121
Theoretical Inquiry into the Intrinsic Precision of the Photogrammetric Techniques by A. M. W A S S E F Survey of Egypt, Giza. "Nothing that is Wrong in principle can be right in practice. Peopleare apt to delude themselves on that point, but the ultimate result will always prove the truth of the maxim .t,, Carl Schurz
Summary. The pressing need for moderately-priced photogrammetric machines led to the development in recent years of two-dimensional instruments in which the errors due to tilt are approximately balanced out by means of adjustable mechanisms t h a t automatically v a r y the separation of the pictures (or, the floating marks) as the model is scanned. T h e underlying mathematical principle is that to the f i r s t degree of approximation the errors of the model are representable by the equations of hyperbolic paraboloids in the photographic coordinates on one picture. The Drobyschew stereometer and the new model of Galileo-Santoni's cartographic stereomicrometer are built upon this principle, whereas the Zeiss Stereotop adopts the easier-to-realize (though basically less powerful) representation by the equation of a hyperboloid. , The present paper is an account of a theoretical inquiry into the goodness of this approach towards the design of inexpensive instruments, and sets to find what sort of results may be expected from instruments based on such representations. The work was stimulated by the remarkably good results which the author had obtained by means of a simple numerical method t h a t called for no more complex instruments than a stereometer (parallax bar) and an "Old Delft" scanning stereoscope [1]. The mathematics of the subject became manageable by using the relative-scale parameter X [2] which is expanded in terms of the orientation elements by means of Taylor's theorem. The f i r s t and the second order terms are fully worked out. Interpreted as a polynomial in the photographic coordinates the expansion can be replaced at little loss of precision by the familiar expression of the hyperbolic paraboloid involving x, y, xy and x 2. It is in fact shown t h a t this expression not only stands for the f i r s t order terms but it absorbs the larger proportion of the influence of the second order terms. An examination of the remainder of Taylor's expansion in its L a g r a n g e ' s form led to similar conclusions. Furthermore, it is shown t h a t the high efficiency of the hyperbolic-paraboloid representation is not seriously challenged in mountainous regions provided t h a t the photographic coordinates are f i r s t divided by the parallax. The investigation, which is supported by numerical analyses, seems to foretell of inexpensive instruments of first-order precision since tilts can now be kept well within two degrees. 1. Preamble. In some types of third-order PlOtting instruments t h e effects of the inclination of the camera axis on height evaluation are approximately neutralized by means of devices t h a t correct the z-parallax as the operator scans the stereoscopic model. The following are popular examples. i. T h e Z e i s s S t e r e o t o p . The correction is introduced.in the form dp = fo + fl x + f2Y + fsxY
(1.1)
which is the equation of a hyperboloid. The correcting mechanism of the instrument is set with the help of four height-control points.
122 The correction at any point within the model is t h e r e a f t e r automatically given as a function of the photographic coordinates x, y of the point on one picture. ii. Drobyschew stereometer [3]. In this instrument the correction is mechanically introduced according to the full formula of the differential of the parallax, t h a t is
dp = fo' + f l 'x + f2'Y + f3 ' x y + f4 'x2
(1.2)
where fo" , . . . . f4" are linear combinations of the elements of orientation. iii. S a n t o n i ' s cartographic stereomicrometer. The correcting mechanism of the latest model of this instrument is based on the property t h a t the hyperbolic paraboloid represented by equation (1.2) is a ruled surface. The surface is physically formed near the instrument. A feeler moves on the surface and communicates the correction corresponding to its position. A. Tewfik already proposed an instrument on the same principle. On the other hand, several numerical and graphical methods have been devised to evaluate heights from simple parallax measurements on similar principles. Of late years, Thompson [4] suggested t h a t the coefficients in equation (1.2) be evaluated by the direct solution of five suitably-distributed control points, with dh instead of dp where dh is the difference between the field value of the height and its value as determined by means of the simple parallax equation. A more rigorous derivation of the functional relationship between the height, the parallax and the photographic coordinates enabled the p r e s e n t writer [1] to develop a simplified analytical method t h a t gave approximately H/6000 for the root mean squ~/re error of height determination under favourable conditions, H being the flying altitude. The method was f u r t h e r developed at the Survey of E g y p t to keep the precision at this level in hilly country and with larger tilts. It was to ascertain the theoretical expectations of these techniques, and to clear the ground for future developments in this field that we set to investigate the general theory of representation of model deformations by such functions of the photographic coordinates. 2. Parametric representation of the stereoscopic model. It was shown in a previous article [2] that the coordinates of a g r o u n d point with reference to a coordinate system attached to the left-hand photograph with origin at the perspective centre are (Z x, XY, Z), where x, y are the photographic coordinates X, Y normalized by dividing each of them by the principal distance of the camera. It follows t h a t the entire subject of model deformations would be covered by an investigation of the influence of the sources of deformation on the p a r a m e t e r ZThe following derivation of 7. is abridged from the article j u s t quoted. Let the system of coordinates O' (x', y', z'), attached to the right-hand photograph with origin at its perspective centre, be rotated to O" ($, 7, ~-) parallel to 0 (x, y, z) of the left-hand picture; and let C~, C~, C z be the components of the base 00". The condition of correct relative orientation is t h a t the plane containing the two perspective centres 0 and O" (Cx, C~, Cz) and the image (x, y, - - 1 ) of a ground point P on the left-hand picture shall also contain the image (~ ÷ C~,~ + C~, ~ + Cz) of P in the right-hand system. Hence,
C~
Cy
x ~:+c~
y ,~+c~
Cz --1 ~-+c,
which gives
z x - - z'~ = C~, z y - - z'~ = C~ , --Z
- - Z ' $ = C~ ,
=
;
O,
123 where, Z=
c~¢ -- c ~ x~'+~
and
Z'=
c~ -- c ~ x~'+~: '
C~ P u t t i n g Cz = b and Cxx = Cz'' we obtain
z
= b ~ Cz" + ( - - ~ )
(2.1)
x (--¢) --~
The transformation of (x', y', z') into (~, J?, ~) is m a d e via the Eulerian angles which are the inclination 8 of the camera axis, and angles V and ~ which define the azimuths of this inclination with reference to the left-hand system and the right-hand system respectively, i.e.
