Applied Mathematics and Computation 218 (2012) 7109–7127
Contents lists available at SciVerse ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Zeros of orthogonal polynomials generated by canonical perturbations of measures q Edmundo J. Huertas a,⇑, Francisco Marcellán a, Fernando R. Rafaeli b a b
Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Leganés, Madrid, Spain Departamento de Matemática, Estatística e Computação, FCT, Universidade Estadual Paulista – Unesp, Brazil
a r t i c l e
i n f o
Keywords: Orthogonal polynomials Interlacing Monotonicity Asymptotic behavior Electrostatics interpretation
a b s t r a c t In this paper we analyze the behaviour of the zeros of polynomials orthogonal with respect to the Uvarov perturbation of a positive Borel measure dlðxÞ. When the measure is semiclassical, then its electrostatic interpretation is given. Ó 2012 Elsevier Inc. All rights reserved.
1. Introduction and statement of the main results This paper deals with the behavior of the zeros of the sequence of monic polynomials fpn ðk; c; xÞgnP0 orthogonal with respect to the Uvarov perturbation dlðk; c; xÞ ¼ dlðxÞ þ kdðx cÞ, where dlðxÞ is a positive Borel measure supported in a finite or infinite interval ða; bÞ; dðx cÞ is the Dirac delta functional at c, with c R ða; bÞ, and k is a nonnegative real number. In other words this means that this sequence of polynomials is orthogonal with respect to the inner product
hp; qik;c ¼
Z
b
pðxÞqðxÞ dlðxÞ þ kpðcÞqðcÞ:
ð1Þ
a
Let xn;k ðk; cÞ; k ¼ 1; . . . ; n, be the zeros of pn ðk; c; xÞ. If k is a nonnegative real number then dlðk; c; xÞ is a positive measure, and, as a consequence, the zeros of pn ðk; c; xÞ are real, simple, and lie in (c, b) (resp. in (a, c)) if c 6 a (resp. if c P b), that is,
minfa; cg < xn;1 ðk; cÞ < < xn;n ðk; cÞ < maxfb; cg: In particular, if k ¼ 0 we denote by xn;k :¼ xn;k ð0; cÞ the zeros of pn ðxÞ :¼ pn ð0; c; xÞ, the sequence of monic polynomials orthogonal with respect to the measure dlðxÞ. Now, some natural questions arise: Are there values of the parameter k for which the zeros of pn ðk; c; xÞ interlace with the zeros of pn ðxÞ? Are the zeros xn;k ðk; cÞ monotonic functions with respect to the parameter k? Do the zeros xn;k ðk; cÞ converge when k goes to infinity? If so, what the speed of convergence is? One of our main contributions regards the questions posed above. We provide an interlacing property as well as the monotonicity and asymptotic behaviour of the zeros of the polynomial pn ðk; c; xÞ with respect to k.
q This work has been done in the framework of a joint project of Dirección General de Investigación, Ministerio de Educación y Ciencia of Spain and the Brazilian Science Foundation CAPES, Project CAPES/DGU 160/08. The work of the first and second authors has been supported by Dirección General de Investigación, Ministerio de Ciencia e Innovación of Spain, Grant MTM2009-12740-C03-01. The work of the third author has been supported by CNPq, FAPESP and FUNDUNESP. ⇑ Corresponding author. E-mail addresses:
[email protected] (E.J. Huertas),
[email protected] (F. Marcellán),
[email protected] (F.R. Rafaeli).
0096-3003/$ - see front matter Ó 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2011.12.073
7110
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
Theorem 1. Let k > 0 and zn;1 ðcÞ; . . . ; zn;n ðcÞ be the zeros of the polynomial r n ðc; xÞ defined below. (i) If c 6 a, then
c < xn;1 ðk; cÞ < xn;1 < zn1;1 ðcÞ < xn;2 ðk; cÞ < xn;2 < < zn1;n1 ðcÞ < xn;n ðk; cÞ < xn;n : Moreover, each xn;k ðk; cÞ is a decreasing function of k and, for each k ¼ 1; . . . ; n 1,
lim xn;1 ðk; cÞ ¼ c;
k!1
lim xn;kþ1 ðk; cÞ ¼ zn1;k ðcÞ;
k!1
as well as
lim k½xn;1 ðk; cÞ c ¼
k!1
pn ðcÞ ; K n1 ðc; cÞr n1 ðc; cÞ
lim k½xn;kþ1 ðkÞ zn1;k ðcÞ ¼
k!1
pn ðzn1;k ðcÞÞ : K n1 ðc; cÞðzn1;k ðcÞ cÞ½r n1 ðc; xÞ0x¼zn1;k ðcÞ
ð2Þ
(ii) If c P b, then
xn;1 < xn;1 ðk; cÞ < zn1;1 ðcÞ < < xn;n1 < xn;n1 ðk; cÞ < zn1;n1 ðcÞ < xn;n < xn;n ðk; cÞ < c: Moreover, each xn;k ðk; cÞ is an increasing function of k and, for each k ¼ 1; . . . ; n 1,
lim xn;n ðk; cÞ ¼ c;
k!1
lim xn;k ðk; cÞ ¼ zn1;k ðcÞ
k!1
and
lim k½c xn;n ðk; cÞ ¼
k!1
pn ðcÞ ; K n1 ðc; cÞr n1 ðc; cÞ
lim k½zn1;k ðcÞ xn;k ðk; cÞ ¼
k!1
pn ðzn1;k ðcÞÞ : K n1 ðc; cÞðzn1;k ðcÞ cÞ½rn1 ðc; xÞ0x¼zn1;k ðcÞ
Note that the mass point c attracts one zero of pn ðk; c; xÞ, that is, when k goes to infinity, it captures either the smallest or the largest zero, according to the location of the point c with respect to the interval (a, b). In addition, when either c < a or c > b, at most one of the zeros of pn ðk; c; xÞ is located outside (a, b). We point out that Theorem 1 is general in two aspects and uses new approaches to the analyses of zeros: dlðxÞ is any positive Borel measure and c is any value outside (a, b). Some particular cases of these polynomials appear in the seminal papers by H.L. Krall [25] and A.M. Krall [24] devoted to the spectral analysis of fourth order linear differential operators with polynomial coefficients. Koornwinder [23] analyzed a general situation for Jacobi weights when two masses are added at the end points of the interval [1, 1]. Later on, in [15], Krall–Hermite and Krall–Bessel polynomials are studied in the framework of Darboux transformations. In [22] analytic properties of orthogonal polynomials with respect to a perturbation of the Laguerre weight when a mass is added at x ¼ 0 are considered. In [28], the holonomic equation for such perturbations when the mass point is located in the negative real semi-axis is deduced. In the framework of the spectral theory of higher order linear differential operators, in [20,21] the authors obtain infinite order differential operators such that the Krall-Laguerre and Krall-Jacobi are their eigenfunctions, respectively. In particular, for some choices of the parameters of Laguerre and Jacobi weights they prove that the differential operator has a finite order. On the other hand, in [26] the authors deduced the invariance of the semiclassical character of semiclassical linear functionals under Uvarov transformations independently of the location of the mass point. All the above questions concerning the behaviour of the zeros of the polynomials pn ðk; c; xÞ were answered for two important and particular cases in [6,7]. The authors considered the cases when dlðxÞ ¼ xa ex dx with ða; bÞ ¼ ð0; 1Þ and c ¼ 0, and dlðxÞ ¼ ð1 xÞa ð1 þ xÞb dx with ða; bÞ ¼ ð1; 1Þ and c ¼ 1, respectively. We also provide the second order linear differential equation that the polynomial pn ðk; c; xÞ satisfies when the measure dlðxÞ in (1) is semiclassical (for definition of a semiclassical measure see [29]). This is the main tool for the electrostatic interpretation of zeros. Theorem 2. The monic orthogonal polynomial sequence fpn ðk; c; xÞgnP0 satisfies the holonomic equation (second order linear differential equation)
Aðx; nÞðpn ðk; c; xÞÞ00 þ Bðx; nÞðpn ðk; c; xÞÞ0 þ Cðx; nÞpn ðk; c; xÞ ¼ 0;
ð3Þ
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
7111
where
Aðx; nÞ ¼
cn ½/ðxÞ2 ; e nÞ e nÞ cn Aðx; Bðx; h i e nÞ þ cn ð/0 ðxÞ Aðx; nÞÞ /ðxÞ Bðx; nÞ Bðx;
