Travelling wave solutions for some time-delayed equations through factorizations

Travelling wave solutions for some time-delayed equations through factorizations

Available online at www.sciencedirect.com Chaos, Solitons and Fractals 38 (2008) 1209–1216 www.elsevier.com/locate/chaos Travelling wave solutions f...

140KB Sizes 0 Downloads 47 Views

Available online at www.sciencedirect.com

Chaos, Solitons and Fractals 38 (2008) 1209–1216 www.elsevier.com/locate/chaos

Travelling wave solutions for some time-delayed equations through factorizations E.S. Fahmy King Saud University, Women Students Medical Studies & Sciences Sections, Mathematics Department, P.O. Box 22452, Riyadh 11495, Saudi Arabia Accepted 19 February 2007

Abstract In this work, we use factorization method to find explicit particular travelling wave solutions for the following important nonlinear second-order partial differential equations: The generalized time-delayed Burgers–Huxley, timedelayed convective Fishers, and the generalized time-delayed Burgers–Fisher. Using the particular solutions for these equations we find the general solutions, two-parameter solution, as special cases. Ó 2007 Elsevier Ltd. All rights reserved.

1. Introduction A number of nonlinear phenomena in many branches of sciences such as physical [1], chemical, economical [2] and biological processes [3,4] are described by reaction and diffusion or by the interaction between convection and diffusion. One of the well known partial differential equations which governs a wide variety of them is Burgers equation which provides the simplest nonlinear model of turbulence [5]. The existence of relaxation time or delay time is an important feature in reaction diffusion and convection diffusion systems [6–8]. Many methods have been used to find exact solutions of nonlinear partial differential equations, such as the tanh function method [9–13], Jacobi elliptic function method [14], simplest equation method [15], unified algebraic method [16]. Also, many methods have been used to find numerical solutions of nonlinear partial differential equations, such as the Adomian decomposition method [17,18]. Recently, factorization of second-order linear differential equations became a well established technique to find solutions in an algebraic manner [19–29]. Rosu and Cornejo find one particular solution once the nonlinear equation is factorized with the use of two first order differential operators [20]. They use the method for equations of types: u00 þ cu0 þ f ðuÞ ¼ 0;

ð1Þ

u00 þ gðuÞu0 þ f ðuÞ ¼ 0;

ð2Þ

and

E-mail address: [email protected] 0960-0779/$ - see front matter Ó 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2007.02.007

1210

E.S. Fahmy / Chaos, Solitons and Fractals 38 (2008) 1209–1216

where 0 means the derivative D ¼ dzd , g(u) and f(u) are polynomials in u. We concentrate our work in this paper on equation of the type (2). Now, Eq. (2) can be factorized as ½D  u2 ðuÞ½D  u1 ðuÞu ¼ 0;

ð3Þ

which leads to the equation du1 0 uu  u1 u0  u2 u0 þ u1 u2 u ¼ 0; du

ð4Þ

  du1 u  u1 þ u2 þ u u0 þ u1 u2 u ¼ 0: du

ð5Þ

u00  or

00

Comparing (5) and (2) we find   du1 gðuÞ ¼  u1 þ u2 þ u du

and

f ðuÞ ¼ u1 u2 u:

ð6Þ

If Eq. (2) can be factorized as in Eq. (3), then a first particular solution can be easily found by solving ½D  u1 ðuÞu ¼ 0:

ð7Þ

If u1(u) is a linear function of the dependent variable u, Eq. (7) turns out to be a Riccati equation for this variable and in this case we can find the general solution [26].

