Vapour-liquid equilibria in the ternary mixtures Nz-CH4-C3H8 and CH4-CzH6-C3H8 G. Trappehl and H. Knapp Institute of Thermodynamics and Plant Design, Technical University of Berlin-West, Strasse des 17. Juni 135, D-1000 Berlin 12, FRG
Received 21 August 1987 A systematic study has been performed with mixtures consisting of N 2, CH 4, C2H 6 and C3H 8 to investigate experimentally phase equilibria and caloric properties and to test the accuracy of thermodynamic correlations. This Paper reports more results of T-p-x-y measurements on ternary systems in the range 20 < p < 120 bar and T = 200 K. The results are compared with data calculated by generalized equations of state.
Keywords: phase equilibria; nitrogen; hydrocarbons
Computer program packages for process design or simulation often include generalized equations of state (GEQS) useful for the calculation of thermodynamic properties. Therefore, considerable effort is spent in the attempt to improve the accuracy of equations of state (EQS) describing the p - v - T - x behaviour of mixtures. Progress and test of the equations must be based on accurate experimental p-v-T-x, h - T - p - x or vapour-liquid equilibria (VLE) data. In the high pressure low temperature apparatus (described in Reference 1), T - p - x - y measurements were made on two ternary systems. A review of this experimental work and of published VLE data is given in Table 1.
0.0 0- 1 ~ 0 0 . 9
a
02 ,
0.7
"5 "
0.1
0.2
\',,, 08
.
0.3
Experimental procedure o.o
0.0
A series of isothermal and isobaric measurements is carried out beginning with the binary mixture (1 + 2). Then component 3 is added until binary (2+ 3) is approached or until the system becomes supercritical. For measurements beginning with the binary mixture (2 + 3) the apparatus must be evacuated and filled again.
Experimental results The results for ternary mixtures are illustrated in the triangular 3 component diagrams and in the K - x diagrams for three typical cases shown in Figures 1, 2 and 3. The results are listed completely in Tables A1 A6.
Comparison of experiment and correlation Figures 1 3 and the tables in the Appendix also present the results of calculations with GEQS. For high pressures and for mixtures containing supercritical components it is possible and practical to use p - v - T - x information 0011-2275/88/060398-08 $03.00 ~.'~ 1988 Butterworth & Co (Publishers) Ltd
398
Cryogenics 1988 Vol 28 June
0.3 0.4
0.5
0.6
0.7
0.8
0.9
1.0
MOLE FRACTION N2
1° 2
b
5
x
5
>-
i0 °
II
5
"" lffl 5
1ff2[Bsmw----~~ 0.0
0.2
0.4
0.6
0.8
].0
CONCENTRATION XCH4 . HOLE FRACT]ON
Figure
I
N2 CH4-C3H8 system at 200K and 20 bar. (a) ©,
Vapour; V , liquid. (b) , Calculated by EQS RKS; experimental points: E], N2; ~1, CH4; [], C3H8
Vapour fiquid equilibria in ternary mixtures. G. Trappehl and H. Knapp 0.0
0.0
1.0
a
O.~ / ~ " Uo9 .
a
°'1,~
o.,/
V
0.2/
o../ W \
\o
/o: ,/vvv o.%
'~
"00"9
\ 0.8
0-k. / \A/ \A/ \ A °"
~,
g 0.G .# o.=/V V
0.8
-
~
0.9
.
X/
0.2
:-o/
0.0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
y
0.0
1.0
y
y~ y
0. I 0.2
0.3
b
10 1 5i ~ 4 a _ ~ _ a _ _ ~ e x
i0 0 ~
1° 1 5 I
i
y
y
'
y
0.5
0.6
0.7
0.8
~C
[]
x i0 ° "s-
~
~-~ 0.9
o.o 1.0
D
[] i
. . . .
>-
>-
,,
0.4
MOLEFRACTIONCH4
MOLEFRACTIONN2 b
°'
I
1.0 0.0
"X4
II
j~
10"1-
~: 10"I5-
5-
10-2
,
O.
I
,
0.2
d
0.4.
0.6
0.8
i
[ lff 2 0.0
1.0
I
[
0.2
0.4
CONCENTRATION
CONCENTRATION XCH4 , MOLE FRIqCI]ON
--
.
0.6
0.8
I.
XC2H6 , MOLE FRACTION
Figure 2 N 2 CH4-C3H 8 system at 200 K and 120 bar. (a) O, Vapour; V , liquid. (b) . Calculated by EQS LKP; experimental points: D, N2; [], CH4; [], C3H8
Figure 3 C H 4 C 2 H 6 - C 3 H 8 system at 2 0 0 K and 2 0 bar. (a) O , Vapour; V , liquid. (b) . Calculated by EQS RKS; experimental points: El, CH4; [~, C2H6; I], C3H8
presented by EQS for the calculation of the conditions in multicomponent-multiphase systems. In thermodynamic equilibrium, the fugacity, f~, of each component i is equal in all coexisting phases, for example, in both vapour, V, and liquid, L
if a material equation for the fluid is known
.17= .f~
(1)
4 V y , p = daex,p
(2)
where: q~ is the fugacity coefficient of component i; y~ and x~ are the mole fractions of component i in the vapour or the liquid phase, respectively; and p is the pressure. The fugacity coefficient, ~b~,can be calculated as R T In ~i =
Table 1
'~'
(}P
R T
"~
pt) z-
RT
- z ( T , v, Ak)
k = l, 2 . . . . .