illTI:I 1 w h e r e T is t h e square m a t r i x cos $ sin (p sin v + cos ~ cos v - - c o s S cos ~ sin v + sin (p cos v - - s i n O s i n v 7 - - c o s 8 sin q~ cos V + cos 9~ sin y, cos (~ cos V cos V + sin (p sin V sin 08 cos V J - - s i n 8 sin 9~ cos ~ cos 9v --cos
(2.3)
which m a y be w r i t t e n "-1
F (1---cos 8) sin V + cos A | (1---cos 8) c o s v + s i n A - - s i n 0 sin ~v
( 1 - - c o s 8) sin V - - sin A --(1--cos0) cosv+cosA sin 0 cos ~v
- - s i n ~ sin ~ l/
(2.4) --COS
where V--(P
= A.
(2.5)
3. Polynomial representation of the scale p a r a m e t e r ZL e t us denote by Z(0) t h e value of Z when t h e elements of relative o r i e n t a t i o n are nil; a n d let Z(0, A, Cz') denote its value for non-zero o r i e n t a t i o n elements. Taylor's t h e o r e m for the evaluation of a f u n c t i o n in t h e neighbourhood of a point of r e f e r e n c e gives
1
Z(O, A, Cz') = Z(0) + d z ( 0 ) + ~ T d 2 z ( 0 ) + R
(3.1)
where dz=
0Zo + AZA + Cz'Z v ,
(3.2)
g
and d2z = 02Z80 + d2ZdA ÷ (Cz')2ZCz, Cz ÷ 2 Cz'AZcz, l+ 2 A Ozdo + 2 (~Cz'Ze% .
(3.3)
A s u f f i x e d l e t t e r indicates p a r t i a l d i f f e r e n t i a t i o n with r e s p e c t to the variable r e p r e s e n t e d by the letter. F o r example, 0Z
¢')Z
32Z
ZO= 3 8 ' Zvz'-- 3C~" zAo - 3A bO R is the r e m a i n d e r t e r m .
124 To derive d~ a n d d2z we n e e d t h e f o l l o w i n g f u n c t i o n s : Z=-x(~¢)_~
'
$ = I (1--cos
0) sin (p sin y~ + cos zl] x'-tT[ (1--cos
0) cos (p s i n ~ - - sin A l y " + sin 0 sin y~,
- - $ = ( - - s i n 0 sin~o) x' + (sin 0 cos ~ ) y ' + cos O, f r o m w h i c h we d e r i v e
b('0
2b (--~')
--b z-: = Iz(_$)__Z}
2bx~
z(-,~)(-:)
2,
iz(_¢)_~}
~,
b i - - ~ : - - x (--~') I $
I~(--¢) --~1 s ( sin 0 sin = (--eosOsin = := -
~oo
-
~o s i n y~) ~' ~ sin ~ ) x ' ( - - sin A) x' (--cosA) x'
+ (sin 0 cos ~o sin ~o) y ' + cos 0 s i n ~ , , + ( e o s O c o s qo s i n N) y ' - - s i n O s i n y ~ ,
+ +
( - - cos A) y ' , (sin A) i f ,
~0~ ( - - cos 0 s i n ~ ) x ' ÷ (--~) o = (--$) a a = (sin 0 sin ~ ) x" - (--~) is i n d e p e n d e n t of A .
(cos 0 cos ~o) y ' - - sin 0 , (sin 0 cos ~o) y ' - - cos 0 ,
Furthermore,
= z ~ 0 + z(-~,) ( - - $ ) 0 ,
zo Zz~ Zc , z
ZOO ZAA
z%,c z, ZzIC ,
b$ - x(--¢) --~' = z ~ ($0) 2 + z ( - ~ ) ( - ~ )
(--~-0) 2 + 2 z~(-.;) ( - - ~ o ) ~ e + x ~ o a + z(-,~) (--¢) oo,
~0~ = Ix(__~)__~12'
z
ZAO ZOc •
I~(--~)--~l
z
When O= g =C z'=O, Z
= b/p,
$ t0 ~00
= = = =
~ ~zz ~o~ .~ Z~ Z~(-~)
~
i~(--¢)--~12
we have
x', sin ~ , - - s i n 2 x' -t- (sin ~v cos ~o)y', --y',
=--x', = o, = b/P2 , = 2b/p3, = b (.---¢c,--x')/pS.
(--¢) (--~') 0 (--~') 00 . (--¢)z (--OA~ (--Oo~ Z(-~)
= = = =
1, - - s i n x ' - - cos i f , --1 , o,
=0, =0, = --bx'/P 2,
Z ( - ¢ ) (--¢) = 2 b x x ' / p a ,
125 Hence, xe
= b (sin y + x’s sin y -
XA XO#’
= --by’lP = bx’lp
xee
= (2b/p3) +
,
sina y + (2bxs’/p3)
(2b/p3)
(x +
= 2byQjp3 =o
XAA x 0 ‘C ’ z z
= -bxy’/$
xOzfA
x’ y’ cos v)/ps,
,
(-x’ sin Y + y’cos y)s + x’) (x’ sins y - #sin y cos y) + -I- (h/p? (--1;’ sins y -I- y’ sin y cos y)
,
X?O
= -(2by’/p3)
X00,’
=
(bx/ln2)
Assembling
the
sin y , sin y (bxx’/p2)
terms
of
(3.1)
(--2’
in
the
sin y + y’ cos W) . form
of polynomials
in x and
y we
i.
x(O)
= b/p,
ii.
dX(O)
iii.