0 e nÞ e nÞ cn Aðx; cn /ðxÞ2 Bðx; ; Bðx; nÞ ¼ 2 e nÞ e nÞ cn Aðx; Bðx; e nÞ e nÞ cn Aðx; Bðx; ! e nÞ e nÞ e nÞ Bðx; nÞ Aðx; Bðx; Aðx; nÞ Bðx; Cðx; nÞ ¼ /ðxÞD : e nÞ e nÞ e nÞ cn Aðx; e nÞ cn Aðx; Bðx; Bðx; In order to justify our approach, we must point out that the behavior of the zeros of orthogonal polynomials has been extensively studied because of their applications in many areas of physics and engineering. First, the zeros of orthogonal polynomials are the nodes of the Gaussian quadrature rules and also play an important role in some of their extensions like Gauss–Radau, Gauss– Lobatto, and Gauss–Kronrod rules, among others (see [5,12,30]). Second, the zeros of classical orthogonal polynomials are the electrostatic equilibrium points of positive unit charges interacting according to a logarithmic }’s book [38, Section 6.7], and some recent potential under the action of an external field, see Stieltjes’ papers [34–37], Szego works like Dimitrov and Van Assche [8], Grunbaum [13,14], Ismail [17], and Marcellán et al. [27] among others. Third, in a more general framework, the counting measure of zeros weakly converges to the equilibrium measure associated with a logarithmic potential (see [33]). Fourth, zeros of orthogonal polynomials are used in collocation methods for boundary value problems of second order linear differential operators (see [2]). Fifth, global properties of zeros of orthogonal polynomials can be analyzed when they satisfy second order differential equations with polynomial coefficients using the WKB method (see [1]). Finally, zeros of orthogonal polynomials are eigenvalues of Jacobi matrices and its role in Numerical Linear Algebra is very well known. The structure of the manuscript is as follows. In Section 2 we prove Theorem 1. It follows from the Christoffel formula, from connections formula for the perturbed polynomials in terms of the initial ones and from a lemma concerning the behavior of the zeros of a linear combination of two polynomials. In addition, we obtain new connection formulas for orthogonal polynomials obtained from Uvarov and Christoffel transformations and some results about their zeros. In Section 3, we check these results for the Jacobi-type and Laguerre-type orthogonal polynomials introduced by Koornwinder [23]. In Section 4 we obtain the holonomic equations that the polynomials pn ðk; c; xÞ satisfy using an alternative approach to the standard ones. We focus our attention on the electrostatic interpretation of the zeros as equilibrium points in a logarithmic potential interaction of positive unit charges under the presence of an external field. We analyze such an equilibrium problem when the mass point is located either on the boundary or in the exterior of the support of the measure, respectively, for the Laguerre and Jacobi weights transformations. 2. Proof of Theorem 1 In this section, we prove Theorem 1 and present some new results. Proof of Theorem 1. Le yn;k ðcÞ be the zeros of the monic polynomials qn ðc; xÞ orthogonal with respect to the perturbed measure
dl1 ðc; xÞ ¼ jx cj dlðxÞ; where c R ða; bÞ. This perturbation is the so-called Christoffel perturbation (see [41,40]). It is well known that qn ðc; xÞ is the monic kernel polynomial which can be represented as (see [5, (7.3)])
qn ðc; xÞ ¼
kpn k2l 1 p ðcÞ pnþ1 ðxÞ nþ1 pn ðxÞ ¼ K n ðc; xÞ; xc pn ðcÞ pn ðcÞ
ð4Þ
where K n ðc; xÞ is the nth kernel polynomial defined by
K n ðc; xÞ ¼
n X pj ðcÞpj ðxÞ j¼0
kpj k2l
:
ð5Þ
In Chihara’s book [2, Theorem 7.2] we found the following interlacing property involving the zeros of qn ðc; xÞ; pnþ1 ðxÞ and pn ðxÞ: If c 6 a, then
xnþ1;1 < xn;1 < yn;1 ðcÞ < xnþ1;2 < < xn;n < yn;n ðcÞ < xnþ1;nþ1 : If c P b, then
xnþ1;1 < yn;1 ðcÞ < xn;1 < < xnþ1;n < yn;n ðcÞ < xn;n < xnþ1;nþ1 :
7112
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
We introduce the monic polynomials r n ðc; xÞ orthogonal with respect to the measure
dl2 ðc; xÞ ¼ jx cj dl1 ðc; xÞ ¼ ðx cÞ2 dlðxÞ: Using (4) we deduce that
rn ðc; xÞ ¼
1 q ðc; cÞ 1 ½q ðc; xÞ nþ1 ½pnþ2 ðxÞ dn pnþ1 ðxÞ þ en pn ðxÞ; q ðc; xÞ ¼ x c nþ1 qn ðc; cÞ n ðx cÞ2
ð6Þ
where
dn ¼
pnþ2 ðcÞ qnþ1 ðc; cÞ pnþ2 ðcÞ þ pn ðcÞ þ ¼ en ; pnþ1 ðcÞ qn ðc; cÞ pnþ1 ðcÞ
en ¼
qnþ1 ðc; cÞ pnþ1 ðcÞ kpnþ1 kl K nþ1 ðc; cÞ ¼ > 0: qn ðc; cÞ pn ðcÞ kpn k2l K n ðc; cÞ
2
Notice that rn ðc; cÞ – 0. If we denote by zn;k ðcÞ the zeros of r n ðc; xÞ, then using the three term recurrence relation
pnþ1 ðxÞ ¼ ðx bn Þpn ðxÞ cn pn1 ðxÞ; where
bn ¼
hxpn ; pn il kpn k2l
;
n P 0;
and cn ¼
kpn k2l kpn1 k2l
> 0;
n P 1;
in (6) we obtain
rn ðc; xÞ ¼
1 ðx cÞ2
½ðx bnþ1 dn Þpnþ1 ðxÞ þ ðen cnþ1 Þpn ðxÞ:
ð7Þ
On the other hand,
en cnþ1 ¼
kpnþ1 k2l K nþ1 ðc; cÞ 1 > 0: K n ðc; cÞ kpn k2l
ð8Þ
Thus, evaluating r n ðc; xÞ at the zeros xnþ1;k , from (7) and (8),
Sign½r n ðc; xnþ1;k Þ ¼ Sign½pn ðxnþ1;k Þ;
k ¼ 1; . . . ; n þ 1:
Since the zeros of pnþ1 ðxÞ and pn ðxÞ interlace, we conclude that h Theorem 3. The inequalities
xnþ1;1 < zn;1 ðcÞ < xnþ1;2 < zn;2 ðcÞ < < xnþ1;n < zn;n ðcÞ < xnþ1;nþ1 ;
ð9Þ
hold for every n 2 N. In [1, (8)] (see also [39]) the authors show that
pn ðk; c; xÞ ¼ pn ðxÞ
kpn ðcÞ K n1 ðc; xÞ: 1 þ kK n1 ðc; cÞ
ð10Þ
In [16] another connection formula was obtained. Using the similar idea as in Proposition 4 in [16] we obtain ^n ðk; c; xÞ, with the normalization p ^n ðk; c; xÞ ¼ kn pn ðk; c; xÞ, can be represented Theorem 4 (Connection formula). The polynomials p as
^n ðk; c; xÞ ¼ pn ðxÞ þ kK n1 ðc; cÞðx cÞrn1 ðc; xÞ; p
ð11Þ
where kn ¼ 1 þ kK n1 ðc; cÞ. Using the interlacing property (9) and the connection formula (11), we get
^n ðk; c; xn;k Þ ¼ Sign½kðxn;k cÞrn1 ðc; xÞ; Sign½p
k ¼ 1; . . . ; n
and
^n ðk; c; zn1;k ðcÞÞ ¼ Sign½pn ðzn1;k ðcÞÞ; Sign½p
k ¼ 1; . . . ; n 1;
which yield the inequalities stated in Theorem 1. It remains to show the monotonicity, asymptotics and the speed of the convergence of the zeros xn;k ðk; cÞ with respect to k. Indeed, it follows from the technique developed in [3, Lemma 1] and
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
7113
[7, Lemmas 1 and 2] (see also [31, Theorem 3.9]) concerning the zeros of a linear combination of two polynomials with interlacing zeros. We also derive a representation for the monic polynomial pn ðk; c; xÞ as a combination of two Christoffel polynomials it will be very useful for obtain the holomonic equation for pn ðk; c; xÞ. Theorem 5. The monic polynomials pn ðk; c; xÞ can be also represented as
pn ðk; c; xÞ ¼ qn ðc; xÞ þ cn qn1 ðc; xÞ;
ð12Þ
where
cn ¼
1 þ kK n ðc; cÞ pn1 ðcÞ c 1 þ kK n1 ðc; cÞ pn ðcÞ n
and cn ¼
kpn k2l kpn1 k2l
:
ð13Þ
Using (5), we obtain
pn ðxÞ ¼
kpn k2l pn ðcÞ
½K n ðc; xÞ K n1 ðc; xÞ:
ð14Þ
From (4) and (14), we have
pn ðxÞ ¼ qn ðc; xÞ cn
pn1 ðcÞ q ðc; xÞ: pn ðcÞ n1
ð15Þ
Therefore, substituting (4) and (15) in (10) we get (12). In the following we deduce the value k0 of the mass such that for k > k0 one of the zeros of pn ðk; c; xÞ is located outside (a, b). Corollary 1. Let k > 0. (i) If c < a, then the smallest zero xn;1 ðk; cÞ satisfies
xn;1 ðk; cÞ > a; xn;1 ðk; cÞ ¼ a;
for k < k0 ; for k ¼ k0 ;
xn;1 ðk; cÞ < a;
for k > k0 ;
where
k0 ¼ k0 ðn; a; cÞ ¼
pn ðaÞ > 0: K n1 ðc; cÞða cÞr n1 ðc; aÞ
(ii) If c > b, then the largest zero xn;n ðk; cÞ satisfies
xn;n ðk; cÞ < b;
for k < k0 ;
xn;n ðk; cÞ ¼ b;
for k ¼ k0 ;
xn;n ðk; cÞ > b;
for k > k0 ;
where k0 ¼ k0 ðn; b; cÞ. The proofs are a consequence of the connection formula (11). 3. Application to classical measures 3.1. Jacobi type (Jacobi–Koornwinder) orthogonal polynomials ða;bÞ
Let fpn
ðxÞgnP0 be the monic Jacobi polynomial sequence which is orthogonal with respect to the measure dla;b ðxÞ ¼
a
ð1 xÞ ð1 þ xÞb dx; a; b > 1, supported on ð1; 1Þ. We consider the following Uvarov perturbations of dla;b ðxÞ where either a ¼ 1 or a ¼ 1, and k P 0.
