= i ~ = - 3 Tr (5~M.-½tanh ~fl/~l~)l j=l j,k=l can be written as [cf. (32)] - , (X (3)~}jklm ~ , (~ -- - 1 , = + 4 , X(2) jktm
(a = - 1 , +1),
(34)
j=l
where < • • • > stands for quantum-mechanical trace and where p . is defined as p . = exp ( - f l H . ) / ( e x p ( - f l H . ) )
(a = - 1 , + 1 ; fl = 1/kT).
(35)
In appendix C it is shown that
(P~ajflk) = ½i(5.M~tanh½flA4~)ja
(a = --1, + l ; j ,
--1, +l;j,
(0" =
k = 1. . . . .
k = 1. . . . .
N).
N),
(36) (37)
F o r the z c o m p o n e n t o f the magnetization we obtain N
= - ¼ Tr [(S. + 5.)NI~-~ tanh ½flNl~] = -½~, p= I
(~c°s ~b~-'e - B)tanh½flA.p Aa, p
(tr = - l ,
+l),
(38)
TIME
CORRELATION
FUNCTIONS
IN THE a-CYCLIC
XY MODEL.
I
265
where the sign of the A,.p is arbitrary and chosen positive. In the thermodynamic limit we obtain for the magnetization per spin 2~
lim 1
4 ~ f d~b (cos q~ - B)tanh ½fld(~)
N-.. N
0
A(q~)
(a = - 1 , +1) (39)
where A(~b) = [(cos q~ - B) 2 + ?2 sin z ~b]~-.
(40)
Thus, in the thermodynamic limit the magnetization per spin is the same for the c-cyclic and the c-anticyclic case. For the internal energy E~ we obtain N
N
E. =-
j.k=l
N
= -½ ~ (rJ~)kj(S, M2 ~ tanh ½flM~)jk = --½ Tr (M~ tanh ½tiMe) j,k=l N
= --½ZA.,ptanhkflA~,.
(41)
(a = - 1 , +1).
p=l
In the thermodynamic limit the internal energy per spin is given by 2It
lim (E./N) = - (1/4x) ~ dq~ A(q~) tanh ½flA((a), N~oo
(42)
0
both for the c-cyclic and the c-anticyclic model.
5. The time-dependent correlation functions of the z components of two spins and the autocorrelation function of the z component of the magnetization. For arbitrary j and k (j, k = 1. . . . . N) the correlation function
(~ = -- I, + I).
(43)
With (24) and (25) we obtain
= -
Z [cos M t)k,(cos
t)k.
#j #m>
/,m=l -
-
(cos M~t)kt(S. M~"½sin M~ t)k,
+ (5, M; ~ sin M~ t)k,(COS M~ t)km
(S.M; ½sin M.t)k,(g.M.
sin
fljflt~m>].
(44)
266
P. MAZUR AND TH. J. SISKENS
In appendix D the elements of the tetradics X(~), defined by (x~))j~ -
~x(~>~ k er .Ijklm ~- (Pa flj O~kOLlO~m>,
tX~4)~ \ ¢r ]jklm ~
+~;j,
k, l, ~ -- 1 . . . . .
N),
(45)
are computed explicitly. In terms of the elements of the tetradics X~~) the correlation function (44) reads
N Z
l,m=l -
-
--
[ ( c o s M~t)kl(COS Mat)km(Xa ½ (3) )jjlm
(cos M~t)u(S. ~ ~ Ma-.I- sin M~t)km(X(~2))jjtm (S. M2 ~ sin M~t)k,(COS M~t)km(X(4))..lm JJ
+ (s~
M~- ~ sm " M~t)kl(S ~ M2 I- sin M~t)km(X.(3) ~ )jj~,],
(46)
where use has been made of the anticommutation rules (16). Substituting the explicit expressions for the elements of X(~), X(~3) and X(~4) obtained in appendix D, into eq. (46), we obtain after performing the summations and appropriate rearrangements
(paS~S~,(t)) = (p~Sj)(p~S~): + ¼(cos M~t + i t a n h 1-2flM~sin M~-~t)kj2 -
¼[(i sin M~t + tanh ½flM~ cos M~t)½(Sa + S~)M2~]2j
~- 1 ~ + ¼[(i sin M~t + tanh ½flM~ cos M~t)~(S~ - S~)M~*]2~
(a = - 1 , +1).