l/2 dsX(O)
= (b/p2) ( 0 sin y + px’C,’ - y’A - x’y’0 cos y + ~‘2 0 sin 7~) , = (b/p3) (A2 + xx’02 cos’+)y’2 + + + P/2 blP3) 1 (P -2x-2x’-4xx’2)(Osiny)(Ocosy) -2pxC,‘A-44 (Osiny) -2pxx’C,‘(Ocosy)]~~‘+ + (l/2 b/p3) [ 2 ( 0 sin y)s + px’( 02 - 42) + -x’(p-22x--2x’-2xx’a)(Osiny)s+2p(x
An
inspection
of these
results
shows
+
US
now
consider
the
small
a hyperbolic
The
exact
value
A and C,‘, but when graph) and the function
the
form
R, in (3.1).
x (to, tA, tC;),
where
(3.6)
In 0 <
Lagrange’s t
<
form:
1.
of t is difficult to determine and depends on the actual values of 0, these are small, t is nearly 1/4 (see remark at the end of this paraof the representative polynomial is closely indicated by the trend of a3x
3! i
values
xx’s)C,‘(Osin~.f~)].
of l/s d2x (0) are respectively a paraa parabola of the fourth order; of these parabolas are smaller than
term,
remainder
03 -__ The
(3.4) (3.5)
paraboloid;
1
R = zd3
obtain:
that
1. dx(0) is in the usual form of the equation of 2. the second order terms are parabolic in y’; 3. the coefficients of ~‘2, y’ and the third term bola in x, a parabola of the third order and 4. the contributions of C,’ and A to the order the contribution of 0. Let
bx’/@ ,
+
bdJp,
a 03
!
e=o
of b”x (4>‘03
for the array below:
of points
at which
X =
ezo
0, 5, 10 and
;
;I
g
A
Y = -10, 6 10 0 18 0
0, 10 are
shown
schemetically
126 from which it appears t h a t the simple polynomial 1X4
10--~
(X-- 5)Y
gives the plotted valueswithin seven units equivalentto 7
~- (.017)a(0 o )3 which is below 1/20,000 when each of the tip and the tilt is 2 °. Remark. The function ~ (0, A, Cz' ) may be written in either of the equivalent forms 1 z(O) + dz(O) + 1/2d2z(O ) +~.~ daZ (tO, tA, tCz'), or
1 z(O) + dz(O) + 1/2d2z(O) +d32,(0) + ~ d4x (uO, uA, uCz'), where u is also a fraction between 0 and 1. In other words, there exists a fraction t and another fraction u such t h a t the identity 1
1
1
3.t d3z (tO, tZ], tCz' ) = 3~. daz(0) -}-4! d4z (uO, uA, uCz' ) holds true for any values of 0, A and Cz'. P u t t i n g A - - C z ' = O, this identity reduces to 03 03 04
~(. z(3)(tO) = ~ . Z(8)(0) + 4fz(4)(u0), or
Z~a)(tO) = Z(3) (0)
~-
1/40Z(4) (U),
where Z(r) is w r i t t e n . f o r
~r z 0~ The left-hand member of this equation may similarly be written
z(3)(tO) = z(3)(0)+ tOz(4){v(tO)],
o < v < 1.
Hence,
t=
1/4 Z(4) I v(tO) } Z(4) (uO)
which tends to 1/4 as 0 approaches zero. 4. Goodness of the representation of :~ by the equation of a hyperbolic paraboloid. We shall now proceed to estimate the goodness of fit of the five-term expression
a + fix + 7Y" + ~xy" + ex 2 (4.1) the coefficients of which contain the measured parallaxes, p, as a parameter, i t will be assumed t h a t the principal distance of the camera is 15 cm and that p = b = 10/15. The model is defined by 0 __
127 by X
X ( 0 cos %0)2
does n o t exceed 1 50 4 - " 22~ ( 0 c ° s %0)2
(Ocos%0) 2 18
w h i c h is t h e v a l u e it r e a c h e s at X = 1/2 P, Y = 0, 10 a n d - - 1 0 . To t h i s w e s h o u l d a d d 50 A2 (10)2 A2 = ~ - . F o r a r e l a t i v e tilt 0 cos %0 of 1 ° t h e m a x i m u m e r r o r is .017452
17
18
1000,000
T h e e f f e c t of a n e q u a l A is c o m p a r a t i v e l y large, b e i n g 150/1000,000. It s h o u l d h o w e v e r he n o t e d t h a t w h e n t h e p h o t o g r a p h s a r e c o r r e c t l y b a s e - l i n e d a n d t h e c o o r d i n a t e s a n d p a r a l l a x e s a r e r e f e r r e d to t h e p r i n c i p a l - p o i n t s b a s e , A is v e r y s m a l l a n d t h e t e r m is ~egligible. 2. T h e a b s o l u t e v a l u e of t h e e x p r e s s i o n
--2 bx (x - -
p) 2 y, 02 (sin %0cos %0) pa
is less t h a n
X (X
112(p2~
2 ff \if- --
/ \ - ~ 7 ) ( 0 sin %0) ( 0 cos %0)
which reaches the maximum value
± (L12 ,_oo 2 3 \3
]
1
225 (0e°s%0)(0sin%0) = ~6
(0sin%0)(0c°s%0)
a t X = 1/3 P. T h e e r r o r due to n e g l e c t i n g t h i s t e r m w h e n e a c h of t h e t i p a n d t h e t i l t is one d e g r e e , is less t h a n 40/1000,000. T h i s e r r o r m a y be r e d u c e d to one h a l f of i t s v a l u e by r e p l a c i n g t h e t e r m b y
--Y'(O .....
sin %0) ( 0 cos %0) 15 P
. . . .
3. T h e t e r m
--bxx" y'C z' ( 0 cos %0) 1)2
is n u m e r i c a l l y g r e a t e s t on t h e e d g e s of t h e o v e r l a p a t X = 1/2 P. T h e m a x i m u m v a l u e is 10 ~2 1
1
I
lff) ~ ' ~ C ~ ' ( 0 cos%o) = ~C~'(0 cos%o). T h i s a m o u n t s to 34/1000,000 w h e n 0 cos %0 = C zt__ -- 1 °, b u t it c a n be r e d u c e d to one h a l f of i t s v a l u e b y a d d i n g 1
18 Cz'( 0 cos %0) to t h e coefficient of y" in t h e l i n e a r p a r t of t h e e q u a t i o n . T h e m a x i m u m v a l u e of t h e r e s i d u a l is t h u s r e d u c e d to 17/1000,000.