dlðk; 1; xÞ ¼ dla;b ðxÞ þ kdðx þ 1Þ;
ð16Þ
dlðk; 1; xÞ ¼ dla;b ðxÞ þ kdðx 1Þ:
ð17Þ
Such orthogonal polynomials were first studied by Koornwinder (see [23]), in 1984. There, he adds simultaneously two Dirac delta functions at the end points x ¼ 1 and x ¼ 1, that is,
dlM;N ðxÞ ¼ dla;b ðxÞ þ Mdðx þ 1Þ þ Ndðx 1Þ:
7114
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
^ðna;bÞ ðk; 1; xÞgnP0 and fp ^ðna;bÞ ðk; 1; xÞgnP0 the sequences of orthogonal polynomials with respect (16) and (17), with Denote by fp the normalization introduced in Theorem 2, respectively. Then, the connection formulas are ða;bþ2Þ ^ðna;bÞ ðk; 1; xÞ ¼ pðna;bÞ ðxÞ þ kK n1 ð1; 1Þðx þ 1Þpn1 ðxÞ p
and aþ2;bÞ ^ðna;bÞ ðk; 1; xÞ ¼ pnða;bÞ ðxÞ þ kK n1 ð1; 1Þðx 1Þpðn1 ðxÞ: p
It is straightforward to see that
K n1 ð1; 1Þ ¼
1 Cðn þ b þ 1ÞCðn þ a þ b þ 1Þ 2aþbþ1 CðnÞCðb þ 1ÞCðb þ 2ÞCðn þ aÞ
and
K n1 ð1; 1Þ ¼
1 Cðn þ a þ 1ÞCðn þ a þ b þ 1Þ : 2aþbþ1 CðnÞCða þ 1ÞCða þ 2ÞCðn þ bÞ
^nða;bÞ ðk; 1; xÞ and Recently, several authors [1,7,11] have been contributed to the analysis of the behavior of the zeros of p ða;bÞ ^ pn ðk; 1; xÞ. ^nða;bÞ ðk; 1; xÞ and pðna;bÞ ðxÞ, respecLet us denote by xn;k ða; b; kÞ :¼ xn;k ða; b; 1; kÞ and xn;k ða; bÞ; k ¼ 1; . . . ; n, the zeros of p tively, in an increasing order. Then, applying Theorem 1, we obtain. Theorem 6 [7]. The inequalities
1 < xn;1 ða; b; kÞ < xn;1 ða; bÞ < xn1;1 ða; b þ 2Þ < xn;2 ða; b; kÞ < xn;2 ða; bÞ < < xn1;n1 ða; b þ 2Þ < xn;n ða; b; kÞ < xn;n ða; bÞ; hold for every a; b > 1. Moreover, each xn;k ða; b; kÞ is a decreasing function of k and, for each k ¼ 1; . . . ; n 1,
lim xn;1 ða; b; kÞ ¼ 1;
k!1
lim xn;kþ1 ða; b; kÞ ¼ xn1;k ða; b þ 2Þ
k!1
and
lim k½xn;1 ða; b; kÞ þ 1 ¼ hn ða; bÞ;
k!1
lim k½xn;kþ1 ða; b; kÞ xn1;k ða; b þ 2Þ ¼
k!1
½1 xn1;k ða; b þ 2Þhn ða; bÞ ; 2ðb þ 2Þ
where
hn ða; bÞ ¼
2aþbþ2 CðnÞCðb þ 2ÞCðb þ 3ÞCðn þ aÞ : Cðn þ b þ 2ÞCðn þ a þ b þ 2Þ
From (2) ða;bÞ
lim k½xn;1 ða; b; kÞ þ 1 ¼
k!1
pn
ð1Þ ða;bþ2Þ
K n1 ð1; 1Þpn1
ð1Þ
:
Since
pðna;bÞ ð1Þ ¼
ð1Þn 2n Cðn þ b þ 1ÞCðn þ a þ b þ 1Þ Cðb þ 1ÞCð2n þ a þ b þ 1Þ
and
K n1 ð1; 1Þ ¼
1 Cðn þ b þ 1ÞCðn þ a þ b þ 1Þ ; 2aþbþ1 CðnÞCðb þ 1ÞCðb þ 2ÞCðn þ aÞ
we obtain ða;bÞ
pn
ð1Þ
ða;bþ2Þ K n1 ð1; 1Þpn1 ð1Þ
¼
2aþbþ2 CðnÞCðb þ 2ÞCðb þ 3ÞCðn þ aÞ ¼ hn ða; bÞ: Cðn þ b þ 2ÞCðn þ a þ b þ 2Þ
It also follows from (2) that ða;bÞ
lim k½xn;kþ1 ða; b; kÞ xn1;k ða; b þ 2Þ ¼
k!1
pn
ðxn1;k ða; b þ 2ÞÞ ða;bþ2Þ
K n1 ð1; 1Þðxn1;k ða; b þ 2Þ þ 1Þ½pn1
ðxÞ0 jx¼xn1;k ða;bþ2Þ
:
7115
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
On the other hand, from ða;bþ2Þ
nðn þ aÞð1 þ xÞpn1
ðxÞ ¼ nðn þ a þ b þ 1Þpðna;bÞ ðxÞ þ ðb þ 1Þð1 xÞ½pðna;bÞ ðxÞ0 ;
we derive
nðn þ a þ b þ 1Þpðna;bÞ ðxn1;k ða; b þ 2ÞÞ ¼ ðb þ 1Þð1 xn1;k ða; b þ 2ÞÞ½pðna;bÞ ðxÞ0 x¼x
n1;k ða;bþ2Þ
;
as well as
nðn þ aÞð1 þ xn1;k ða; b þ 2ÞÞ½pðna;bÞ ðxÞ0 x¼x
n1;k ða;bþ2Þ
¼ ½nðn þ a þ b þ 1Þ ðb þ 1Þ½pðna;bÞ ðxÞ0 x¼x
n1;k ða;bþ2Þ
þ ðb þ 1Þð1 xn1;k ða; b þ 2ÞÞ½pðna;bÞ ðxÞ00 x¼x
n1;k ða;bþ2Þ
:
Using the last two equalities and the differential equation for the Jacobi polynomials
ð1 x2 Þ½pðna;bÞ ðxÞ00 þ ½b a ða þ b þ 1Þx½pnða;bÞ ðxÞ0 þ nðn þ a þ b þ 1Þpðna;bÞ ðxÞ ¼ 0; we obtain
ð1 þ xn1;k ða; b þ 2ÞÞ½pðna;bþ2Þ ðxÞ0 jx¼xn1;k ða;bþ2Þ ¼
ðn þ b þ 1Þðn þ a þ b þ 1Þ ða;bÞ p ðxn1;k ða; b þ 2ÞÞ: ðb þ 1Þð1 xn1;k ða; b þ 2ÞÞ n
Therefore, ða;bÞ
lim k½xn;kþ1 ða; b; kÞ xn1;k ða; b þ 2Þ ¼
k!1
pn
ðxn1;k ða; b þ 2ÞÞ ða;bþ2Þ
K n1 ð1; 1Þðxn1;k ða; b þ 2Þ þ 1Þ½pn1
ðxÞ0
x¼xn1;k ða;bþ2Þ
½1 xn1;k ða; b þ 2Þhn ða; bÞ : ¼ 2ðb þ 2Þ ^ðna;bÞ ðk; 1; xÞ. Then Let xn;k ða; b; kÞ :¼ xn;k ða; b; 1; kÞ be the zeros of p Theorem 7 [7]. The inequalities
xn;1 ða; bÞ < xn;1 ða; b; kÞ < xn1;1 ða þ 2; bÞ < < xn;n1 ða; bÞ < xn;n1 ða; b; kÞ < xn1;n1 ða þ 2; bÞ < xn;n ða; bÞ < xn;n ða; b; kÞ < 1; hold for every a; b > 1. Moreover, each xn;k ða; b; kÞ is an increasing function of k and, for each k ¼ 1; . . . ; n 1,
lim xn;n ða; b; kÞ ¼ 1;
k!1
lim xn;k ða; b; kÞ ¼ xn1;k ða þ 2; bÞ
