Two new stereoselective syntheses of (3E,5Z)-1,3,5-undecatriene

Two new stereoselective syntheses of (3E,5Z)-1,3,5-undecatriene

oo4o4039#9053.00+ .oo PcrgamoaRcss plc Te&&cdronLettas. Vo131.No.40,pi 5749-57521990 Print&ia GreatBritain TWO NEW STEREOSELECTIVE SYNTHESES OF (3E,...

246KB Sizes 7 Downloads 98 Views

oo4o4039#9053.00+ .oo PcrgamoaRcss plc

Te&&cdronLettas. Vo131.No.40,pi 5749-57521990 Print&ia GreatBritain

TWO NEW STEREOSELECTIVE SYNTHESES OF (3E,5Z)-1,3,54JNDECATRIENE by Jean-Marc Gaudin and C&ic Morel Firmenich SA, Research Laboratories, CH-1211 Geneva 8

Summary: Two new and short syntheses of (3E,52)-1,3,5-undecatrlene 1 are presented. Both approaches are based on the coupling between a CTand a Qsynthon and afford 1 in 92-9656 stereoisomeric purity.

Since their isolation in 1967 from the essential oils of Galbanum’ and in 1971 from seaweed2, the 1,3,5undecatrlenes 1,2 and 3 have been the subject of many synthes&.

1

(3E,SZ)_1,3,5undecatriene

2 3 1 is highly appreciated in perfumery for its green fruity topnote. In contrast, the

all trans isomer 2 possesses an undesirable fishy-putty note and should be avoided in perfumery composition. For this reason, a stereoselective and industrially viable synthesis of 1 is still a problem. In this communication we describe two new approaches for 1, both are based on the coupling between a Cr and a C, synthon. The first approach consists in an alkylation of a dihalobutene

with a I-heptynylmetal

derivative, copper

seems to be the metal of choice as the catalyst for this kind of coupling4. After several preliminary experiments, we studied in detail the reaction between ‘I-heptynylmagnesium

chloride and 1,4-dichloro-2-butene

or 3,4-dichloro-l-

Wene (Scheme I).

Am-MgCI Cl-Cl,‘,,&

CuCl cat. THF

+ *

Am

(Z)=4a (B)=4b

5

Am-.& 6

Scheme I

Control of the

sN2/sN2’

sclcctivity is the major problem and we were unable to suppress the formation of by-

product 5. The use of catalysts other than CuCl (e.g. Cul, Cu(OA&, CuC&, CuBrMe$) gave no improvement in the ratio 4/5. On the other hand, an excess of dichlorobutene reduced the formation of the dialkylation product 65.

5749

5750

The results are summarised in the Table:

T

Table dichlombutene

1

Product Yield 96 (a) A

5

6

Other

4al4b

CI\CI

@)

72

15

6

7

O/l00

Cl~Cl

@)

70

26

3

1

9218

69

12

17

2

l/99

c/-f+(cd cl

For the conditions: see text. (a) GC yield, fb) ratio dichlorobutene/heptyne=2,

(cl ratio dichlorobutene/heptyne=L6.

Am’

The optimum conditions involve addition of I-hcptynylmagnesium the dichlorobutene

chloride (3M in THF) to two equivalents of

in the presence of 1 mol % of CuCl. The cxothermic reaction was complete after 1.5h at 7O-W’C

and gave 4 in 5560% yield after fractional distillation. The other products detected are the diync 7, the dicnyne 8 and the chloroenyne 9. The hydrogenation

of 4 in the presence of Lindlar catalyst afforded the chlorodienes 10 in 92% yield whose

treatment under basic conditions (2.5 cq. KOH in t-BuOHj6 resulted in the elimination of HCI to give a mixture of undecatrienes 1 and 11 in 85% yield with an excellent sclcctivity (96/4) in favour of the desired isomer 1 (Scheme II). komer 11 results from the sigmatropic [Ill-hydrogen

4a/4b=92/8

shift of (32,52)-1,3,5undecatrien&.

10

1

11

9614

a) Hz (1 atm) / Pd Lindlar 3% / hcxane b) 2.5 eq. KOH I t-BuOH I 1Sh I6W’C.

Scheme

The key step of the second approach involves

12’ (E,Z

= 96/4)

a palladium

catalysed

coupling

between

(ZI-l-bromo-1-heptene

and commercially available 3-butyn-l-01 according to Sonogashira’s procedures,g (Scheme III).