128 4. The X and X Y terms of the equation of the hyperbolic paraboloid or the hyperboloid absorb the effects of the second-order terms A C z" and A (0 sin y~). 5. The term bx ( x - - p ) 8 (0 sinv2)2
p3-
"
may be written p
1--~-
(~ sin ~v) 2
which reaches the maximum numerical value 1 ( 3 ) 3100 225 (0 sin yJ) 2
3 (0 sin~v) 2 64
at X = x J4 P. The maximum value is 1411000,000 when the tip is 1 °. t t a l f of it can be taken away by adjusting the constant term. 6. The term / p2\ , bx(x--p)2Cz'(Osin~V)p2 = X ( 1 - X ) ( - f 2 ) C z ( O s i n y 3 ) at X = 1/3 P has its maximum value 1 ( 2~2(10t2
•
1
3] \15~] Cz ( ~ sin V) = 1-~Cz" ( 0 sin V) %
at X = I / 3 P . For Cz ' = l and O s i n y J = l ° the error due to neglecting the whole term does not exceed 2011000,000. The addition of Cz" ( 8 sin V) 30 to the constant term reduces the maximum error to one half of its value. Tabte 1 sums up the situation when the equation of a hyperbolic paraboloid is fitted to the scale parameter Z. The first column shows those terms of the polynomial that do TABLE 1. Maximum Deviation of the Scale .Parameter from the Fitted Equation
of a Hyperbolic Paraboloid. (M = 111000,000.) I
Term of the Polynomial bxx
~-
p
y'2 ( 0 COS~/))2
bxx'a ~-
( 0 sin *g) 2
-.4bxx'2 p3
Correcting Term
M( 7 M
20 y' (0 sin yO(O cos ~v)/2
Maximum Residual
cos~v)2~ 1 - -
~ (tilt°) ~ 7 ~ (tip°) 2
(0 ° sinyJ) 2 Y'
(~° sin yJ) (0 ° cosyD ~-
20 ~ (tip °) (tilt °)
--bxx" - -p~- y'C~" ( 0 cos ~)
Y" 17 Cz"° (0° cos~v)~ M
bxx'2 ~ - - C z' (0 sin yJ)
~ C z "° ( 0 ° sin yJ)
~ (Cz"°) (tip °)
b p~ y'2 d 2
1/2 A2
152 M A°
10
17 ~ (C~'°) (tilt °) 10
(See § 5.)
129 not appear in the equation of the surface (that is, the hyperbolic paraboloid). Half the maximum errors due to these terms can be taken up by additive correcting functions to the terms of the equation o f the surface. The correcting functions are given in the second column. The maximum residual discrepancies are shown in the last column. 5. Accuracy of representation of ;~ by the equation of a hyperboloid. The p a r t of the polynomial expression of Z which can not be directly incorporated in the equation of a hyperboloid z = a + ,Sx + 7Y + ~xy
is bx '2
bxx' y "2
p~ ( 0 s i n ~ ) ÷ - - - - p ~
2 bxx'2y"
( 0 c o s y~)2
p3
bx~'y"
(0sinyJ)(0cosyJ) + bxx "2
p2
C.' (0cosy3) + - - pa
bx" (p
2x - - 2x' - - 2xx'2)
p3
C z' ( O s i n y )
+
1/2 (0 sin ~v) 2.
The second term was reduced to a parabola in X (§ 4). As this is not admitted in the equation of the hyperboloid we shall substitute ( X / P ) ( 1 - - X / P ) by li4 which changes the distribution of the residual errors in the model without affecting" their maximum value. The third, fourth and f i f t h terms may be treated as shown in connection with the hyperbolic paraboloid. The sixth t e r m may be written
The coefficient of 1/2 ( 0 sin ~v) 2 ranges from 3 a t X ~ 0 to 0 at X -----P. The expression 3 ( 1 - - X ] P ) would fit at the two terminals giving 1.5 at X = l / 2 P whereas the correct value is .472. The resulting error has the maximum value 304 1 156 (0 ° siny~) 2 1.028~-2(0 ° sin~p)2 = -'M .... The largest error however results from the replacement of the f i r s t term (which is linear in 0) by a linear function of x. The term may be written 2 X2 ~ ( 1 - - ~ - ) ( 0 sin ~o). The largest difference between ( 1 - - . X / P ) 2 and 1 - - X / P the largest discrepancy is 2 (.25 (.01745) (0 ° sinyJ) --
is .25 at X = li2P. Hence,
2908 ( 0 ° sin ~) 1 M -- 344
per degree of tip. For one degree of tip the second-order t e r m contributes 156/M, giving a total of 3064/M, or 1/326. If the range of X is split up in the middle and straight lines are fitted to the ends of each half separately the maximum error due to one degree tip is reduced to one quarter of this value, causing a height error of H/130ff in f l a t country. 6. Case of mountainous regions. The polynomial expressions of Z include p as a p a r a m e t e r ; and it was shown that, f e r constant p, the function a + 13~-I-7y + (~xy'+ sx 2 reproduces the error in Z with g r e a t fidelity. We shall now show t h a t the accuracy of this representation can be maintained in mountainous regions by using X [ P and Y ' ] P in the places of x and y" respectively - - t h a t is to say, by changing the scale of the coordinates according to the measured parallax. F o r instance: 9 *
130 TABLE 2. The Difference between the Cow'feet and the A p p r o x i m a t e
X
Y
Zapp
10
1.049447
~--~app
1.050790 2327
8
1.047120
1.048366 2327
--6
1.044793
4
1.042467
2
1.040140
2424
2326
1.045944
2422
0
1.037813
1.041100 2327 2327
--2
1.035486
--4
1.033159
1.033832
1.030833 2327
--8
1.036254
2327 2326
6
1.038676
t.028506
1.031412 1.028990
2327 --lO
10
1.042931
8
1.041070
6
1.037347
1.042024
1.035485
0
1.033624
--2
1.031762
--4
1.029901
--6
1.028040
--8
1.026178
--10
1.024317
1.038187
1.037347
8
1.035951 1.034555
4
1.033159
2
1.031763
0
1.030367
1861
--4
1.027575
--6
1.026179
--8
1.024783
--10
1.023387
1929
1932
61
590 522 455
763 1423
1427
1431
1.031005
1.023810
24 27
32 35
1437
601 560
1438
1.025255
71
673 638
1.028135
1396
67
31
1433
1.026697
68
705
1428
1396
63 65
736
1.035291
1396
6i
779
787
1.033864
1396
59
840
142o
1.029572
95
384
1.036714
1396
95
55
655
1.038134
1.032436
94
55
718
1929
1396
95
899 1920
1.024701
1396
97 95
954
1926
1.026633
95
1009 1916
1.032417
1.028562
96
389
1.030491
1861
579
1925
1861
1862
673
484
1922
1396
1.028971
2422
1.034342 1862
1396
--2
2420
1.036264
1396 6
768 2422
1923
186i
10
863
1917
1862
2
960
2422
1.040107 1861
4
2424
2422
1862
1.039208
1151
2422
1.043940 1861
95
1055
1.026568
1.026179
97
1246 2422
1.043522
2327
1343
1442 1445
518 472 423
37 41 42 46 49
131 V a l u e s of Z in the Case o f T i p = T i l t = l
X
Y
~app
6
10
1.032693
°.