k!1
and
lim k½1 xn;n ða; b; kÞ ¼ g n ða; bÞ;
k!1
lim k½xn1;k ða þ 2; bÞ xn;k ða; b; kÞ ¼
k!1
½1 þ xn1;k ða þ 2; bÞg n ða; bÞ ; 2ða þ 2Þ
where
g n ða; bÞ ¼
2aþbþ2 CðnÞCða þ 2ÞCða þ 3ÞCðn þ bÞ : Cðn þ a þ 2ÞCðn þ a þ b þ 2Þ
We can proceed as in the proof of Theorem 6. We only observe that
nþb aþ1 ðaþ2;bÞ ðx 1Þpn1 ðxÞ ¼ pðna;bÞ ðxÞ ð1 þ xÞ½pðna;bÞ ðxÞ0 : 2n nðn þ a þ b þ 1Þ ða;bÞ
^3 ðk þ e; 1; xÞ, for a ¼ b ¼ 0 and some values of e > 0 appear in Fig. 1 To illustrate the results of Theorem 7, the graphs of p ^ð3a;bÞ ðk; 1; xÞ as a function of the mass k is clarified. where the monotonicity of the zeros of p ^3ða;bÞ ðk; 1; xÞ, with a ¼ b ¼ 0, for several choices of k. Notice that the largest zero conIn Table 1 we describe the zeros of p ð2;0Þ verges to 1 and the other two zeros converge to the zeros of the Jacobi polynomial p2 ðxÞ, that is, they converge to x2;1 ð2; 0Þ ¼ 0:75497 and x2;2 ð4Þ ¼ 0:0883037. Also note that all the zeros increase when k increase. 3.2. Laguerre type (Laguerre–Koornwinder) orthogonal polynomials ðaÞ
Let fpn ðxÞgnP0 be the monic Laguerre polynomial which are orthogonal with respect to the measure dlðxÞ ¼ xa ex dx; a > 1, supported on ð0; þ1Þ. We will consider the Uvarov perturbation on dla ðxÞ with c ¼ 0
7116
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
1
1
1
x
1 ^3ða;bÞ ðk þ ; 1; xÞ for some values of e. Fig. 1. The graphs of p
Table 1 ^ð3a;bÞ ðk; 1; xÞ for some values of k. Zeros of p k
x3;1 ð0; 0; kÞ
x3;2 ð0; 0; kÞ
x3;3 ð0; 0; kÞ
0 1 10 100 1000
0.774597 0.757872 0.755305 0.755004 0.754974
0 0.0753429 0.0868168 0.0881528 0.0882886
0.774597 0.955257 0.994575 0.999446 0.999944
dlðk; 0; xÞ ¼ dlðxÞ þ kdðxÞ; ðaÞ pn ðk; xÞ
k P 0:
ð18Þ
ðaÞ pn ðk; 0; xÞ
The polynomial :¼ orthogonal with respect to (18) was also obtained by Koornwinder [23] as a special limit case of the Jacobi–Koornwinder (Jacobi type) orthogonal polynomial. Analytic properties of these polynomials have been studied in the last years (see [1,6,10,22], among others). The connection formula (11) reads aþ2Þ ^ðnaÞ ðk; xÞ ¼ pðnaÞ ðxÞ þ kK n1 ð0; 0Þxpðn1 ðxÞ; p
where
K n1 ð0; 0Þ ¼
Cðn þ a þ 1Þ : CðnÞCða þ 1ÞCða þ 2Þ
Now, we will analyze the behavior of their zeros. Let denote by xn;k ða; kÞ and xn;k ðaÞ; k ¼ 1; . . . ; n, the zeros of the Laguerre type and the classical Laguerre orthogonal polynomials, respectively. Applying the results of Theorem 1 we obtain Theorem 8 [6]. The inequalities
0 < xn;1 ða; kÞ < xn;1 ðaÞ < xn1;1 ða þ 2Þ < xn;2 ða; kÞ < xn;2 ðaÞ < < xn1;n1 ða þ 2Þ < xn;n ða; kÞ < xn;n ðaÞ; hold for every a > 1. Moreover, each xn;k ða; kÞ is a decreasing function of k and, for each k ¼ 1; . . . ; n 1,
lim xn;1 ða; kÞ ¼ 0;
k!1
lim xn;kþ1 ða; kÞ ¼ xn1;k ða þ 2Þ;
k!1
as well as
lim kxn;1 ða; kÞ ¼ g n ðaÞ;
k!1
lim k½xn;kþ1 ða; kÞ xn1;k ða þ 2Þ ¼
k!1
g n ðaÞ ; aþ2
where
g n ðaÞ ¼
CðnÞCða þ 2ÞCða þ 3Þ : Cðn þ a þ 2Þ
From (2) ðaÞ
lim kxn;1 ða; kÞ ¼
k!1
pn ð0Þ ðaþ2Þ
K n1 ð0; 0Þpn1 ð0Þ
:
7117
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
Since
pðnaÞ ð0Þ ¼
ð1Þn Cðn þ a þ 1Þ Cða þ 1Þ
and K n1 ð0; 0Þ ¼
Cðn þ a þ 1Þ ; CðnÞCða þ 1ÞCða þ 2Þ
we obtain ðaÞ
pn ð0Þ ðaþ2Þ
K n1 ð0; 0Þpn1 ð0Þ
¼
CðnÞCða þ 2ÞCða þ 3Þ ¼ g n ðaÞ: Cðn þ a þ 2Þ
From (2) ðaÞ
lim k½xn;kþ1 ða; kÞ xn1;k ða þ 2Þ ¼
k!1
pn ðxn1;k ða þ 2ÞÞ
ðaþ2Þ K n1 ð0; 0Þxn1;k ða þ 2Þ½pn1 ðxÞ0
:
x¼xn1;k ðaþ2Þ
On the other hand, It is easy to verify that ðaþ2Þ
xpn1 ðxÞ ¼ pnðaÞ ðxÞ þ
aþ1 n
½pðnaÞ ðxÞ0 :
Thus,
½pðnaÞ ðxÞ0 x¼x
n1;k ðaþ2Þ
¼
n
aþ1
pðnaÞ ðxn1;k ða þ 2ÞÞ
and
xn1;k ða þ 2Þ½pðnaÞ ðxÞ0 x¼x
n1;k ðaþ2Þ
¼ ½pðnaÞ ðxÞ0 x¼x
n1;k ðaþ2Þ
þ
aþ1 n
½pðnaÞ ðxÞ00 x¼x
n1;k ðaþ2Þ
:
Using the last two equalities and the differential equation for the Laguerre polynomials
x½pðnaÞ ðxÞ00 þ ða þ 1 xÞ½pðnaÞ ðxÞ0 þ npðnaÞ ðxÞ ¼ 0; we obtain
xn1;k ða þ 2Þ½pðnaÞ ðxÞ0 x¼x
n1;k ðaþ2Þ
¼
ðn þ a þ 1Þ ðaÞ pn ðxn1;k ða þ 2ÞÞ: aþ1
30
5
10
x
30 ðaÞ
Fig. 2. The graphs of p3 ðk þ e; xÞ for some values of e.