2. The generalized time-delayed Burger’s Huxley equation The generalized time-delayed Burger’s Huxley equation is given as:   df ut ¼ aud ux þ uxx þ f ðuÞ; f ðuÞ ¼ buð1  ud Þðud  cÞ; sutt þ 1  s du

ð8Þ

where a; b; c are constants and s is a time-delayed constant. It is clear that when s ¼ 0, Eq. (8) reduces to the generalized Burger’s Huxley equation discussed by Wang et al. in [30]. Using the coordinate transformation z ¼ x  ct (c is the propagation speed) in Eq. (8) we obtain the following nonlinear ordinary differential equation: ð1  c2 sÞu00 þ ½ðc þ csbcÞ þ ða  csbðd þ 1Þðc þ 1Þud Þ  csbð2d þ 1Þu2d  þ buð1  ud Þðud  cÞ ¼ 0;

1  c2 s > 0; ð9Þ

or u00 þ gðuÞu0 þ F ðuÞ ¼ 0;

ð10Þ

where gðuÞ ¼

1 ½ðc þ csbcÞ þ ða  csbðd þ 1Þðc þ 1Þud Þ  csbð2d þ 1Þu2d ; 1  c2 s

ð11Þ

F ðuÞ ¼

b uð1  ud Þðud  cÞ: ð1  c2 sÞ

ð12Þ

Using operator notation, Eq. (10) takes the form   F ðuÞ D2 þ gðuÞD þ u ¼ 0: u

ð13Þ

The factorization of (13) leads to ½D  u2 ðuÞ½D  u1 ðuÞu ¼ 0;

ð14Þ

and then

  du u00  u2 þ u1 þ 1 u u0 þ u1 u2 u ¼ 0: du

ð15Þ

E.S. Fahmy / Chaos, Solitons and Fractals 38 (2008) 1209–1216

Comparing (15) and (10) we obtain the conditions on u1 and u2 as:   du F ðuÞ  u2 þ u1 þ 1 u ¼ gðuÞ; u1 u2 ¼ ; du u

1211

ð16Þ

therefore u1 u2 ¼

bð1  ud Þðud  cÞ : ð1  c2 sÞ

ð17Þ

Now, we choose u1 and u2 such that sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 1 b d að1  u Þ; u2 ðuÞ ¼ ðud  cÞ: u1 ðuÞ ¼ ð1  c2 sÞ a ð1  c2 sÞ From (18) and (11) we get    pffiffiffi c 1 1 þ  a  da ud ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ½ðc þ csbcÞ þ ða  csbðd þ 1Þðc þ 1Þud Þ  csbð2d þ 1Þu2d   b a a a ð1  c2 sÞ

ð18Þ

ð19Þ

which implies that a ¼

ða  csbðd þ 1Þðc þ 1ÞÞ 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ða  csbðd þ 1Þðc þ 1ÞÞ2 þ 4bð1  c2 sÞð1 þ dÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð1 þ dÞ bð1  c2 sÞ

then sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b að1  ud Þ; u1 ðuÞ ¼ ð1  c2 sÞ

1 u2 ðuÞ ¼ a

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b ðud  cÞ; ð1  c2 sÞ

and the corresponding factorization is sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " #" # 1 b b d d ðu ð1  u  cÞ D  a Þ u ¼ 0; D a ð1  c2 sÞ ð1  c2 sÞ and the compatible first order differential equation is sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 0 ð1  ud Þu ¼ 0: u a ð1  c2 sÞ By direct integration of (22) we get " sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #!1d b  dðz  z0 Þ ; u ðzÞ ¼ 1  exp a ð1  c2 sÞ where z0 is the integration constant. The solution (23) in hyperbolic form is given as: " #!1d pffiffiffi 1 1 a1 d b þ  tanh pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðz  z0 Þ ; u ðzÞ ¼ 2 2 2 ð1  c2 sÞ " #!1d pffiffiffi 1 1 a1 d b   coth pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðz  z0 Þ : u ðzÞ ¼ 2 2 2 ð1  c2 sÞ Now, if we choose the factorization terms as sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 1 b d ðu  cÞ; u2 ðuÞ ¼ ð1  ud Þ: u1 ðuÞ ¼ b ð1  c2 sÞ b ð1  c2 sÞ and use (26) and (11) we obtain