(47)
For the autocorrelation function R~(t) of the z component of the magnetization we obtain
Ra(t) - (1/U)((p~M~M:(t)) -- (p~M~) 2) N j,k=l
.
= (1/4N) Tr (cos M~t + i tanh ½flM~ sm M~t) 2 ½ 21~($~ + Sa)2M~-1] (1/4N) Tr [(i sin M~t + tanh ½flM~ cos M~t)
-
- ( 1 / 4 N )
T r E ( i s i n M ~ t
+ tanhkflM~cos Mot) " 21~(so_
L)~M;']
(ff = - 1 , ÷1).
(48)
And after straightforward calculations we get
R~(t) = (1/4N) Tr [¼(S~ +
Sa)2M~ "1
cosh-2 lgriMe ]-k
- (1/4N) Tr [¼(5~ - 5~)2M2~(1 + tanh 2~flM~)~ cos 2M~t] -
(i/2N) Tr [¼(5a - S~)2M~-' tanh~zv,ata~',~sin 2M~t] ( a - - - 1 , +1).
(49)
TIME
CORRELATION
FUNCTIONS
IN THE
XY MODEL.
a-CYCLIC
I
267
In terms of the eigenvalues we obtain instead of (47)
Y~ [ ( c o s A~, ~ t p=l
+ i tanh
½flA~,psin A~,pt) exp i (j
-- k)q~,~,p])2/
1 I1 ~ ((isinA,,pt+tanh½flA~,cosA~,pt)
4
p=l
× (C°S__~_*,p- B ) e x p i ( j _ Aa. p 1 [1 4
pt+tanh½flA,
~ ((isinA~ p=l
x y sin qS~,, exp i(j -
k)q~,.p)3 2
'
p cosA, pt) '
k)d~,p
'
(a = - 1, + 1),
(50)
ao., p
and instead of (49) R,(t) =
1 N ((cos49~,p-B)2cosh-Z½flAa,p) 4Np~=, A2,p 1 ~ ( '2sinEq~" " ) +4N--p=1 ~p 'p(1 + tanh 2½flA.,p) cos2A.p, t i + ~
~ ( y2sin2~b~pt ) ~i-A.,p-- '- anh ½flA., p sin 2A.,p t
p= 1
(a
=
- 1, + 1).
(51)
The expression for the autocorrelation function of the z component of one arbitrary spin follows immediately from (50) by putting j = k. The last term on the r.h.s, of (50) then vanishes for reasons of symmetry. In the thermodynamic limit we obtain the well-known expressions derived by Niemeijer t) for the c-cyclic case. It is clear that the results for the c-cyclic and the c-anticyclic case are the same in this limit.
6. Final remark. In a forthcoming paper we shall combine the relevant parts of the correlation functions for the c-cyclic and the c-anticyclic model in order to obtain the correlation functions for the a-cyclic model (cf. section 2). From the discussion in this paper it is already clear, that in the thermodynamic limit the results for the a-cyclic model will be equal to the results obtained in this paper for the c-cyclic and the c-anticyclic model. Acknowledgment. valuable discussions.
The authors are grateful to Professor S. K. Kim for
268
P. MAZUR AND TH. J. SISKENS APPENDIX A
I. Definition. The N × N matrix A is called cyclic, if Aii=
Aj-i
(i,j=
1. . . . .
(A.1)
N)
and A, = A,_N
(n = 1 . . . . .
1).
N--
(A.2)
2. Properties. 1) I f A is a cyclic N x N matrix, and U is a unitary N × N matrix, defined by Uik = (1/x/N) exp ( - 2 n i j k / N )
( j , k = 1. . . . .
(A.3)
N),
we have
(UtAU)jk =
2k6jk
(j, k = l .....
(A.4)
N),
with N--I
2~ = ~ A, exp ( - 2 n i n k / N )
( k = 1. . . . .
(A.5)
N).
n=O
By inversion of (A.5) it follows that N
2)
A, = ( l / N )
Z2kexp(2gink/N)
(n = 1 -- N . . . . .
N--
1).