Table 2 ðaÞ Zeros of p3 ðk; xÞ for some values of k. k
x3;1 ð2; kÞ
x3;2 ð2; kÞ
x3;3 ð2; kÞ
0 1 10 100 1000
1.51739 0.321731 0.0390611 0.00399042 0.00039990
4.31158 3.64053 3.5604 3.55151 3.55061
9.17103 8.53774 8.45936 8.45049 8.44959
7118
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
Therefore, ðaÞ
lim k½xn;kþ1 ða; kÞ xn1;k ða þ 2Þ ¼
k!1
pn ðxn1;k ða þ 2ÞÞ K n1 ð0; 0Þxn1;k ða þ
ðaþ2Þ 2Þ½pn1 ðxÞ0 x¼xn1;k ðaþ2Þ
¼
CðnÞCða þ 2ÞCða þ 2Þ g n ðaÞ ¼ : Cðn þ a þ 2Þ aþ2
ðaÞ
To illustrate the results of Theorem 8 we enclose the graphs of p3 ðk þ e; xÞ, for a ¼ 2 and some values of e > 0. The Fig. 2 ðaÞ shows the monotonicity of the zeros of p3 ðk; xÞ as a function of the mass k. ðaÞ The Table 2 describes the zeros of p3 ðk; xÞ , with a ¼ 2, for several choices of k. Observe that the smallest zero converges ð4Þ to 0 and the other two zeros converge to the zeros of the Laguerre polynomial p2 ðxÞ, that is, they converge to x2;1 ð4Þ ¼ 3:55051 and x2;2 ð4Þ ¼ 8:44949. Note that all the zeros decrease when k increases. 4. Semiclassical orthogonal polynomials and spectral transformations We assume that dlðxÞ ¼ xðxÞ dx, where xðxÞ is a weight function supported on the real line. We can associate with xðxÞ an external potential tðxÞ such that xðxÞ ¼ expðtðxÞÞ. Notice that if tðxÞ is assumed to be differentiable on the support of dlðxÞ ¼ xðxÞ dx then
x0 ðxÞ ¼ t0 ðxÞ: xðxÞ If t0 ðxÞ is a rational function on (a, b), then the weight function xðxÞ is said to be semiclassical (see [29,32]). The linear functional u associated with xðxÞ,
hu; pðxÞi ¼
Z
b
pðxÞxðxÞ dx;
a
satisfies a distributional equation (which is known in the literature as Pearson equation)
DðrðxÞuÞ ¼ sðxÞu; where rðxÞ and sðxÞ are non-zero polynomials such that rðxÞ is monic and deg ðsðxÞÞ P 1. Notice that, in terms of the weight function, the above relation reads
x0 ðxÞ sðxÞ r0 ðxÞ sðxÞ r0 ðxÞ ¼ ; or; equivalently t0 ðxÞ ¼ : xðxÞ rðxÞ rðxÞ Let consider the linear functional u1 associated with the measure dl1 ðc; xÞ. In order to find the Pearson equation that u1 satisfies, we analyze two situations: If
rðcÞ – 0, then Dððx cÞrðxÞu1 Þ ¼ Dððx cÞ2 rðxÞuÞ ¼ 2ðx cÞrðxÞu þ ðx cÞ2 DðrðxÞuÞ ¼ 2rðxÞu1 þ ðx cÞ2 sðxÞu ¼ ½2rðxÞ þ ðx cÞsðxÞu1 :
Thus,
Dð/ðxÞu1 Þ ¼ wðxÞu1 ; where
/ðxÞ ¼ ðx cÞrðxÞ; wðxÞ ¼ 2rðxÞ þ ðx cÞsðxÞ: If
ð19Þ
rðcÞ ¼ 0, i.e., rðxÞ ¼ ðx cÞr ðxÞ, then ðxÞuÞ ¼ Dððx cÞrðxÞuÞ ¼ rðxÞu þ ðx cÞDðrðxÞuÞ ¼ rðxÞu þ ðx cÞsðxÞu ðxÞu1 Þ ¼ Dððx cÞ2 r DðrðxÞu1 Þ ¼ Dððx cÞr ðxÞ þ sðxÞÞu1 : ¼ ðr
In this case,
Dð/ðxÞu1 Þ ¼ wðxÞu1 ; with
/ðxÞ ¼ rðxÞ; wðxÞ ¼ r ðxÞ þ sðxÞ:
ð20Þ
It is well known that the sequence of monic polynomials fqn ðc; xÞgnP0 , orthogonal with respect to dl1 ðc; xÞ, satisfies the structure relation (see [9] and [29])
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
/ðxÞDðqn ðc; xÞÞ ¼ Aðx; nÞqn ðc; xÞ þ Bðx; nÞqn1 ðc; xÞ;
7119
ð21Þ
where Aðx; nÞ and Bðx; nÞ are polynomials of a fixed degree, and the three term recurrence relation (see [4])
~n q ðc; xÞ þ c ~n qn1 ðc; xÞ; xqn ðc; xÞ ¼ qnþ1 ðc; xÞ þ b n
n P 0;
ð22Þ
with initial conditions q0 ðc; xÞ ¼ 1 and q1 ðc; xÞ ¼ 0, and
pnþ2 ðcÞ pnþ1 ðcÞ ~n ¼ b b ; nþ1 þ pnþ1 ðcÞ pn ðcÞ
nP0
ð23Þ
and
c~n ¼
pnþ1 ðcÞpn1 ðcÞ ½pn ðcÞ2
cn > 0; n P 1:
ð24Þ
Lemma 1. [17] We have
Aðx; nÞ þ Aðx; n 1Þ þ
~n1 Þ ðx b Bðx; n 1Þ ¼ /0 ðxÞ wðxÞ: c~n1
ð25Þ
According to a result by Ismail [17, (1.12)] which must be adapted to our situation since we use monic polynomials, we get
Aðx; nÞ þ Aðx; n 1Þ þ
~n1 xb
c~n1
Bðx; n 1Þ ¼ /ðxÞ
½x1 ðxÞ0 wðxÞ /0 ðxÞ 0 / ðxÞ wðxÞ; /ðxÞ /ðxÞ x1 ðxÞ
where x1 ðxÞ ¼ ðx cÞxðxÞ. 4.1. Uvarov transformations and holonomic equation We consider the Uvarov transformation of the semiclassical measure dlðxÞ ¼ xðxÞ dx. We stablish the holonomic equation of these polynomials. Proof of Theorem 2. Applying the derivative operator in (12) and multiplying it by /ðxÞ, we obtain
/ðxÞDðpn ðk; c; xÞÞ ¼ /ðxÞDðqn ðc; xÞÞ þ cn /ðxÞDðqn1 ðc; xÞÞ:
ð26Þ
Thus, substituting (21) in (26), yields
/ðxÞDðpn ðk; c; xÞÞ ¼ Aðx; nÞqn ðc; xÞ þ ½Bðx; nÞ þ cn Aðx; n 1Þqn1 ðc; xÞ þ cn Bðx; n 1Þqn2 ðc; xÞ: Using (22) in the above expression, we obtain
e nÞq ðc; xÞ þ Bðx; e nÞq ðc; xÞ; /ðxÞðpn ðk; c; xÞÞ0 ¼ Aðx; n n1
ð27Þ
where
e nÞ ¼ Aðx; nÞ cn Bðx; n 1Þ and Aðx; c~n1 cn e ~n1 Bðx; n 1Þ: Bðx; nÞ ¼ Bðx; nÞ þ cn Aðx; n 1Þ þ xb c~n1 Therefore, from (12) and (27), it follows that
1
cn
e nÞ Aðx;
e nÞ Bðx;
qn ðc; xÞ qn1 ðc; xÞ
¼
pn ðk; c; xÞ /ðxÞDðpn ðk; c; xÞÞ
;
that is,
qn ðc; xÞ ¼
e nÞ Bðx; cn /ðxÞ p ðk; c; xÞ Dðpn ðk; c; xÞÞ e nÞ n e nÞ e nÞ cn Aðx; e nÞ cn Aðx; Bðx; Bðx;
and
qn1 ðc; xÞ ¼
e nÞ Aðx; /ðxÞ p ðk; c; xÞ þ Dðpn ðk; c; xÞÞ: e nÞ n e nÞ e nÞ cn Aðx; e nÞ cn Aðx; Bðx; Bðx;
ð28Þ ð29Þ
7120
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
Substituting the above two expressions in (21), we deduce
/ðxÞD
e nÞp ðk; c; xÞ Bðx; cn /ðxÞDðpn ðk; c; xÞÞ n e nÞ Bðx; e nÞ e nÞ cn Aðx; e nÞ cn Aðx; Bðx;
!