ð20Þ

ð21Þ

ð22Þ

ð23Þ

ð24Þ

ð25Þ

ð26Þ

1212

E.S. Fahmy / Chaos, Solitons and Fractals 38 (2008) 1209–1216



pffiffiffi b

     1 1 1  cb þ db þ b  ud ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ½ðc þ csbcÞ þ ða  csbðd þ 1Þðc þ 1Þud Þ  csbð2d þ 1Þu2d : b b ð1  c2 sÞ ð27Þ

Then b ¼

ða  csbðd þ 1Þðc þ 1ÞÞ 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ða  csbðd þ 1Þðc þ 1ÞÞ2 þ 4bð1  c2 sÞð1 þ dÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; 2ð1 þ dÞ bð1  c2 sÞ

and Eq. (13) is then factorized in the following different form sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " #" # 1 b b d d ð1  u ðu Þ D  b  cÞ u ¼ 0: D b ð1  c2 sÞ ð1  c2 sÞ The corresponding compatible first order equation is sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 0 bðud  cÞu ¼ 0: u  ð1  c2 sÞ

ð28Þ

ð29Þ

Direct integration of Eq. (29) gives a different first order particular solution of Eq. (8), 11d 0 c B h qffiffiffiffiffiffiffiffiffiffiffi iC u ðzÞ ¼ @ A: b 1  exp b ð1c2 sÞdcðz  z0 Þ

ð30Þ

Putting s ¼ 0 in (23) and (30) we find an exact particular solution for the generalized Burger’s Huxley equation [20]. Following the work of Reyes and Rosu [26], we find a two-parameter solution when d ¼ 1. In this case qffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffi u1 ðuÞ ¼ a ð1cb 2 sÞð1  uÞ and u2 ðuÞ ¼ 1a ð1cb 2 sÞðu  cÞ, one particular solution is obtained from (23) as: " sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi #!1 b ðz  z0 Þ ; ð31Þ u1 ðzÞ ¼ 1 þ exp a ð1  c2 sÞ and Eq. (22) is transformed to the following Riccati equation sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b ð1  uÞu ¼ 0: u0  a ð1  c2 sÞ The two-parameter solution is obtained from (31) and (32) as:  h qffiffiffiffiffiffiffiffiffiffiffi i1 1 þ exp a ð1cb 2 sÞðz  z0 Þ h qffiffiffiffiffiffiffiffiffiffiffi ih  h qffiffiffiffiffiffiffiffiffiffiffi i i: uk ¼ u1 þ exp a ð1cb 2 sÞðz  z0 Þ k 1 þ exp a ð1cb 2 sÞðz  z0 Þ  1

ð32Þ

ð33Þ

It is clear that when jkj runs from zero to infinity, the above parametric solution goes from the trivial solution u ¼ 0 to the particular solution u ¼ u1 .

3. Time-delayed convective Fisher’s equation The convective Fisher’s equation given in the following form [31]: 1 ut ¼ uxx  luux þ uð1  uÞ 2 and the time-delayed convective Fisher equation can be obtained as:   df 1 ut ¼ uxx  luux þ uð1  uÞ; sutt þ 1  s du 2 where l is a positive parameter that serves to tune the relative strength of convection.

ð34Þ

ð35Þ

E.S. Fahmy / Chaos, Solitons and Fractals 38 (2008) 1209–1216

1213

Using the coordinate transformation z ¼ x  ct in Eq. (35) we obtain the following nonlinear ordinary differential equation u00 þ

2 2 ½cð1  sÞ þ ð2sc  lÞuu0 þ uð1  uÞ ¼ 0; ð1  2c2 sÞ ð1  2c2 sÞ

1 > 2c2 s

ð36Þ

or u00 þ gðuÞu0 þ F ðuÞ ¼ 0;

ð37Þ

where gðuÞ ¼

2½cð1  sÞ þ ð2sc  lÞu ð1  2c2 sÞ

and

F ðuÞ ¼

2 uð1  uÞ: ð1  2c2 sÞ

ð38Þ

Now, Eq. (37) can be factorized as ½D  u2 ðuÞ½D  u1 ðuÞu ¼ 0:

