead acetate trihydrate were measured with a Parr 1455 Solution Calorimeter. The mass of water in the reaction vessel of the calorimeter was 100 g. The energy equivalent e = (525.7 ± 9.8) J · K−1 , was established using the dissolution of potassium chloride in water.(17, 18) The results of the calorimetric measurements are not adjusted for temperature and dilution effects because heat capacities are unreliable and enthalpies of dilution are unknown. The enthalpy of solution of metal acetate is reported for the mean molarity and temperature of all calorimetric measurements performed with this acetate (see table 1).

3. Results and discussion The vapour pressures over saturated aqueous solutions of magnesium acetate, calcium acetate, nickel acetate and zinc acetate as a function of temperature are presented in table 2. There is no corresponding data for comparison in the literature. The temperature dependence of the vapour pressure for saturated solutions is given by the Clausius– Clapeyron equation(19) g

d ln p/d(1/T ) = −1cr Hm (T )/R,

(1)

Vapour pressures and enthalpies of solution of metal acetates TABLE 1. Calorimetric molar enthalpies of solution 1sol Hm (T ) of magnesium, calcium, zinc and lead acetates; m denotes mass of substance, m f the molality of the product solution and 1sol H the experimental enthalpy of solution w g

mf mol · kg−1

−1sol H J

hT i K

−1sol Hm (T ) J · mol−1

Mg(CH3 CO2 )2 · 4H2 O 0.2143

0.009988

16.455

294.73

16463

0.2144

0.009993

14.717

295.05

14717

0.2145

0.009997

14.825

294.53

14818

0.2145

0.009997

14.352

295.83

14345

0.2145

0.009997

16.455

291.67

16447

0.2145

0.009997

16.296

295.07

16288

0.2146

0.010002

15.901

293.33

15887

0.2149

0.010016

14.733

295.02

14738

0.2150

0.010021

15.351

295.21

15308

0.2150

0.010021

14.353

296.26

14312

0.2150

0.010021

16.666

293.59

16619

0.2151

0.010025

17.086

295.18

17030

0.2155

0.010044

16.560

295.71

16475

0.1580

0.009989

28.177

296.85

28208

0.1585

0.010021

27.913

297.44

27855

0.1585

0.010021

28.652

297.42

28592

0.1586

0.010027

28.229

297.50

28153

0.1589

0.010046

27.970

297.15

27841

0.1592

0.010065

28.441

296.72

28257

0.2064

0.009400

21.027

296.17

22361

0.2202

0.010029

22.467

297.05

22374

0.2203

0.010033

21.867

297.56

21786

0.2204

0.010038

23.079

297.80

22983

0.2204

0.010038

21.343

297.05

21255

0.2209

0.010061

23.657

297.24

23506

0.2212

0.010074

23.815

297.52

23631

0.2212

0.010074

22.659

297.34

22484

0.2214

0.010083

23.550

297.43

23347

0.2239

0.010197

21.551

297.32

21126

Ca(CH3 CO2 )2

Zn(CH3 CO2 )2 · 2H2 O

115

116

A. Apelblat and E. Korin TABLE 1—continued w g

mf mol · kg−1

0.3795

0.008556

−1sol H J

hT i K

−1sol Hm (T ) J · mol−1

Pb(CH3 CO2 )2 · 3H2 O −21.763

295.24

−21753

0.3797

0.008560

−21.711

293.69

−21690

0.3808

0.008593

−22.815

295.54

−22727

0.3809

0.008595

−23.447

294.68

−23350

0.3811

0.008600

−23.550

294.20

−23441

0.3820

0.008620

−22.975

295.10

−22814

0.3822

0.008624

−23.289

294.50

−23115

0.3835

0.008654

−21.027

295.10

−20798

g