! e nÞp ðk; c; xÞ Bðx; cn /ðxÞDðpn ðk; c; xÞÞ n e nÞ Bðx; e nÞ e nÞ cn Aðx; e nÞ cn Aðx; Bðx; ! e nÞp ðk; c; xÞ Aðx; /ðxÞDðpn ðk; c; xÞÞ n þ þ Bðx; nÞ : e nÞ Bðx; e nÞ e nÞ cn Aðx; e nÞ cn Aðx; Bðx;
¼ Aðx; nÞ
Then the statement of Theorem 2 follows in a straightforward way. A different approach to this differential equation appears in [26] using the fact that the Uvarov transform of a semiclassical linear functional is again a semiclassical linear functional. If we evaluate the second-order linear differential equation (3) at xn;k ðkÞ :¼ xn;k ðk; cÞ, then we obtain
Aðxn;k ðkÞ; nÞðpn ðk; c; xn;k ðkÞÞÞ00 þ Bðxn;k ðkÞ; nÞðpn ðk; c; xn;k ðkÞÞÞ0 ¼ 0: Hence,
ðpn ðk; c; xn;k ðkÞÞÞ00 Bðxn;k ðkÞ; nÞ ¼ : Aðxn;k ðkÞ; nÞ ðpn ðk; c; xn;k ðkÞÞÞ0
ð30Þ
Substituting Aðxn;k ðkÞ; nÞ and Bðxn;k ðkÞ; nÞ in the right hand side of (30), we get
e n;k ðkÞ; nÞÞ0 Bðx e n;k ðkÞ; nÞ Bðxn;k ðkÞ; nÞ þ cn Aðxn;k ðkÞ; nÞ cn /0 ðxn;k ðkÞÞ e n;k ðkÞ; nÞ cn Aðx ðpn ðk; c; xn;k ðkÞÞÞ00 ð Bðx þ : 0 ¼ e n;k ðkÞ; nÞ e n;k ðkÞ; nÞ cn Aðx cn /ðxn;k ðkÞÞ ðpn ðk; c; xn;k ðkÞÞÞ Bðx e nÞ and using (25), (28), and (29), then e nÞ cn Aðx; If we denote Q ðx; nÞ :¼ Bðx;
cn Qðx; nÞ ¼ Bðx; nÞ þ cn 2Aðx; nÞ þ /0 ðxÞ wðxÞ þ Bðx; n 1Þ : c~n1
ð31Þ
On the other hand, from (31) and (28), we obtain
e nÞ Bðx; nÞ þ cn Aðx; nÞ cn /0 ðxÞ ¼ cn wðxÞ: Bðx; Thus
ðpn ðk; c; xn;k ðkÞÞÞ00 wðxn;k ðkÞÞ ¼ D½ln Q ðx; nÞjx¼xn;k ðkÞ : /ðxn;k ðkÞÞ ðpn ðk; c; xn;k ðkÞÞÞ0 We consider two external fields
Z
wðxÞ dx and /ðxÞ
ln Q ðx; nÞ:
Thus the total external potential V(x) is given by
VðxÞ ¼
Z
wðxÞ dx þ ln Q ðx; nÞ: /ðxÞ
ð32Þ
Let us consider a system of n movable unit charges in (c, b) or (a, c), depending on the location of the point c with respect to (a, b), in the presence of the external potential V(x) given in (32). Let x :¼ ðx1 ; . . . ; xn Þ, where x1 ; . . . ; xn denote the location of the charges. The total energy of the system is
EðxÞ ¼
n X k¼1
Vðxk Þ 2
X
ln jxj xk j:
16j
In order to find the critical points of E(x) we set
X @ wðxj Þ Q 0 ðxj ; nÞ 1 EðxÞ ¼ 0 () ¼ 0; þ2 @xj /ðxj Þ Q ðxj ; nÞ x xk 16k6n;k–j j
Let f ðyÞ :¼ ðy x1 Þ ðy xn Þ. Thus,
wðxj Þ Q 0 ðxj ; nÞ f 00 ðxj Þ þ ¼ 0; /ðxj Þ Q ðxj ; nÞ f 0 ðxj Þ
j ¼ 1; . . . ; n;
or, equivalently,
f 00 ðyÞ þ
Bðy; nÞ 0 f ðyÞ ¼ 0; Aðy; nÞ
y ¼ x1 ; . . . ; x n :
j ¼ 1; . . . ; n:
ð33Þ
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
7121
Therefore
f 00 ðyÞ þ
Bðy; nÞ 0 Cðy; nÞ f ðyÞ þ f ðyÞ ¼ 0; Aðy; nÞ Aðy; nÞ
y ¼ x1 ; . . . ; x n :
ð34Þ
On the other hand, from (3) and (34) we obtain f ðyÞ ¼ pn ðk; c; yÞ, which means that the zeros of pn ðk; c; xÞ satisfy (33). h 4.2. Electrostatic interpretation of the zeros of Laguerre type orthogonal polynomials ðaÞ
We give an electrostatic interpretation for the zeros of Laguerre type polynomials pn ðk; c; xÞ which are orthogonal with respect to the measure dlðk; c; xÞ ¼ xa ex dx þ kdðx cÞ, where c 6 0 and k P 0. We analyze two cases: ðaÞ
1. First, we consider c ¼ 0. Thus, the polynomials pn ðk; 0; xÞ are orthogonal with respect to
dlðk; 0; xÞ ¼ xa ex dx þ kdðxÞ: The measure
dl1 ðxÞ ¼ xaþ1 ex dx; satisfies a Pearson equation with (see (20))
/ðxÞ ¼ rðxÞ ¼ x;
ðxÞ þ sðxÞ ¼ a þ 2 x: wðxÞ ¼ r
On the other hand, the structure relation (21) reads (see [38]) ðaþ1Þ
/ðxÞDðpðnaþ1Þ ðxÞÞ ¼ Aðx; nÞpnðaþ1Þ ðxÞ þ Bðx; nÞpn1 ðxÞ; where
/ðxÞ ¼ x;
Bðx; nÞ ¼ n þ a þ 1:
Aðx; nÞ ¼ n;
The coefficients (13) and (22) are
c~n ¼ nðn þ a þ 1Þ; ðaÞ
cn ¼
1 þ kK n ð0; 0Þ pn1 ð0Þ n!Cða þ 1ÞCða þ 2Þ þ kCðn þ a þ 2Þ nðn þ aÞ ¼ : 1 þ kK n1 ð0; 0Þ pðnaÞ ð0Þ ðn 1Þ!Cða þ 1ÞCða þ 2Þ þ kCðn þ a þ 1Þ
As a conclusion, Q(x, n) in (31) becomes
Q ðx; nÞ ¼ nðn þ a þ 1Þ cn ð2n þ 1 þ a cn Þ þ cn x with zero
un ¼ ð2n þ 1 þ a cn Þ
nðn þ a þ 1Þ : cn
It is easy to see that 0 < cn < n þ a þ 1. Thus, Q ð0; nÞ < 0 and it implies that un > 0. The electrostatic interpretation of the distribution of zeros means that we have an equilibrium position under the presence of an external potential
ln Q ðx; nÞ ln xaþ2 ex ; where the first term represents a short range potential corresponding to a unit charge located at un and the second one is a long range potential associated with the weight function (see also [18,19] ). 2. Now, we take c < 0. In this case dl1 ðxÞ ¼ ðx cÞxa ex dx. Thus, the structure relation (21) for dl1 ðxÞ is
/ðxÞDðqn ðc; xÞÞ ¼ Aðx; nÞqn ðc; xÞ þ Bðx; nÞqn1 ðc; xÞ; where