Z
1.033343 931
8
1.031762
6
1.030832
4
1.029901
1.032412 930
1.031475
1.028970 1.028040
930
---4
1.029598
1.027708 930
1.026179 931
--6
1.025248
--8
1.024318
--lO
1.023387
10
1.028971
8
1.028506
930 931
1.026760 1.025809 1.024855
1.029547 465
1.029096
1.028040 1.027575 1.027109
0
1.026644
465
I0
--2
1.026179
--4
1.025713
466 466
1.026825 1.026366
1.024782
---10
1.024317
10
1.026179
1.026729
8
1.026179
1.026761
1.026179
465 465
1.025903 1.025441
1.026793
451 450
599 581 561 537
576
1.026179
1.026856
0
1.026179
1.026889
1.026179
1.026922
----4
1.026179
1.026952
--6
1.026179
1.026985
~8
1.026179
1.027019 1.027052
13 16 18 20
24 24
--16
619
457 459
463 462 465
--14
590 606
630 638 646 653 656 659
--13 --11
--8 --8 --7 --3 --3 0
659
--32 --32 --32
1.026825
2
1.026179
615
513
1.024976
---2
--10
955
457
1.027282
--8
4
954
628
455
1.025247
1.026179
951
1~27739
--6
6
948
1.028194
465
9
452
466
2
947
1.028646 465
4
943
1.023900
466 6
6
637 940
1.028655
1.027109
7
937
931 --2
0
650 643
1.030538 931
0
650
931 937
931 2
~--~app
--31 --33 --33 --30 --33 --34 --33
550 582 614
--32 --32 --32
646 677 710 743 773 806 840 873
--31 --33 --33 --30 --33 ---34 --33
132 b
dz(O) = ~ -
[0sin W + p(x--p)C~'--y'A--
(x--p)y" (0cosw) + (x--p)~(Osinw) }
may be written:
B,f2
X
•
~) (0 sin ~v) I =
~--p-~ (0 sinyJ) + F 1 \ p ,
p 1,
where F 1 is of the form
It should however be pointed out t h a t the term (B]f)(f/P)LJ (Y'/P) does not fit into this picture in view of the presence of the coefficient f/P, but its influence can be kept within close tolerances by careful base-lining of the photographs to reduce /t. The equation for l/2d2z(0 ) may, with the exception of the t e r m s which include A, be written
B]'2 li2d2•(0 ) = ~ -
B
(XY')
(0sin~)2 +~F 2 ~,p-
.
If we adopt an average value Po of P in the coefficient B/P of /72 the second t e r m will he subject to an error --+ AP/P of its value, where AP is h a l f the actual range of P. It will be seen from the numerical examples which follow in § 7 t h a t the difference between the exact formula of Z and its f i r s t approximation Z ( 0 ) + dz(0) is 1347/M when 0 ° sin y) = 0 ° cos y~ = 1 °. Approximately one half of this difference is accounted for by the term Bf2(Osiny~) 2 (15)-" 684 p3 - 10 ('01745)2 ( 0 ° s i n y j ) 2 = M - " The remainder, 663/M, corresponds to the term (B/P)F2(X/P,Y'/P) and is therefore subject to the error AP/P of its value due to the variation of P from the average value adopted in the coefficient of' F 2. The error under consideration remains less than 1110,000 so long as [ P - - P 0 [ < .15P. 7. Numerical study of special cases. To establish data for numerical analysis, and to check the derivation of the formulas, Z was calculated from the exact formula (2.1).every two centimetres of an overlap defined by 0 _< X ~< 10, i l 0 ~< Y ~< 10 assuming P ~ 10 em an d f = 15 cm for two sets of values of the tip and the tilt. The approximate value of Z was calculated according to the formula Zapp = Z ( O ) +
dz(O)"
Case I: tip = tilt = 1°. The correct and the approximate values of Z and their differences when each of the tip and the tilt is one degree are given in Table 2. i. The parabola which fits the difference Z--Zapp at X = 0 and Y = 10, 0, - - 1 0 may be determined by L a g r a n g e ' s interpolation formula ( Y - - O ) (Y + 10)
(Y'--IO) (Y + lO)
.........
(Z--Zapp)x=o +
( 1 0 - - 0 ) (10 + 10) (Z--Zapp)X=0 Y~10 -~ ( 0 - - 1 0 ) (0 + 10) (Y--IO) (Y--O) -t ( - - 1 0 - - 1 0 ) ( - - 1 0 - - 0 ) (Z--Zapp)X:O Y= --10 which gives (~-
Zapp)X=O = 863.0 + 48.10 Y.
r=0
133 Similarly =
638.0
17.20 Y ~
(Z --
Zapp)X=4
~-
(Z-
Xapp) x = l o = 7 1 0 . 0 - 1 9 . 1 5
.330 Y~
and Y - - . 0 1 5 y2.