where 1cr Hm (T ) is the molar enthalpy change associated with the evaporation of water and simultaneously crystallizing the salt. Assuming that over the considered range of g temperature, 1cr Hm (T ) depends linearly on temperature, the integral form of equation (1) for the studied systems is: ln[ p{Mg(CH3 CO2 )2 , T, m}/kPa] = 197.064 − 13481.6 · (T /K)−1 − 26.5012 · ln(T /K), (2) −1 ln[ p{Ca(CH3 CO2 )2 , T, m}/kPa] = 56.396 − 7174.6(T /K) − 5.5045 · ln(T /K),(3) ln[ p{Ni(CH3 CO2 )2 , T, m}/kPa] = 206.142 − 13463.0(T /K)−1 − 28.0628 · ln(T /K), (4) −1 ln[ p{Zn(CH3 CO2 )2 , T, m}/kPa] = 19.769 − 5650.2(T /K) , (5) where m = m sat . The parameters of these equations were evaluated by an unweighted multivariate least-squares method. In table 3 are reported at 5 K intervals the values of vapour pressures p, solubilities of the acetates(9) m, activities of water a1 = p/ p ∗ , osmotic coefficients φ = −(3 · M1 m)−1 · ln a1 , (M1 is the molar mass of H2 O), and the molar g enthalpies of vaporization 1cr Hm (T ). The vapour pressures p ∗ of pure water at given T , were calculated from the Saul and Wagner equation.(20) At T = 298.15 K, the molar enthalpies of vaporization (table 3) are similar for all metal acetates (the lowest is for nickel acetate) and, in the studied range of T , decrease strongly with temperature for magnesium acetate and nickel acetate but are nearly independent of temperature for calcium acetate and zinc acetate. Thus, predictions about the temperature dependence of enthalpies of vaporization for other metal acetates is rather uncertain. The results of calorimetric measurements with magnesium acetate tetrahydrate, calcium acetate, zinc acetate dihydrate and lead acetate trihydrate are presented in table 3, where 1sol H denotes the enthalpy change during dissolution of mass m at temperature hT i, which is the average of the initial and final temperatures of the calorimetric experiment. In the absence of reliable heat capacities and enthalpies of dilution the molar enthalpies of

Vapour pressures and enthalpies of solution of metal acetates TABLE 2. Vapour pressures p of saturated aqueous solutions of magnesium, calcium, nickel and zinc acetates at temperatures T T /K

p/kPa

T /K

p/kPa

T /K

p/kPa

Mg(CH3 CO2 )2 (aq) 283.20

0.845

296.45

2.121

310.70

4.894

283.80

0.888

297.45

2.285

311.75

5.124

284.70

0.946

298.40

2.409

312.65

5.353

285.30

1.000

299.25

2.527

313.55

5.593

286.55

1.069

300.25

2.670

313.95

5.932

287.45

1.142

301.20

2.820

314.90

6.196

288.30

1.213

301.65

2.990

315.90

6.445

289.10

1.288

302.75

3.133

316.95

6.735

289.85

1.359

303.75

3.304

318.00

7.072

290.95

1.455

304.65

3.454

319.05

7.363

291.60

1.518

305.60

3.606

319.45

7.889

292.50

1.623

306.20

3.891

320.40

8.193

293.20

1.716

307.30

4.052

321.45

8.468

294.45

1.818

308.20

4.234

322.55

8.875

295.25

1.925

308.90

4.356

295.90

2.031

309.50

4.698

278.25

0.722

292.95

1.963

303.95

3.769

279.35

0.747

293.85

2.107

304.85

3.929

280.65

0.816

294.85

2.179

305.55

4.224

282.35

0.938

295.85

2.188

306.55

4.417

282.45

0.878

295.85

2.257

307.45

4.628

283.35

0.951

296.75

2.375

308.15

4.884

284.15

1.024

296.85

2.345

309.15

5.137

284.95

1.126

297.55

2.565

310.15

5.388

285.95

1.156

297.65

2.473

311.15

5.669

286.75

1.234

298.45

2.671

312.05

5.937

287.55

1.342

298.55

2.625

312.95

6.295

288.45

1.478

299.35

2.797

314.05

6.659

289.65

1.511

300.25

2.942

314.65

6.954

290.45

1.620

301.25

3.180

315.55

7.257

291.25

1.732

302.15

3.302

316.65

7.651

292.15

1.824

302.85

3.610

317.45

7.955

Ca(CH3 CO2 )2 (aq)