/ðxÞ ¼ ðx cÞx; nþa ; Aðx; nÞ ¼ n x ðn þ 1 þ an Þ 1 þ an1 nðn þ aÞ Bðx; nÞ ¼ ½an x ðn þ 1 þ an Þðn þ 1 þ an þ aÞ: an1 From (4) we obtain
7122
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127 ðaÞ
ðaÞ
ðx cÞqn ðc; xÞ ¼ pnþ1 ðxÞ
pnþ1 ðcÞ ðaÞ
pn ðcÞ
pðnaÞ ðxÞ:
Taking derivatives with respect to x in both hand sides of the above expression, and multiplying the resulting expression by x, we derive ðaÞ
ðaÞ
xqn ðc; xÞ þ xðx cÞDðqn ðc; xÞÞ ¼ xDðpnþ1 ðxÞÞ
pnþ1 ðcÞ ðaÞ
pn ðcÞ
xDðpðnaÞ ðxÞÞ:
Using the structure relation and the three therm recurrence relation for Laguerre polynomials we obtain
pnþ1 ðcÞ h ðaÞ
ðaÞ
xqn ðc; xÞ þ xðx cÞDðqn ðc; xÞÞ ¼ ðn þ 1Þpnþ1 ðxÞ þ ðn þ 1Þðn þ 1 þ aÞpðnaÞ ðxÞ
ðaÞ pn ðcÞ
i ðaÞ npðnaÞ ðxÞ þ nðn þ aÞpn1 ðxÞ ;
or
"
ðaÞ
xqn ðc; xÞ þ xðx cÞDqn ðc; xÞ ¼ ðn þ 1Þðx nÞ
npnþ1 ðcÞ ðaÞ
pn ðcÞ
# pnðaÞ ðxÞ
nðn þ 1Þðn þ aÞ þ nðn þ aÞ
! ðaÞ pnþ1 ðcÞ ðaÞ
pn ðcÞ
ðaÞ
pn1 ðxÞ:
Put ða Þ
an ¼
pnþ1 ðcÞ ðaÞ
pn ðcÞ
and, from (15),
pðnaÞ ðxÞ ¼ qn ðc; xÞ
cn an1
qn1 ðc; xÞ;
we have
xqn ðc; xÞ þ xðx cÞDðqn ðc; xÞÞ ¼ ððx nÞðn þ 1Þ nan Þqn ðc; xÞ ½ððn þ 1Þðx nÞ nan Þ
nðn þ aÞ an1
þ nðn þ aÞðn þ 1 þ an Þqn1 ðc; xÞ þ nðn 1Þðn þ aÞðn 1 þ aÞðn þ 1 þ an Þ
qn2 ðc; xÞ : an2
Using (22) and (23) aÞ ðcÞ c~n1 pnðaÞ ðcÞ pðn2 ; ¼ ðaÞ ð aÞ cn1 pn1 ðcÞ pn1 ðcÞ
we obtain
~n1 an1 c~n1 ðn 1Þðn 1 þ aÞ c ¼ ¼ an2 an2 ðn 1Þðn 1 þ aÞ an1 and, then,
nðn þ aÞðn þ 1 þ an Þ qn ðc; xÞ xqn ðc; xÞ þ xðx cÞDðqn ðc; xÞÞ ¼ ððn þ 1Þðx nÞ nan Þ an1 1 ~n1 Þ 1 ððn þ 1Þðx nÞ nan Þ ðn þ 1 þ an Þ q ðc; xÞ: ðn þ 1 þ an Þðx b þ nðn þ aÞ n1 an1 an1 Therefore,
/ðxÞDðqn ðc; xÞÞ ¼ Aðx; nÞqn ðc; xÞ þ Bðx; nÞqn1 ðc; xÞ; where
/ðxÞ ¼ xðx cÞ nðn þ aÞðn þ 1 þ an Þ Aðx; nÞ ¼ ððn þ 1Þðx nÞ nan Þ x; an1 1 ~n1 1 ððn þ 1Þðx nÞ nan Þ ðn þ 1 þ an Þ : Bðx; nÞ ¼ nðn þ aÞ ðn þ 1 þ an Þ x b an1 an1 Simplifying these expressions we derive
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
7123
nþa ; Aðx; nÞ ¼ n x ðn þ 1 þ an Þ 1 þ an1 an n þ 1 þ an ~n1 Þ ðn þ 1 þ an Þ : xþ ðn b Bðx; nÞ ¼ nðn þ aÞ an1 an1 In the last expression, using again (23)
~n ¼ b b nþ1 þ anþ1 an ¼ 2n þ a þ 3 þ anþ1 an ; we obtain
Bðx; nÞ ¼
nðn þ aÞ ½an x ðn þ 1 þ an Þðn þ 1 þ an þ aÞ: an1
This is an alternative approach to the method described in [28]. Notice that the Pearson equation for the linear functional associated with the measure becomes
Dð/u1 Þ ¼ wu1 ; where (see (19))
/ðxÞ ¼ ðx cÞrðxÞ ¼ ðx cÞx; wðxÞ ¼ 2rðxÞ þ ðx cÞsðxÞ ¼ 2x þ ðx cÞða þ 1 xÞ: According to (23) and (24),
~n1 ¼ b þ an an1 b n
~n1 ¼ and c
an1 c : an2 n1
This means that Q(x, n) in (31) is the following quadratic polynomial
Q ðx; nÞ ¼ cn x2 þ r n x þ sn with
rn ¼ nðn þ aÞ
an þ c2n cn ðc þ a þ 1 þ 2nÞ ¼ ðcn þ an Þðcn an Þ ðcn an Þc ðcn þ an Þð2n þ a þ 1Þ an1
and
sn ¼ ðn þ 1 þ an Þ½ðn þ 1 þ an þ aÞð2n þ 1 þ an þ a c 2cn Þ þ 2ccn þ cacn þ c2n ðan an1 þ 1 cÞ: The zeros of this polynomial are
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 r n þ r 2n 4sn cn ; 2cn qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ¼ r n r 2n 4sn cn : 2cn
z1;n ¼ z2;n
Taking into account
wðxÞ 2 aþ1 ¼ þ 1; /ðxÞ x c x the electrostatic interpretation means that the equilibrium position for the zeros under the presence of an external potential
ln Q ðx; nÞ lnðx cÞ2 xaþ1 ex ; where the first one is a short range potential corresponding to two unit charges located at z1;n and z2;n and the second one is a long range potential associated with a polynomial perturbation of the weight function. 4.3. Electrostatic interpretation for the zeros of Jacobi type orthogonal polynomials ða;bÞ
We furnish an electrostatic interpretation for the zeros of Jacobi type polynomials pn respect to the measure
ðk; c; xÞ which are orthogonal with
dlðk; c; xÞ ¼ ð1 xÞa ð1 þ xÞb dx þ kdðx cÞ with c R ð1; 1Þ and k P 0. For this propose we separate in two cases: ða;bÞ
1. First, we consider c ¼ 1. Thus, the polynomials pn
ðk; 1; xÞ are orthogonal with respect to
7124
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
dlðk; 1; xÞ ¼ ð1 xÞa ð1 þ xÞb dx þ kdðx þ 1Þ: The measure
dl1 ðxÞ ¼ ðx ð1ÞÞ dlðxÞ ¼ ð1 xÞa ð1 þ xÞbþ1 dx; satisfies a Pearson equation with (see (20))
/ðxÞ ¼ rðxÞ ¼ 1 x2 ;
ðxÞ þ sðxÞ ¼ ðb a þ 1Þ ða þ b þ 3Þx: wðxÞ ¼ r
On the other hand, the structure relation (21) reads ða;bþ1Þ
/ðxÞDðpðna;bþ1Þ ðxÞÞ ¼ Aðx; nÞpnða;bþ1Þ ðxÞ þ Bðx; nÞpn1
ðxÞ;
where
Aðx; nÞ ¼ Bðx; nÞ ¼
n½b a þ 1 þ ð2n þ a þ b þ 1Þx ; 2n þ a þ b þ 1 4nðn þ aÞðn þ b þ 1Þðn þ a þ b þ 1Þ ð2n þ a þ b þ 1Þ2 ð2n þ a þ bÞ