(A.6)
k=l
3) I f A and B are cyclic N × N matrices, AB is cyclic, and A and B c o m m u t e . 4) I f A, B. . . . are cyclic N × N matrices with eigenvalues 2k, /q . . . . (k = 1..... N) respectively [ e l (A.5)], and if f is an analytic function, we have N
[ f ( A , a . . . . )], = ( l / N ) Z f ( 2 k , I~k . . . . ) exp ( 2 ~ i k n / N ) k=l
(n = 1 -- N . . . . .
N--
1).
(A.7)
APPENDIX B 1. Definition. The N x N matrix A is called anticyclic, if Aij
-~-
.4j_ i
(B.1)
( i , j = 1 , ' " ", N )
and A , = -- A , _ N
(n = 1 . . . . .
N -
1).
(B.2)
2. Properties. 1) If A is an anticyclic N × N matrix, and O a unitary N × N
TIME
CORRELATION
FUNCTIONS
IN THE a-CYCLIC
XY MODEL.
1
269
matrix, defined as
Ujk = (1/x/N) exp [ - 2 7 t i j ( k - ½)/N]
(j, k = 1 . . . . .
N),
(B.3)
we have
(UtAU)jk = ).k6jk
(j, k = 1 . . . . .
N),
(B.4)
with N--I
2k = Z A, exp [ - 2 r d n ( k
- ½)/N]
(k = 1 . . . . .
N).
(B.5)
n=O
F r o m inversion of (B.5) it follows that N
2)
A, = ( l / N ) ~ 2k exp [27tin(k - ½)/N]
(n = 1 - N . . . . .
N - 1).
(B.6)
k=t
3) I f A and 8 are anticyclic N x N m a t r i c e s , A8 is anticyclic and A and B c o m m u t e . 4) I f A, 8 . . . . are anticyclic N x N matrices with eigenvalues 2k, Pk . . . . (k = 1. . . . . N), respectively [cf. (B.5)], and i f f is an analytic function, we have N
[ f ( A , 8 . . . . )], = ( I / N ) ~ f ( 2 k , ~k . . . . .
) exp [2rfin(k - ½)/N]
k=l
(n = 1 - N . . . . .
N-
1).
(B.7)
APPENDIX C In this appendix we shall c o m p u t e the elements of the matrices X, Y and Z, defined as
(j,k=l
. . . . . N).
(C.i)
(For simplicity of notation we omit the subscript a.) It is easily seen, using the a n t i c o m m u t i o n rules (16) and the invariance of traces under cyclic permutation, that
xjk = ½([p, .jqBk),
(C.2)
Yjk = ½6ik + ½([P, ~j]~k),
(C.3)
z;k = ½6jk + ½
(C.4)
Using the well-known equality #
([p, o~j]fln) = i I (p~ij(--i2)flk)d2, 0
(C.5)
270
P. MAZUR AND TH. J. SISKENS
we have, using (21) and (25), Xjk = ½i I {PdJ(--i2)tk) d2 = ½i ~ Sit I ( P t t ( - - i X ) t k ) d 2 0
1=1
0
N = ½i Z Sit 5 [cos (--i2M~)]lmd2(pflmflk) I, ra=l
0
N
--
½'" Z
sj, I[ M- sin
l,m=l
"
(-12M)]lmd)-
0
N # = ½i E SJ l I [cosh ~M~]lm d2 Z,, k l,m=l
0
N - ½ E
l,m=l
smh " aM " ]Zm d2 X,, k
sJ, I [ 0
N --
k1" ~
Sjt(M -~ sinh
/,m=l
t i m 2') l m Z m k
N -- ½ E Sjl[SM1, m = l
1( c O s h t M ½ -- U)]/m X m k '
(C.6)
where U = N x N unit matrix. In matrix notation we obtain X = ½i(SM -~ sinh tM~) • Z - ½(cosh t M ~ - U). X.
(C.7)
In a similar way we find Y = ½U - ½i(SM -½ sinh t M ~ ) • X - ½(cosh t M ¢ - U). Y
(c.s)
Z = ½O - ½i(SM -~ sinh tiM+) • X - ½(cosh tim ~ - U). Z.
(C.9)
and
F r o m (C.7) it follows that X = i[(cosh t M~: + U)- 1SM -~ sinh tim ÷] • Z.
(C.lO)
Inserting (C.10) into (C.9) we obtain
Z=kU.
(C.11)
Substituting (C. 11) into (C. 10) we have X = ½ iSM -~ tanh ½tiMe;
(C.12)
and finally, by inserting (C.12) into (C.8), we find
Y=kU.