S u b s t i t u t i n g in t h e e q u a t i o n
( X - - 4 ) (X--10) Z--Zapp=
(0--4)
(0--10) +
( X - - 0 ) (X--10) (Z--Zapp)X=O
4
(4--0)
(4--10)
( Z - - X a p p ) X = 4 q-
( x - - 0 ) ( x - - 4)
(10--0)
(10--4)
(X--Zapp)x=lo,
we o b t a i n (Z --
Zapp) tip = tilt = 1 o
(6.825 X 2-83.549 X ÷ 863.0) + + ( .1666 X 2 8.392 X + 48.1)Y+ -i- ( .01475 X 2 .1500 X -I.0030)y2.
T h e . l a s t t e r m r a n g e s f r o m a b o u t 0 £o - - 3 8 / M . H a l f of t h i s v a l u e c a n be t a k e n u p by t h e c o n s t a n t t e r m . T h e coefficient of Y m a y be w r i t t e n . 1 6 6 6 X ( X - - 1 0 ) - - 6 . 7 2 6 X + 48.1 a n d c a n be replaced b y - - 6 . 7 2 6 X + 46.0 w i t h a n e r r o r s m a l l e r t h a n .1666 I X (X - - 1 0 ) ] max 2 Hence, t h e m a x i m u m r e s i d u a l is 21/M. T h e e q u a t i o n (863.0 - - 19.0) - - 83.5 X + 46.0 Y - - 6.726 X Y ~- 6.825 40/1000,000. ii. L e t u s n o w c a l c u l a t e t h e r e s i d u a l s w h i c h r e m a i n to t h e v a l u e s of Z a t five p o i n t s , s a y X = 0, Y = ~ 1 0 ; S o l v i n g t h e c o r r e s p o n d i n g five e q u a t i o n s , we o b t a i n Ztip ~ tilt -- 1 o =
--2.1. of t h e h y p e r b o l i c p a r a b o l o i d b e c o m e s X 2, t h e m a x i m u m d i s c r e p a n c y b e i n g a f t e r f i t t i n g a hyperbolic p a r a b o l o i d X = 4, Y = 0 a n d X = 10, Y = ± 1 0 .
1.038679 - - . 0 0 2 4 0 8 4 X + .0012110 Y - - . 0 0 0 1 2 2 7 2 X Y + .00012295 X 2.
T h e d i s c r e p a n c i e s a r e s h o w n in F i g s . l a , . . . , l e in t h e f o r m of h e i g h t c o n t o u r s in m e t r e s a s s u m i n g t h a t t h e p h o t o g r a p h s a r e t a k e n a t H = 10 k m w i t h a c a m e r a of focal l e n g t h 150 ram. T h e e r r o r s a r e less t h a n 0.8 / / / 1 0 0 0 0 . Case I I : tip = tilt = 2% T h e c a s e of two d e g r e e s of tilt a n d two d e g r e e s of tip w a s s i m i l a r l y e x a m i n e d . T a b l e 3 g i v e s t h e d i f f e r e n c e s b e t w e e n t h e e x a c t a n d t h e a p p r o x i m a t e v a l u e s of X. i. T h e p a r a b o l a w h i c h f i t s t h e d i f f e r e n c e s Z - - Z a p p a t Y = 10, 0, - - 1 0 f o r e a c h of t h e X - v a l u e s 0, 4 a n d 10 a r e a s follows ( Z - - Z a l ) p ) x = o = 3583 + 1 9 9 . 7 Y + .16 y2, ( Z - - Z a p p ) x = 4 = 2651 ÷ 76.1 Y - - 1.39 y2, (Z--Zapp)x=10= 2961÷ 68.0Y÷ .15Y2, f r o m w h i c h we f i n d t h a t )~ --,~app ~ +( ÷ (
28.467 X 2 - - 346.870 X + 3583.0 -I.6884 X 2 - - 33.6538 X + 1 9 9 . 7 ) Y ÷ .06442 X 2 - .64520 X ÷ .155) y2.
T h e v a l u e of t h e l a s t t e r m r a n g e s f r o m 0 to 1 0 0 i . 0 6 4 4 2 ( 2 5 ) - - . 6 4 5 2 0 (5) + .1551 = - - 1 4 7 / M , Its r e p l a c e m e n t b y t h e c o n s t a n t - - 1 4 7 / 2 M w o u l d c u t d o w n t h i s m a x i m u m e r r o r to - - 7 4 / M ; b u t a s m o o t h e r d i s t r i b u t i o n o f t h e r e s i d u a l s w o u l d be o b t a i n e d if t h e t e r m is r e p l a c e d by 50(.06442 X 2 - - . 6 4 5 2 0 X + .155) = 3.221 X 2 - - 3 2 . 2 6 0 X ÷ 7.75 w h i c h l e a v e s t h e m a x i m u m e r r o r a t 74/M. T h e c o e f f i c i e n t of Y m a y be w r i t t e n . 6 8 8 4 X ( X - - 1 0 ) 4-
134 TABLE 3.
X
Y
Xapp
O
10
1.098883
The Difference between the Correct and ~he A p p r o x i m a t e ~
5058
1.094230
1.099420 4653
6
1.089577
4
1.084923
2 0
1.080270 1.075617
--2
1.070964
--4
1. 066311
--6
1.061657
--8
1.057004
--10
1.052351
5595
1.104478 4653
8
~--Xapp
!
! 4654
I
4653
[
1.094364
1.074148
4653
1.069097
4654
1.064048
4653
1.059000
4653
--2
4787
4
4383
2 o
3982
5053 5052 5051 5049 5048 5047
405 2 403
--1 404
5054
1.084252 1.079200
4653
5190
5058
1.089306 4653
2 5056
3 401 2 399
3583
1
3184
2
2786
1
2391
.1
1996
O 399
1
398
3
395
O
395
1
394
1602
1.053953 i
10
1:085854
8
1.082131
6
1.078409
4
1.074686
2
1.070964
0
1.067241
"1.090055 3723 3722
I
3723
[
3722 3723
1.082140 1.078173
i
1.074199
]
1.063518
1.070218
1.059796
--6
1.056073
--8
1.052351
!