117

118

A. Apelblat and E. Korin TABLE 2—continued T /K

p/kPa

T /K

T /K

p/kPa

278.25

0.823

290.65

279.05

0.879

291.55

1.912

303.35

4.011

2.021

304.15

280.15

0.959

4.167

292.45

2.141

305.15

4.387

281.25 282.05

1.000

293.15

2.212

306.05

4.610

1.070

294.15

2.353

307.05

4.865

282.85

1.139

295.05

2.468

307.75

4.926

283.65

1.210

295.95

2.638

308.85

5.322

284.65

1.280

296.95

2.796

309.45

5.567

285.45

1.362

297.85

2.945

310.55

5.840

286.25

1.444

298.95

3.137

311.65

6.198

287.05

1.528

299.85

3.312

312.45

6.129

288.05

1.616

300.65

3.464

313.15

6.533

288.85

1.712

301.55

3.631

314.25

6.941

289.85

1.818

302.45

3.817

315.25

7.325

277.65

0.741

290.45

1.835

303.75

4.082

281.75

1.026

294.85

2.462

308.45

5.246

286.45

1.375

299.45

3.218

313.15

6.710

p/kPa

Ni(CH3 CO2 )2 (aq)

Zn(CH3 CO2 )2 (aq)

solution 1sol Hm (T, m) are only given for an average value of molality m and temperature T (based on all calorimetric experiments for the considered metal acetate). The molar enthalpies of solution as determined in this study are: 1sol Hm {Mg(CH3 CO2 )2 · 4H2 O; T = 294.71 K; m = 0.01 mol · kg−1 } = −(15.65 ± 0.97) kJ · mol−1 , (6) 1sol Hm {Ca(CH3 CO2 )2 ; T = 297.18 K; m = 0.01 mol · kg−1 } = −(28.15 ± 0.28) kJ · mol−1 , (7) 1sol Hm {Zn(CH3 CO2 )2 · 2H2 O; T = 297.36 K ; m = 0.01 mol · kg−1 } = −(22.49 ± 0.90) kJ · mol−1 , (8) 1sol Hm {Pb(CH3 CO2 )2 · 3H2 O; T = 297.36 K; m = 0.0086 mol · kg−1 } = (22.46 ± 0.94) kJ · mol−1 . (9) It is probable that, the deviation from stoichiometric composition of the investigated acetate hydrates, and not the neglected heat capacities, are responsable for a relatively large scattering of results. This is clearly indicated if the uncertainties of the results for anhydrous calcium acetate are compared with those of the other acetates.

Vapour pressures and enthalpies of solution of metal acetates TABLE 3. Solubilities(9) m, vapour pressures p, water activities a1 , osmotic coefficients φ, and molar enthalpies g of vaporization 1cr Hm (T ) as a function of temperature T , (R = 8.3136 J · K−1 · mol−1 ) g

φ

1cr Hm (T ) R·K

Mg(CH3 CO2 )2 (aq) 0.840 0.684 1.207 0.708 1.700 0.727 2.348 0.741 3.185 0.750 4.249 0.755 5.577 0.756 7.209 0.752 9.187 0.744

1.811 1.584 1.406 1.270 1.169 1.099 1.055 1.033 1.029

5978 5845 5713 5580 5448 5315 5183 5050 4918

2.302 2.268 2.235 2.204 2.174 2.146 2.119 2.093 2.080

Ca(CH3 CO2 )2 (aq) 0.685 0.785 0.797 0.797 1.380 0.809 1.920 0.821 2.637 0.832 3.578 0.843 4.801 0.853 6.372 0.863 8.371 0.873