ð39Þ

Using operator notation, Eq. (37) takes the form   F ðuÞ D2 þ gðuÞD þ u ¼ 0; u

ð40Þ

and then

  du u00  u2 þ u1 þ 1 u u0 þ u1 u2 u ¼ 0: du

ð41Þ

Comparing (41) and (37) we obtain the conditions on u1 and u2 as:   du F ðuÞ ;  u2 þ u1 þ 1 u ¼ gðuÞ; u1 u2 ¼ u du

ð42Þ

therefore u1 u2 ¼

2 ð1  uÞ: ð1  2c2 sÞ

Now, choosing u1 and u2 such that sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 rð1  uÞ and u1 ðuÞ ¼ ð1  2c2 sÞ

ð43Þ

1 u2 ðuÞ ¼ r

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ; ð1  2c2 sÞ

and using (44) and (42) we get   sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 2 ½cð1  sÞ þ ð2sc  lÞu;  þ r½1  2u ¼ r ð1  2c2 sÞ

r 6¼ 0;

ð44Þ

ð45Þ

hence ð2sc  lÞ r ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; 2ð1  2c2 sÞ

1  2c2 s > 0;

and Eq. (39) is reduced to    2 ð2sc  lÞ D D ð1  uÞ u ¼ 0: ð2sc  lÞ ð1  2c2 sÞ

ð46Þ

ð47Þ

The compatible first order differential equation is u0 

ð2sc  lÞ ð1  uÞu ¼ 0: ð1  2c2 sÞ

By direct integration we get   1 ð2sc  lÞðz  z0 Þ u ¼ 1  exp  ð1  2c2 sÞ

ð48Þ

ð49Þ

1214

E.S. Fahmy / Chaos, Solitons and Fractals 38 (2008) 1209–1216

or in hyperbolic form:

  1 1 ð2sc  lÞ ðz  z Þ ;  tanh 0 2 2 2ð1  2c2 sÞ   1 1 ð2sc  lÞ ðz  z0 Þ : u ðzÞ ¼  coth 2 2 2ð1  2c2 sÞ

uþ ðzÞ ¼

ð50Þ ð51Þ

Putting s ¼ 0 in (23) we find an exact particular solution for the convective Fisher equation [20]. Using (48) and (49), a two-parameter solution is obtained as: h i 1 ð2sclÞ ð1 þ exp 2ð12c 2 sÞ ðz  z0 Þ Þ h ih  h i i: uk ¼ uþ þ ð2sclÞ ð2sclÞ exp  2ð12c k 1 þ exp 2ð12c 1 2 sÞ ðz  z0 Þ 2 sÞ ðz  z0 Þ

ð52Þ

3.1. The generalized time-delayed Burgers–Fisher equation The generalized Burgers–Fisher equation is given in the following form: ut ¼ uxx  pus ux þ quð1  us Þ

ð53Þ

and the generalized time-delayed Burgers–Fisher equation can be obtained as:   df sutt þ 1  s ut ¼ uxx  pus ux þ f ðuÞ; f ðuÞ ¼ quð1  us Þ; du

ð54Þ

where s, p, q are any real numbers and s 2 N. Eq. (54) is an extended form of the generalized Burger’s Fisher equation (53). When q ¼ 0, Eq. (54) is reduced to the time-delayed Burger’s Fisher equation [6]. Using the coordinate transformation z ¼ x  ct in Eq. (54), we get ð1  c2 sÞu00 þ ½cðð1  qsÞ þ qsðs þ 1ÞÞus  pus u0 þ f ðuÞ ¼ 0;

1 > c2 s;

ð55Þ

or u00 þ gðuÞu0 þ F ðuÞ ¼ 0;