1.066230
--10
1.048628
10
1.074686
3995
3723
]
3722
I
3723
1 i
1.062235
1.058233 1.054226
t
1.071894
6
1.069102
4
1.066310
2
1.063518
0
1.060726
2792
--4 --6
1.055142 1.052350
--8
1.049558
--10
1.046766
3487
--7
3235
--7
2977
--7
2712
--7
2439
--5
2160
---8.
1875
4015
1583
2917
--3
3172
--11
3058
--11
2933
1.066315 2938
1.063377 2948
1.060429 2962
1.057467
2792
1.054495
2792
1.051515
2792 i
1.048521
240 244 252 258 265 273 279 285
--10 --4 --8 --6 --7 --8 --6 --6 ~7
292
2972 2980 2994
106 114 125
--8 --11 --11
136
2928
2792
230
3278 2898
1.069243
2792
I
4007
2906
2792
1.057934
4002
1.072160 2792
--2
3731
--7
1.077964 1.075066
2792
3971
--5
1.050211
2792
8
3981 3988
3722
--4
3962
3974
~
!
--9 3967
I
3723
--2
4201 3953
1.086102
--lO
2797
--lO
2651
--14
2495
--lO
2325
-- 3
2145
--14
1957
~10 146
--19 156
--10 180 188 202
1755
--14
170
--8 --14
135 Values
X
o f X i n t h e C a s e o f T i p = T i l t = 2 °.
Y
X--Zapp
Xapp
! 10
1.065379
8
1.063518
1861
6
1.061657
4
1.059796
2
1.057934
0
1.056073 L054212
--2 --4
1.052350
--6
1.050489
--8
1.048628
--10
1.046767
10
1.057935
1861 1861 1862 1861 1861 1862 1861 1861 1861
1870 1.066215 1.064334 1.062441 1.060539 1.058627 1.056702 1.054768 1.052823 1.050865
4
1.055143
2
1.054213
10
1.052351
---4
1.051421
--6
1.050490
1934 1945 1958 1967
1.056832 931 930 931
931
1,055938 1.055040 1.054134 1.053220
1.049559
--10
1.048629
1.051374
10
1.052351
1.054648
8
1.052351
1.054777
2645
--lO --13
2605 i
6
1.052351
1.054910
4
1.052351
1.055042
930
2554
--9
2490
--11
2418
--13
2334
--9
2237
L
2131
1.052300
2
1.052351
1.055175
0
1.052351
1.055312 1.055448
--4
1.052351
1.055585
--6
1.052351
1.055725
--8
1.052351
1.055866
--10
1.052351
1.056007
9 20 32 40 51 64 72 84 97
--11 --12 --8 --11 --13 --8 --12 --13 --9
106
2400 --8
2464
--4
2521
--7
2574
--9
2619
885 894
2656
4 898 --8
2689
--8
2713
--6
2730
906
914 920 --6
2741
926
2745
--129
1.052351
--9
878
1.057717
--8
--2
1925
1.058595
931
--2
1912
2677
874
930
1.053282
1902
1.059469 931
0
1898
--12
866
931
1.056074
2697
1881
1.060335
1.057005
6
--11
1.048898
930
8
2706
1.068085
--133 --182
±133 --137
--141
--53 --45
4 --8 --8
--37 --33 --24 --17 --11
i --9
--7 --6
--7
4
--129 2426
--1
2559
4
--133
1
2691
4
l i
2824
--1
i
2961
1
i
3097
--137
--141
--7
---57
2297 4
--136
--140
--64
--1 --132 --133 --137 --136
1 4 --1 1
--137
3
3234
1
3374
0
3515
--140
1 --141
--141 ~I
[
3656
3
o
136 6.884 X - - 3 3 . 6 5 3 8 X ÷ 199.7 w h i c h m a y be replaced by --26.7698 X ÷ 1/2(.6884 ) ( 5 ) ( - - 5 ) + 199.7 = --26.7698 X ÷ 191.095 w i t h an e r r o r not exceeding 8.6. Hence t h e m a x i m u m e r r o r s a t t h e edges a r e ± 86/M. I t follows t h a t the f u n c t i o n 3 5 9 0 - - 3 7 9 . 1 X + 191.i Y - - 2 6 . 7 7 X Y + 31.69 X 2 r e p r e s e n t s ( ~ - - ~ a p p ) t i p = t i l t = 2 o w i t h i n 160/M or 1/6250. F i t t i n g t h e equation of a hyperbolic paraboloid to t h e c o r r e c t values of Z a t t h e nine p o i n t s by t h e m e t h o d of least s q u a r e s left no residuals exceeding 153/M. ii. F o r comparison we have computed (a) t h e hyperboloid t h a t fits at the f o u r c o r n e r points of the overlap, (b, c) the hyperboloic paraboloid which fits X on five points one of which is in the middle in one case and on an edge in the o t h e r case and (d, e) the h y p e r bolic paraboloid t h a t b e s t fits Z a t six points and at nine points respectively. The disc~'epancies a r e shown in F i g u r e s 1 ( a - - e ) . 8. Representation of the errors in the evaluated coordinates by polynomials in the photographic coordinates. In t h i r d - o r d e r p l o t t i n g i n s t r u m e n t s and some numerical m e t h o d s the e f f e c t s o f t h e relative o r i e n t a t i o n and those of the absolute o r i e n t a t i o n are l u m p e d together. The i n s t r u m e n t a l m o v e m e n t s (or the algebraic p a r a m e t e r s in n u m e r i c a l techniques) a r e a d j u s t e d directly on the c e n t r a l points. In this section we shall consider t h e e r r o r s w h i c h arise w h e n the model e r r o r s a r e r e p r e s e n t e d by the equation of a hyperbolic paraboloid in t h e presence of non-zero elements of absolute orientation. The s u r v e y coordinates X , Y, h a r e given in t e r m s of t h e p h o t o g r a p h i c coordinates x, y and the scale p a r a m e t e r X by t h e equation ~
Xm X
= (fs)R o
x = (fs)R o
(8.1)
w h e r e R o is the m a t r i x of o r i e n t a t i o n of t h e l e f t - h a n d p i c t u r e w i t h r e f e r e n c e to t h e s u r v e y axes. R o is o f t h e s a m e f o r m as (2.4) b u t is d i s t i n g u i s h e d f r o m it by s u f f i x i n g zero to t h e elements, t h u s ILo sin Vo + cos zJo R o = ILocosy~o + sinzt o [ - - s i n 9% sin 0 o
M 0 sin ~ ' o - sin A o - - M e cos~, o + cosz] o cos ~oo sin 0 o
- - s i n 0 o sin Y~07 sin ~oCOSy~o I ---cos 0 o ]
w h e r e L o = (1 - - cos 80) sin ~Oo, M o = (1 - - cos ~o) cos ~oo and z] o =JY~o--~°o"