Am-Br 12

I

II

PdCI#‘0&, +

/ CuCl

floH

*

1.1 eq

Et,NH / 5h /

60’

hXOH 13

(z/E = 96/4)

(UE = 96/4)

Scheme III

86%

5751

This reaction has been carried out on more than a 0.5 mole scale with only 0.15 mol% of PdCls(Pp5)s and 0.75 mol% of CuCllu and gives after work-up and distillation alcohol 13 in 8696yield. However the quantity of the catalyst has not been optbnised and can probably be reduced even further. On the other hand, the Z/E ratio of the alcohol 13 obtained (%/4) is the exact reflection of the stereoisomeric purity of the starting bromoheptene 12ri thus confirming the complete stereospecIficity of the coupling. It should be noted that this reaction may also proceed with a completely different catalytic system. In the presence of 1 mol% Pd(OAc)z. 3 mol% TPPTS1~13,2 mol% Cul in a 31 mixture of EtsNH/H&l as solvent, the coupling s over after 15h at 600. To complete the synthesis of 1 we effected the reduction/elimination

13AAnl_

OH

b) c) )

14

A,,,\

sequence shown in Scheme IV:

+ 1

-

11

2

a) LiAB-IJIHF/toluene b) MsCl/pyridine c) KOH/t-BuOH Scheme IV

The triple bond of 13 was reduced with LiAIHdtTHF)r in tolucne solution14, which allows a reaction temperature of 90-100” and therefore shortened yield. This alcohol

the reaction time (2h) to afford after work up and distillation dienol 14 in 85%

was then transformed

into its mcsylate

and underwent

elimination

(1.3 eq KOH/t-

BuOH/7O”/lh) without further purification. The overall yield for the last two steps is 65% and furnished isomers 1, 2, and 11 in a ratio of 9262. The 13C-NMR chemical shifts and assignments for 1,2 and 11 are as follow& P6

7.94

1335

lz6.4

137.316.7

1

129.3

2

Acknowledgement: We would like to thank Dr. F. Nlf for helpful discussions

1222

11

and also Mr. Robert Brauchli and Mr.

Walter Thommen for their compctcnce and collaboration concerning the NMR spectral measurements/interpretations.

5752

REFERENCES

1. 2.

3.

4.

:: :: 9.

10. 11. 12. 13.

14. 15.

ANI)