ð56Þ

where gðuÞ ¼

cð1  qsÞ ½qsðs þ 1Þ  p s þ u ð1  c2 sÞ ð1  c2 sÞ

and

F ðuÞ ¼

q uð1  us Þ: ð1  c2 sÞ

ð57Þ

Now, Eq. (56) can be factorized as ½D  u2 ðuÞ½D  u1 ðuÞu ¼ 0;

ð58Þ

where u1 ðuÞ ¼ a1

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q ð1  us Þ and ð1  c2 sÞ

u2 ðuÞ ¼

1 a1

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q ; ð1  c2 sÞ

a1 6¼ 0;

and using (59) and (56) we get  rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q 1 cð1  qsÞ ½qsðs þ 1Þ  p s s þ u; ¼ þ a  ðs þ 1Þu  1 ð1  c2 sÞ a1 ð1  c2 sÞ ð1  c2 sÞ

ð59Þ

ð60Þ

and hence a1 ¼

½qsðs þ 1Þ  p pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi : ðs þ 1Þ qð1  c2 sÞ

Using Eq. (61), Eq. (58) reduced to    qðs þ 1Þ ½qsðs þ 1Þ  pð1  us Þ D u ¼ 0: D qsðs þ 1Þ  p ðs þ 1Þð1  c2 sÞ The compatible first order differential equation is

ð61Þ

ð62Þ

E.S. Fahmy / Chaos, Solitons and Fractals 38 (2008) 1209–1216

u0 

½qsðs þ 1Þ  p ð1  us Þu ¼ 0: ðs þ 1Þð1  c2 sÞ

1215

ð63Þ

By direct integration we get   1s ½qsðs þ 1Þ  ps Þ ; ðz  z u ¼ 1  exp  0 ðs þ 1Þð1  c2 sÞ

ð64Þ

or uþ ðzÞ ¼



 1s 1 1 ½qsðs þ 1Þ  ps  tanh ðz  z Þ ; 0 2 2 ðs þ 1Þð1  c2 sÞ 0 2 311s

B1 1 6 ½qsðs þ 1Þ  ps 7C qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðz  z0 Þ5A : u ðzÞ ¼ @  coth 4 2 2 2 2 ðs þ 1Þ ð1  c sÞ

ð65Þ

ð66Þ

Following the work of Reyes and Rosu [26,27], we find a two-parameter solution for the special case when s ¼ 1. In 2

2ð1c sÞ 2qsp this case u1 ðuÞ ¼ 2ð1c 2 sÞð1  uÞ and u2 ðuÞ ¼  2qsp , one particular solution is obtained from (64) as

u1 ðzÞ ¼ ð1 þ exp½hðz  z0 ÞÞ1

ð67Þ

and Eq. (63) is transformed to the following Riccati equation u0 

2qs  p ð1  uÞu ¼ 0: 2ð1  c2 sÞ

The two-parameter solution is obtained from (67) and (68) as: h i 1 2qsp ð1 þ exp 2ð1c 2 sÞ ðz  z0 Þ Þ h i  h i ul ðzÞ ¼ u1 þ : 2qsp 2qsp exp  2ð1c  1 2 sÞ ðz  z0 Þ ½k 1 þ exp 2ð1c2 sÞ ðz  z0 Þ

ð68Þ

ð69Þ

4. Conclusions In this paper, the efficient factorization method that was proposed by Rosu and Cornejo-Pe´erez [20] has been applied to some important time-delayed nonlinear partial differential equations: Generalized time-delayed Burger’s Huxley equation, time-delayed convective Fisher equation, and generalized time-delayed Burger’s–Fisher. Exact particular solutions have been obtained and a two-parameter solution have been obtained for the time-delayed convective Fisher equation, Generalized time-delayed Burger’s Huxley equation when d ¼ 1, and for the generalized time-delayed Burger’s–Fisher when s ¼ 1.