1
where Ak are coefficients that characterize a certain fluid which can be a pure component or a mixture. The coefficients must be fitted to experimental p-v T x data. In so-called GEQS rules are suggested on how to calculate the A~ based on only a few characteristic parameters of the pure fluid. For mixtures, AN can be calculated with mixing rules and combination rules based on knowledge of Ak of the pure components, compositions, xi, and binary parameters, K u. Many of the process simulation programs available use the GEQS of Redlich Kwong-Soave 6'7 (RKS), Peng-Robinson 8 (PR) and
Experimental VLE data for systems containing N 2, CH 4, C2H 6 or C3H 8 (review of published data and this work)
System N 2 CH 4 C3H 8 CH 4 C2H 6 C3H 8
Tmin Tmax (K)
Pmin Pmax (bar)
Experimental points
Reference
114.10 200.00 144.26 1 58.1 5 144.1 5 200.00
0.240 22.570 20.0-1 20.0 6.890-89.630 2.180 59.550 6.890 72.350 20.0 40.0
74 54 1 53 88 36 17
Poon etal. 2 This work a Price 3 Wichterle et al. 4 Parikh et al. 5 This work b
122.20 283.1 5 21 3.71 244.43
aSee Figures 1 and 2 and Tables A I A 4 bSee Figure 3 and Tables A 5 and A 6
Cryogenics 1988 Vol 28 June
399
Vapour-liquid equilibria in ternary mixtures: G. Trappehl and H. Knapp Lee-Kesler-P1/Scker 1° (LKP). Therefore, the experimental data are compared with results calculated with these GEQS. The pure component parameters M, T~, Pc, vc and co and the binary K o values were taken from Reference 11.
work was done with the assistance of M. Behne (student helper), L. Kroll (mechanic) and C. Eichenauer (technician).
Summary
References
Experimental VLE data are presented in figures and tables for two ternary mixtures N 2 - C H 4 - C a H s and C H 4 - C 2 H 6 - C 3 H s . The experimental results are cornred with results obtained by thermodynamic calculations based on three recommended GEQS.
Acknowledgements The authors are grateful to Deutsche Forschungsgemeinschaft, (DFG) for financial support. The experimental
400
Cryogenics 1988 Vol 28 June
1 Trappehl, G. and Knapp, H. Cryogenics (1987) 27 696--716 2 Pooh, D.P.L and Lu, B.C.-Y. Adv Cryog Eng (1974) 7 106 3 Price,A.R. Thesis Rice Institute, Houston, USA (1957) 4 Wiehterle, l. andKobayashi, R. JChemEngData(1972) 171,4,13 5 Parikh, J.S., Bukacek, R.F., Grahm, L. and Leipziger, S. J Chem Eng Data (1984) 29 301-303 6 Redlich,O. and Kwong,J.N.S. Chem Rev (1949) 44 233 7 Sonve,G. Chem Ing Sci (1972) 27 1197 8 Peng,D.Y. and Robinson, D.B. lnd Eng Chem Fundam 1976) 15 59 9 PI6cker, U., Knapp, H. and Pransnitz, J.M. lnd Eng Chem Process Des Dev (1978) 17 324
10 Knapp, H., D6ring, R., Oellrieh, L., Pliicker, U. and Prausnitz, J.M. Dechema Chem Data Ser Vol b, Part 1 {1982)
Vapour-fiquid equilibria in ternary mixtures. G. Trappehl and H. Knapp
R#
.
~."
~.
~ ..
~
~8
~8
~
~
~'~
~
~
. ~
~
~'~
~
~&
~ 8•
~ . ~ . ~
~
~'~
~
~0~
"~
~
~
~
~
~'~
~
~'~
~"
~
~
~
~
~
~
~
~00
ss~
ooo
oo
ooS~
° •
t-I
~
°
~
oo8O~ ~0
O~
O~
L~-
0~1
~
O~
00
~
,-~
O~
0 ('4 "D tr~
0 0 o4
t~ ~2 "1I
X
° ~
C e~
! !ii
.........
o~. ~
o~
-~=o~ ~. . . . . . . .~. . . . ~ "
K
Cryogenics 1988 Vol 28 June
401
Vapour-fiquid equilibria in ternary mixtures. G. Trappehl and H. Knapp ~
~"
~
~"
~
ooo •
.
.
.
.
.
.
.
.
.
ooo .
.
.
.
.
88 .
.
.
.
~
.
.
.
~0~
ooo
.