(8.2)
(8.3)
It is clear f.rom (8.1) t h a t if a polynomial o f degree n in z a n d m in y r e p r e s e n t s Z to a specified degree of precision then only a polynomial of h i g h e r degree will e v a l u a t e t h e g r o u n d coordinates w i t h equal precision. N e g l e c t i n g t e r m s c o n t a i n i n g cubes of the o r i e n t a t i o n e l e m e n t s we a t once see f r o m (3.6), (8.1) and (8.2) t h a t t h e t e r m s of t h e h e i g h t equation t h a t do n o t show up in t h e equation of the hyperbolic paraboloid a r e b p~ ( - - y'zJ - - x'y' ~ cos yJ -t- x "2 0 sin ~ ) ( - - 0 o sin q0oX -b ~9oCOS~0Y)-
(8.4)
F o u r t e r m s o f this p r o d u c t have opposite n u m b e r s in polynomial e x p a n s i o n of Z shown in Table 1 and can be similarly t r e a t e d . T h e n e w t e r m s a r e b
(Co cos ~0y) (-- x'~'0 cosy)
and b / ~ (00 cos~oY ) (x'2~ sin ~g).
137
~
_IND"
~) c~ ~o
"3
°
4~
~o
fJ
~ o.~ .~ .-~ ~ o o' °
m
~
, ~ .~ 4.~ -~-~
~.~,
N ~ "3 ...~~ ~ .o ~ , ~
o
o
oool
°
0001[
--
000~,
I:
O00&
¸0009
~:~
~o ~
-5000
~o~
4000-3000 ~0~
0
-
~OJ
138
/ ~, Fig. ld. of y~ per boloid is in the
~ °t
Fig. le. The discrepancies in the values of X per million when a hyperboloid is fitted to nine symmetrically distributed points in the presence of 2°-tip and 2 °tilt.
The discrepancies in the values million when a hyperbolic parafitted to six points as in inset presence of 2°-tip and 2°-tilt.
The f i r s t may be replaced by (21250
-- \3/
X"
i-oo" ~ (
00cos~o) ( 0 cos~)
not exceeding 68/M times the product of the absolute and the relative tilts measured in degrees. The second term may similarly be replaced by 100 " P- ( O° cos ~oo) ( 0 sin V), the maximum discrepancy being relative tip measured in degrees.
68/M times
the product of the absolute tilt and the
Acknowledgements. My thanks are due to Engineer G. F. Yassa for his assistance in the preparation of this paper, and to the s t a f f of the photogrammetry section for carrying out p a r t of the numerical work.
139 References. [1] A . M . Wassef, Analytical P h o t o g r a m m e t r y in Practice; P a p e r read at the Eighth International Congress of P h o t o g r a m m e t r y in Stockholm on 23 July, 1956. [2] A . M . Wassef, Some Recent Developments in Analytical Photogrammetry. The Use of Eulerian Angles and Computational Procedure; Photogrammetria, X, 2, 1953/54, page 76. [3] H.G. Jerie, Stereoger~ite 3. Ordnung in der Sowjetunion; P h o t o g r a m m e t r i a , XI, 4, 1954/55, page 127. [4] E . H . Thompson, Heights from Parallax Measurements; Photogrammetric Record, October 1954.
I.T.C. International Bibliography of Photogrammetry by Ir. F. L. CORTEN International Training Centre for Aerial Survey, Delft, Netherlands. Abstract. Experience has shown that it is impossible to read all publications of importance in aerial survey; in addition, language difficulties prevent t h a t the existing literature is accessible to the potential user. This proofs the necessity of an international bibliography. The I.T.C. is editing a multilingual bibliography consisting of abstract cards in a specified order of classification. It is organized in international cooperation of different national authorities. Introduction. In every field of science and of technique there is, to-day, such a flow of publications t h a t it is virtually impossible for anyone to be completely informed and to stay abreast of all new developments and applications in his profession. Even if there were no limitations of time, the practical limitation of languages often prevents us from taking cognizance of important information. In addition, in many branches of applied science such as photogrammetry there is no reference to literature at all; this means t h a t there is no general access to publications about experience made by others in the past. These facts are felt as serious limitations by most professionals in photogrammetry and aerial survey. A way out of this difficulty would be an international bibliography and this was the subject of discussion in Commission VI of the International Society of Photogrammetry. In 1955 Prof. Dr. Ir. W. Schermerhorn offered to this Society the aid of the I.T.C. and recently he took f u r t h e r action. We now s t a r t the edition of the I.T.C. I N T E R N A T I O N A L BIBLIOGRAPHY OF PHOTOGRAMMETRY with the cooperation of the National Societies and of specialized organizations in different countries. Edition of the International Bibliography,
Form. The Bibliography will be edited in the form of a card possible entrances (such as alphabet, chronology, author, subject, etc.) we chose a double entrance according to author and to subjects. onto more than one card (as an average 3 . . . 4 cards per title) and alphabetical order in the "author set" and in classification order in
index. Of the many journal, geography, Each title is printed will appear once in the "subject set" in