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Polyanin AD, Zaitsev VF. Handbook of nonlinear partial differential equations. Chapman & Hall/CRC; 2004. Wilmott P, Howison S, Dewynne J. The mathematics of financial derivatives. Cambridge University Press; 2002. Okubo A. Diffusion and ecological problems: mathematical models. Springer; 1980. Murray JD. Mathematical biology I. An introduction. 3rd ed. Berlin/Heidelberg: Springer; 2003. Burgers JM. Adv Appl Mech 1948;1:171. Kar S, Banik SK, Ray DS. Exact solutions of Fisher and Burgers equations with finite transport memory. J Phys A 2003;36:2771. Abdusalam HA. Exact analytic solution of the simplified telegraph model of propagation and dissipation of excition fronts. Int J Theoret Phys 2004;43(4):1161. Ahmed E, Abdusalam HA. On modified Black–Scholes equation. Chaos, Solitons & Fractals 2004;22(3):583. Parkes EJ, Duffy BR. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput Phys Commun 1996;98(3):288. Li ZB, Liu YP. RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations. Comput Phys Commun 2002;148(2):256. Fan EG. Extended tanh-function method and its applications to nonlinear equations. Phys Lett A 2000;277:212.

1216

E.S. Fahmy / Chaos, Solitons and Fractals 38 (2008) 1209–1216

[12] Wazwaz AM. The tanh-method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd– Bullough equations. Chaos, Solitons & Fractals 2005;25:55. [13] Abdusalam HA, Alabdullatif M. Exact and approximate solutions of the telegraph model of dispersive variability. Far East J Dyn Syst 2006;8(1):65. [14] Fu ZT, Liu SK, Liu SD, Zhao Q. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys Lett A 2001;290:72. [15] Kudryashov NA. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos, Solitons & Fractals 2005;24:1217. [16] Vladimirov VA, Kutafina EV. Exact travelling wave solutions of some nonlinear evolutionary equations. Rep Math Phys 2004;54:261. [17] Adomian G. Solving frontier problems of physics: The decomposition method. Boston (MA): Kluwer Academic Publishers; 1994. [18] Bobolian E, Javadi S. New method for calculating Adomian polynomials. Appl Math Comput 2004;153:253. [19] Rosu HC, Cornejo-Pe´erez O. Supersymmetric pairing of kinks for polynomial nonlinearities. Phys Rev E 2005;71:046607. [20] Cornejo-Pe´erez O, Rosu HC. Nonlinear second order ODE’S: factorization and particular solutions. Prog Theor Phys 2005;114:533. [21] Cornejo-Pe´erez O, Negro J, Nieto LM, Rosu HC. Travelling wave solutions for Korteweg–De Vries–Burger equations through factorizations. arXIV.math-ph/0604004v1. [22] Smirnov Yu F. Factorization method: new aspects. Rev Mex Fis 1999;45(S2):1. [23] Infeld L, Hull TE. The factorization method. Rev Mod Phys 1951;23:21. [24] Zwillinger D. Handbook of differential equations. San Diego: Academic Press Inc.; 1992. [25] Wang XY. Exact and explicit solitary wave solutions for the generalized Fisher equation. Phys Lett A 1988;131:277. [26] Reyes MA, Rosu HC. Two-parameter solutions of nonlinear second order ode’s. arXIV.math-ph/0510072v2. [27] Mielnik B. Factorization method and new potentials with the oscillator spectrum. J Math Phys 1984;25:3387. [28] Abdusalam HA, Fahmy ES. Exact solution for the generalized Telegraph Fisher’s equation. Chaos, Solitons & Fractals [submitted]. [29] Abdusalam HA, Fahmy ES. Exact solution for the modified equation for spatial population dynamics. Chaos, Solitons & Fractals [submitted]. [30] Wang XY, Zhu ZS, Lu YK. Solitary wave solutions of the generalized Burgers–Huxley equation. J Phys A 1990;23:271. [31] Scho¨nborn O, Desai RC, Stauffer D. Nonlinear bias and the convective Fisher equation. J Phys A 1994;27:L251.