1.946 1.848 1.752 1.657 1.565 1.474 1.386 1.300 1.209

5644 5616 5588 5561 5533 5506 5478 5451 5423

278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15

0.5890 0.6356 0.6841 0.7345 0.7866 0.8406 0.8964 0.9538

Ni(CH3 CO2 )2 (aq) 0.817 0.937 1.165 0.949 1.627 0.954 2.228 0.953 2.994 0.945 3.953 0.931 5.135 0.913 6.566 0.890

2.053 1.525 1.270 1.225 1.337 1.568 1.887 2.269

5657 5517 5377 5236 5096 4956 4815 4675

283.15 288.15 293.15 298.15 303.15 308.15 313.15

1.662 1.741 1.829 1.925 2.031 2.146 2.272

Zn(CH3 CO2 )2 (aq) 1.118 0.910 1.554 0.912 2.138 0.914 2.908 0.918 3.918 0.923 5.225 0.929 6.907 0.936

1.049 0.985 0.909 0.823 0.732 0.637 0.540

5383 5383 5383 5383 5383 5383 5383

T K

m mol · kg−1

283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15

3.88 4.03 4.20 4.37 4.55 4.73 4.92 5.11 5.32

278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15

p kPa

a1

119

120

A. Apelblat and E. Korin

The authors appreciate the technical assistance of Mrs Mary Mamana. REFERENCES 1. The Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals: 11th edition. Budavari, S.: editor. Merck Co., Inc.: Rahway, NJ. 1989. 2. O’Brien, F. E. M. J. Sci. Instruments 1948, 25, 73–76. 3. Beggerow, G. Heat of Mixing and Solution, Landdolt-B¨ornstein, New Ser. IV/2. Hellwege, K. H.: editor. Springer-Verlag: Berlin. 1976. 4. Smith-Magowan, D.; Goldberg, R. N. A Bibliography of Sources of Experimental Data Leading to Thermal Properties of Binary Aqueous Electrolyte Solutions. U.S. Nat. Bureau of Standards. Special Publ. 537. Washington, D.C. March 1979. 5. Berthelot, M. Ann. Chim. Phys. 1875, 4, 90–95. 6. Marignac, M. C. Ann. Chim. Phys. 1878, 8, 410–430. 7. Thomsen, J. Thermochemische Untersuchungen, Vol. III. Barth Verlag: J. A. Leipzig. 1883. 8. Plake, E. Z. Physik. Chem. (Leipzig) 1932, A162, 257–280. 9. Apelblat, A.; Manzurola, E. J. Chem. Thermodynamics 1999, 31, 1347–1357. 10. Apelblat, A.; Manzurola, E. J. Chem. Thermodynamics (in press) [WE-221]. 11. Apelblat, A.; Manzurola, E. J. Chem. Thermodynamics 1997, 29, 1527–1533. 12. Apelblat, A.; Korin, E. J. Chem. Thermodynamics 1998, 30, 59–71. 13. Apelblat, A.; Korin, E. J. Chem. Thermodynamics 1998, 30, 459–471. 14. Apelblat, A. J. Chem. Thermodynamics 1998, 25, 1191–1198. 15. Apelblat, A.; Korin, E. J. Chem. Thermodynamics 1998, 30, 1263–1269. 16. Apelblat, A.; Manzurola, E. J. Chem. Thermodynamics 1999, 31, 85–91. 17. Montgomery, R. L.; Melaugh, R. A.; Lau, C. C.; Meier, G. H.; Chan, H. H.; Rossini, F. D. J. Chem. Thermodynamics 1977, 9, 915–936. 18. Kilday, M. V. J. Res. Nat. Bur. Stand. (U.S.) 1980, 85, 467–481. 19. Modell, M.; Reid, R. C. Thermodynamics and its Applications. Prentice-Hall: Englewood Cliffs, NJ. 1974, 338–339. 20. Saul, S.; Wagner, W. J. Phys. Chem. Ref. Data 1987, 16, 893–901. (Received 21 February 2000; in final form 9 July 2000)

O-824