NOTES

a) Y. Chr&ien-Be-s&-e. J. Gamero, L. Benczet. L. Pcyron, Bull. Sot. Chim. Fr.. 97 (1%7); b) P. Teisseire. B. Corbier and M. Plauier, Recherches (Paris), 16, 5 (1967); c) Y. R. Naves, Bull. Sot. Chim. Fr., 3152 (1%7). a) J. A. Pettus. Jr. and R. E. Moore, J. Am. Chem. Sot.. 93, 3087 (1971); b) R. E. Moore, J. Mistysyn and J. A. htlUS. J. Chem. SOC. Chem. Commun. 326 (1972): c) R. E. Moore. J. A. Petms. Jr. and J. Mistvsvn. e-. J. Om. ” Chem.. 39.22fIl (1974): d) R. E. Moore, Act. Chem. Res:,. Ii, 40 (1977). a) F. N8f, R. Decomant, W. Thommen, B. Willhalm, G. Ohloff, He/v. Chim. Acra, 58, 1016 (1975); b) F. N8f. R. Deco-t, S. D. Escher, Tetrahedron Lea., 23.5043 (1982); E. Giraudi, P. Teisseire, Tefrahedron Lett.. 24,489 (1983); T. Hayashi. M. Yanagida, Y. Matsuda, T. Oishi, Tetrahedron Lea, 24.2665 (1983); T. Hayashi, A. SakuraI. T. Oishi. Chem. Leo.. 1483 (1977); R. Bloch, C. Benecou, E. Guibc-Jampcl, Tetrahedron Lerr., 26, 1301 (1985); M. Green, S. Greenfield, M. Kersting, J. Chem. Sot. Chem. Commun, 18 (1985); E. Block, M. Aslam. V. Eswarakrishnan. K. Gebreyes. J. Hutchinson. R. Iver. I. A. Lafiue. A. Wall. J. Am. C/rem. Sot.. 108. 4568 11986): M. Goldbach. E. J8kel. M. P. Schneider, j. &m.‘Soc. C/rem. &mn& 1434 (1987); B. P. Andreini,~M. Ben&i, A: Carpita. R. Rossi, Terrublron, 43, 4591 (1987); V. Ratovelomanana, G. Linsoumelle. Bull. Sot. Chim. Fr., 174 (1987); H. Takayama. T. Suzuki. J. Chem. Sot. Chem. Commun. 1044 (1988): W. Boland, N. Schroer. C. Sieler. M. Feigel. Helv. Chim. Acta. 70. 1025 (1987k A. Salxer in Omano-metaffics in &anic Svnthesis 2. D. 301. Eds H. Werner. G. Erker. Sminuer-Verlaa Berlin (1989); B. P. Corbicr. 5. P. Teisscire (Sot.-ROUI&-BERTRAND FILS ET JUSTIN DUPONT) ‘S. African 6g 01077 (15.03.67); C. Fugier, M. Leroux. J. F. Normand, A. Alexakis (ORIL S.A.) Eur. Pat. Appl. 203615 (31.05.85): FIRMENICH S.A., NeB. ADDI.7407364 (07.06.73). Y. Gaoni, C. C. L&off, F: Sondheimer,‘J. Am. Chem. Sot.. 90, 4940 (1968); M. Bourgain, J.-F. Normant, Bull. Sot. Chim. Fr., 1777 (1973); L. Heslinga. H. J. J. Pabon, D. A.Van Dorp, Rec. Trav. Chim. Pays-Bas, 99, 132 (1980); G. Boche. J. Bigalke, Terrahedron Lerr., 25,955 (1984); W. Boland, K. Mertes, Synthesis, 705 (1985). Satisfactoryspectral dam were obtained for all new compounds. other conditions can be used like I-BuOK/I-BuOHor DMF, KOH in PEG and DBU without solvant. The (Z)-I-bromo-I-heptcne is prcpamd fmm (E,lZoctenoicacid in 85% yield (See ref. I la). K. Sonogashha, Y. Tohda, N. Hagiham, Terrahedron Lea.. 4467 (1975). For some recent examples of enyne synthesis by coupling I-halo-1-alkene with I-alkyne: a) Wilh palladium and copper as catalyst. Z-Yu Yang, D. J. Burton, Tetrahedron Letr., 31, 1369 (1990); W. Heilmann. A. Rahman. E. Btiuml, H. Mayr. Terrahedron, 44. 6047 (1988); V. Ratovelomana. G. Linstrumelle, Synrh. Commun, 11, 917 (1981); R. Rossi, A. Carpila. M. G. Quirici. M. L. Gaudcnxi, Telruhedron. 38,631 (1982): A. S. Kende. C. A. Smith. J. Org. Chem.. 53.2655 (1988); K. C. Nicolaou, R. E. Zipkin, R. E. Dolle, B. D. Harris, J. Am. Chum. Sot., 106, 3548 (1984); b)Without Pd but with sloichiometric amount of Cu’. T. Ogawa, K. Kusume. hf. Tanaka, K. Hayami, H. Suzuki, Synlh. Commun, 19.2199 (1989). The reactivity and Ihe sclcctivity arc me same when using CuCl instead Cul. For a discussion about slcrcoisomeric purity and isomcrisation of the Q-1-bmmo-I-alkene: a) F. Nllf, R. Decomant. Ifelv. Chim. Acru, 57, 1309 (1974); b) K. E. Harwell. L. F. Hatch, J. Am. C/tern. Sot., 77. 1682 (1955). TPFTS: ti (m-sulfophcnyl) phosphine tri sodium salt. For lhe ulilisadon of TF’PTS and this kind of water soluble phosphincs see:

A. Benyei. /. Mol. Car., 58, 151 (1990); T. Okano. I. Uchida, T. Nakugaki. H. Konishi. J. Kiji, J. Mol. Car., 54, 65 (1989); Y. Amrani. L. Lecomte. D. Sinou, Organomer., 8, 542 (1989); N. M. Taqui-Khan, S. B. Halligudi, S. H. R. Abdi. J. Mol. Car., 48. 313 (1988); E. G. Kunu. Chemfech.. 570 (1987); T. Okano, Y. Moriyama, H. Konishi, J. Kiji, C&m. Lerr.. 1463 (1986); D. Sinou, Bull. Sot. Chim. Fr., 480 (1987). Commercially available from Aldrich (Ref. 24,394.9). For lH-NMR, IR. UV and MS analyses see ref. 3a.

(Received in France 2 August 1990)