.°
'~
LO
~ff
,,.-I
0
,'~
['0
0
f3
t,4
I! I! ~O
~'~
~
~
~
~
~
~
~
~ "
~
o3
~0~
~
~
~
~
~
~
0 ~
~
0 ~
888
888
888
808
008
008
008
008
008
008
[0
00
,,,-I
~
0
~
o~
L"3 ~-J ['0
0
o~
"
6~"
~
"
~
--'J E'-
u3
'
~
"
~
Lo
u3
¢(11 0 0
G
Ol
0 Z N w
402
Cryogenics 1988 Vol 28 June
u3
~
eO
"
~
"
Vapour-fiquid equifibria in ternary mixtures. G. Trappehl and H. Knapp ~
~
~0~
~ 0
~
~
r4
...
ss8
...
ooo
~oo
.o
O~
~
....
~
~
0
0
...
d
0
~
~
.
~
.
~
•
~
'
~
•
~
•
~
•
~
•
~
•
~
•
~
•
ev 0 0
G
"~
cO 0.1LO
t,.O 02 O~
c.o ,,---~
[0
(3~
c..o ,'-~
¢0 t~ Ob
tO t ~ O~
¢0~
t
Z
e~ p-
Cryogenics
1988
Vol
28
June
403
Vapour-fiquid equilibria in ternary mixtures G Trappehl and H Knapp ~0
'.J
~ 0
~
0 ~
~
~
~
~
~
~
~
~
~ 0
I
0')
0
1=4
.~
t.O
~
,.~
,-,
~
,-,
,4
~
,.-=
O
~
#.-
~
0
oz
&
,4
,4
,4
,6
&.
~..
e & --.8
8~8 T~8 #R8 #~8 ~R8 ~ &.. &.. &.. &-. &-~ 8•
,-4
~
tO
,~
"10 (10 v 0 0 ¢N
"4
~4
£
"1" I
:E 0 1.0
x
@ e~
~
(D
~-
cO
0"~
I--
•
V
.
. . . .
°
I--I
. . . . . . . . . . . . .
8.0.8.
. . . . . . .
~
"~
...
s s.8.
0 O~
O IN
I=1
(~
~
Ol
't'-
cO
CO
OZ
8 ~88 ~8
I
ev O O ¢N
£ ~2 1 £ O
.
.
.
.
I
~g v
.O I--
404
Cryogenics 1 9 8 8 Vol 2 8 June
.
.
.
.
.
.
.
.
.
o .
.
.
.
.
.
.
.
.
.
~
OZ
CO
Vapour liquid equilibria in ternary mixtures.• G. Trappehl and H• Knapp T a b l e A6
CH 4 C2H 6 C3H 8 at 200 K and 40 bar
( 1 ) METHANE
CH4
( 2 ) E'r~NE
~
( 3 ) PROPANE
C3HB
~ . ~ I M E N T A L VLE ~ T=
200.000 K
l~.
(X]MP.
I
2
3
4
5
6
7
8
(I)
(1)
(1)
(1)
(I)
(1)
(1)
(1)
/it
P= X
(1)
(2)
~-•00~6 EXP nEVIATI(~:~P~
.0140 EXP ~
.0011
(EQS. : ~
)
40.000 BAR Y M(1L/F~L
K
MOL,'NQL .7638 .2362 .0000
.9472 .0528 .000(3
1.24 .22
.7567 .1975 • 0458
.9556 .0420 .0024
1.26 .21 .05
.7493 • 1673 .0834
.9633 .0326 .0041
.7468 .1348 • 1185
-
DP/P
IF/"
%
NOL/NOL
I]K/K
I~/F
%
% .2
.0006 .(X306
.2 1.5
1•2
.I
•0001 .0002 ,0003
.0 .6 12.1
.0 .7 12.0
1.29 .19 .05
.1
,0016 ,0011 ,0005
.i 3.2 II.I
.I 3.0 10.7
.9681 .0258 .0062
1.30 .19 .05
,0005 .8
.0001
.8 .9 3.5
.4 1.6 2.2
.7402 .1067 .1530
.9737 •0195 .(X)69
1.32 .18 .04
.9
.0012 .0007 .0005
.9 2.1 4.7
.4 2.6 6.0
.7392 .0978 .1630
.9752 .0175 .0072
1.32 .18 .04
1.1
.0013 .0008 .0005
1.0 2.9 3.7
.4 3.6 5.3
.7263 .0273 . 24-65
.9656 .0045 .0099
1.36 .17 .04
1.8
.0009 .0003 .0006
1.9 4.3 .9
.8 5.5 3.4
.7231 .0000 • 2769
.9692 .0000 .0108
1.37
.0006
2.4
1.1
.0006
1.3
1.8
E~
: LKP
.2
.0006
2.3 .04
AAD AAD
1.0
.0006 .0004
2.2 5.3
2.6 5.9
AAD AAD
1• 8
.0004 .0001
2.3 6.1
1• 4 4.0
.5
.0021 •0016 •0007
4.6 9.0
AAI)
AAD AAD
•5
.3
4.2 8.9
Cryogenics 1988 Vol 28 June
405