(C.13)
TIME CORRELATION FUNCTIONS IN THE a-CYCLIC X Y MODEL. I
271
APPENDIX D In this appendix we shall c o m p u t e the elements of the tetradics X (1., X t2~, X ~3~, X (4) and X (s), defined as X jklm (1) =
=
X(3) jklm :
X(4) jklm =
X(5) jklm =
( j , k, t, m = 1 . . . . .
(D.1)
N).
( F o r simplicity of notation we omit the subscript a.) Using the a n t i c o m m u t a t i o n rules (16), the invariance o f traces under cyclic permutation, and furthermore using the results of appendix C, we have X jklm (1) = ½<[P' O~j]O~kO~lO~m>~- 4Ijklml
,
(D.2)
where the tetradic I is defined by Ijklm = 3jkt~lm -- t~jlt~km ~- 6jmgkt,
(D.3)
X(2) jura = ½<[P, fljJO~k % am>,
(D.4)
X(3) l jm (~kl, jklm = ½<[ D, fl j]O~k O~lflm> ~- ~(~
(D.5)
X(4) jklm = ½<[P, O~j]flkfllflm>,
(D.6)
X(5) jklm = ½<[P, flj]flkfllflm> -~ @Ijklm 1 ( j , k, 1, m = 1 . . . . .
N).
(D.7)
Along the lines of appendix C it is easily found that X (a) = ½i(SA4 - ~ sinh flA4~) - X (2)
-
-
½(cosh fib4 ~ -
U ) - X ( ° + ¼I
(D.8)
and X ¢2) = - ½i(.~M -½ sinh time) • X (') - ½(cosh tim ~ - U)- X ~2).
(D.9)
F r o m (D.9) it follows that X (2) = - i(SM -~ tanh ½tiM½) • X °).
(D.10)
Inserting (D.10) into (D.8) we obtain X <') = ¼I,
(D.I 1)
and it follows immediately that X ¢2) = - ¼i(.~M-~ tanh ½flA4~) • I.
(D.12)
In a similar way we have f r o m (D.6) and (D.7) X (s) = ¼I
(D.13)
272
P. M A Z U R A N D T H . J. S I S K E N S
and X (*) = ¼i(SM -~ tanh ½tiMe) • I.
(D.14)
A l o n g the lines o f appendix C we have for X(3): N X(3) jklm :
¼5jm 5k I _ ½i ~, p=t N
(SM- ~ sinh flM~)jp(poq, O~k 0£l tim)
½ Z (cosh tiM½ -- U)j~
--
p=l
N
= ¼6jmOkl + ½i ~ (SM -~ sinh p=l
(2) flM¢).ip X,.pkl
N
½ ~ (cosh tiM{
-
p=l
mljp ~,T, y ( pklm 3) • -- V
(D.l 5)
It is easily seen that N N --(3) = l(~jm 6k, ÷ ½i ~ (~;M --~ ½ Z ( c o s h t i m ½ ÷ U)jp Xpklm p=l p=l
..(2, sinh tiM ,-)jp ampk,
(D.16) or, N p=l
(cosh 2 ~H 1 r~u½~ tvl )jp V'(3) ~pklm N
= ¼6jm6~,, + i ~ (.SM-& sinh ½tiM¢ cosh ½flM~)jp "'V(2)mpk,"
(D.171
p=l
A n d finally we obtain
X(3) nklm
N
: ¼Z j=l
(cosh- 2 ½flM~)n j (~jm t~kl N
+ i 2
j,p=l
--(2)
( c ° s h - 2 ½flM~).J(~M-~ sinh ½tiM~ cosh ½flM)i p A,.vkt N
= ¼ ( c o s h - 2 ½flMaZ)nm6kl +
i ~ (SM -~ tanh
l~A/l~"tJnp Z" y ( mpkl 2) =21Jtvl
p=l
¼(cosh -2 ~-/~M ' *),,m6kt N
+ ¼ ~ (SM - * tanh ½flM*).p(SM -~
tanh ½flM½)mq[qpkl
p,q=l
(n,k,l,m REFERENCES 1) Niemeijer, Th., Physica 36 (1967) 377. 2) Lieb, E., Schultz, T. a n d Mattis, D., A n n . Physics 16 (1961) 407.
= I.....
N).
(D.lS)