:
~n in (22) when qn ð1; xÞ ¼ pnða;bþ1Þ ðxÞ is The coefficient c
c~n ¼ can;bþ1 ¼
4nðn þ aÞðn þ b þ 1Þðn þ a þ b þ 1Þ ð2n þ a þ bÞð2n þ a þ b þ 1Þ2 ð2n þ a þ b þ 2Þ
and
cn ¼
1 þ kK n ð1; 1Þ 2nðn þ aÞ > 0; 1 þ kK n1 ð1; 1Þ ð2n þ a þ bÞð2n þ a þ b þ 1Þ
Thus,
Qðx; nÞ ¼ Bðx; nÞ þ cn ½ð2n þ a þ bÞcn
ða þ b þ 1Þðb a þ 1Þ þ ð2n þ a þ b þ 1Þcn x: 2n þ a þ b þ 1
Observe that the zero of Q(x, n) belongs to ð1; 1Þ. In fact, after some tedious calculations we see that
Qð1Þ ¼ Bð1; nÞ þ cn ½ð2n þ a þ bÞcn þ
2ð2nðn þ a þ b þ 1Þ þ aða þ b þ 1ÞÞ >0 2n þ a þ b þ 1
and
Qð1Þ ¼
2aþbþ3 ðb þ 1ÞCðnÞCðn þ aÞCðb þ 2Þ2 Cðn þ b þ 1ÞCðn þ a þ b þ 1Þk 2n þ a þ b 1 < 0: aþbþ1 2 CðnÞCðn þ aÞCðb þ 1ÞCðb þ 2Þ þ kCðn þ b þ 1ÞCðn þ a þ b þ 1Þ
Using some known properties of the Jacobi polynomials we conclude that ða;bÞ
nðn þ aÞðpn
un ¼ 1 þ 2k
ða;bÞ 2 ð1ÞÞ2 = pn
2
ða;bÞ
ðpn
ða;bÞ 2 ð1ÞÞ2 = pn
3
6 7 l 7 6 4K n1 ð1; 1Þð1 þ kK n1 ð1; 1ÞÞ5: ð2n þ a þ b þ 1Þ ð1 þ kK n ð1; 1ÞÞ l
2
The electrostatic interpretation means that the equilibrium position for the zeros under the presence of an external potential
ln Q ðx; nÞ lnð1 xÞaþ1 ð1 þ xÞbþ2 ; where the first one is a short range potential corresponding to a unit charge located at the zero of Q(x,n) and the other one is a long range potential associated with the weight function. 2. We take c < 1. Then,
dl1 ðxÞ ¼ ðx cÞð1 xÞa ð1 þ xÞb dx and the structure relation (21) for the above measure is
/ðxÞDðqn ðc; xÞÞ ¼ Aðx; nÞqn ðc; xÞ þ Bðx; nÞqn1 ðc; xÞ; where
7125
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
/ðxÞ ¼ ðx cÞð1 x2 Þ; Aðx; nÞ ¼ anþ1 ðx bn Þ þ bnþ1 kn an ðanþ1 cn þ kn bn Þ Bðx; nÞ ¼ ðanþ1 ðx bn Þ þ bnþ1 kn an Þ
cn kn1
1 1 þ x2 ; kn1
þ anþ1 cn þ kn bn ðanþ1 cn þ kn bn Þ
~n1 xb : kn1
Put ða;bÞ
kn ¼ kna;b ðcÞ ¼
pnþ1 ðcÞ ða;bÞ
pn
ðcÞ
ð35Þ
:
From (4) we obtain ða;bÞ
ðx cÞqn ðc; xÞ ¼ pnþ1 ðxÞ kn pðna;bÞ ðxÞ: Taking derivatives with respect to x in both hand sides of the above expression, and multiplying them by 1 x2 , we see that ða;bÞ
ð1 x2 Þqn ðc; xÞ þ ðx cÞð1 x2 ÞDðqn ðc; xÞÞ ¼ ð1 x2 ÞDðpnþ1 ðxÞÞ kn ð1 x2 ÞDðpðna;bÞ ðxÞÞ: Since ða;bÞ
ð1 x2 ÞDðpðna;bÞ ðxÞÞ ¼ an pðna;bÞ ðxÞ þ bn pn1 ðxÞ; where
an ¼ ana;b ðxÞ ¼
4nðn þ aÞðn þ bÞðn þ a þ bÞ
a;b
bn ¼ bn ¼
n½b a þ ð2n þ a þ bÞx ; 2n þ a þ b
ð2n þ a þ bÞ2 ð2n þ a þ b 1Þ
;
we obtain ða;bÞ
ða;bÞ
ð1 x2 Þqn ðc; xÞ þ ðx cÞð1 x2 ÞDðqn ðc; xÞÞ ¼ anþ1 pnþ1 ðxÞ þ ðbnþ1 kn an Þpðna;bÞ ðxÞ kn bn pn1 ðxÞ: The three terms recurrence relation of monic Jacobi polynomials implies ða;bÞ
ð1 x2 Þqn ðc; xÞ þ ðx cÞð1 x2 ÞDðqn ðc; xÞÞ ¼ ½anþ1 ðx bn Þ þ bnþ1 kn an pðna;bÞ ðxÞ ðanþ1 cn þ kn bn Þpn1 ðxÞ: From (15) and (35),
pðna;bÞ ðxÞ ¼ qn ðc; xÞ
cn kn1
qn1 ðc; xÞ:
Then
ð1 x2 Þqn ðc; xÞ þ ðx cÞð1 x2 ÞDðqn ðc; xÞÞ ¼ ½anþ1 ðx bn Þ þ bnþ1 kn an qn ðc; xÞ c ðanþ1 ðx bn Þ þ bnþ1 kn an Þ n þ anþ1 cn þ kn bn qn1 kn1 ðc; xÞðanþ1 cn þ kn bn Þ
cn1 kn2
qn2 ðc; xÞ:
From (22) for monic kernels,
ð1 x2 Þqn ðc; xÞ þ ðx cÞð1 x2 ÞDðqn ðc; xÞÞ ¼ ½anþ1 ðx bn Þ þ bnþ1 kn an qn ðc; xÞ c ðanþ1 ðx bn Þ þ bnþ1 kn an Þ n þ anþ1 cn þ kn bn qn1 ðc; xÞ kn1 ~ cn1 x bn1 qn1 ðc; xÞ qn ðc; xÞ : ðanþ1 cn þ kn bn Þ kn2 c~n1 According to (23) and (35), we obtain
c~n1 kn1 ¼ : cn1 kn2 Therefore
7126
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
1 q ðc; xÞ ð1 x2 Þqn ðc; xÞ þ ðx cÞð1 x2 ÞDðqn ðc; xÞÞ ¼ anþ1 ðx bn Þ þ bnþ1 kn an ðanþ1 cn þ kn bn Þ kn1 n " ðanþ1 ðx bn Þ þ bnþ1 kn an Þ
cn
kn1
þ anþ1 cn þ kn bn ðanþ1 cn þ kn bn Þ
~n1 xb kn1
#
qn1 ðc; xÞ: Thus
/ðxÞDðqn ðc; xÞÞ ¼ Aðx; nÞqn ðc; xÞ þ Bðx; nÞqn1 ðc; xÞ; where
/ðxÞ ¼ ðx cÞð1 x2 Þ; Aðx; nÞ ¼ anþ1 ðx bn Þ þ bnþ1 kn an ðanþ1 cn þ kn bn Þ Bðx; nÞ ¼ ðanþ1 ðx bn Þ þ bnþ1 kn an Þ
cn kn1
1 1 þ x2 ; kn1
þ anþ1 cn þ kn bn ðanþ1 cn þ kn bn Þ
~n1 xb : kn1
Simplifying these expressions we have
Aðx; nÞ ¼ An;0 þ An;1 x þ An;2 x2 and
Bðx; nÞ ¼ Bn;0 þ Bn;1 x þ Bn;2 x2 : Notice that the Pearson equation for the linear functional associated with the measure
dl1 ðxÞ ¼ ðx cÞð1 xÞa ð1 þ xÞb dx; becomes
Dð/u1 Þ ¼ wu1 ; with (see (19))
/ðxÞ ¼ ðx cÞrðxÞ ¼ ðx cÞð1 x2 Þ;
wðxÞ ¼ 2rðxÞ þ ðx cÞsðxÞ ¼ 2ð1 x2 Þ þ ðx cÞðb a ða þ b þ 2ÞxÞ;
which means that Q(x, n) is the following quadratic polynomial
cn Qðx; nÞ ¼ Bðx; nÞ þ cn 2Aðx; nÞ þ /0 ðxÞ wðxÞ þ Bðx; n 1Þ c~n1 2 cn Bn1;2 c Bn1;1 þ Bn;1 ½aðc 1Þ þ bðc þ 1Þ þ 2An;1 cn x cn x2 þ n ¼ Bn;2 þ a þ b þ 1 2An;2 þ c~n1 c~n1 þ Bn;0 ½2An;0 þ 1 þ cða bÞcn þ
c2n Bn1;0 : c~n1
Taking into account
wðxÞ 2 aþ1 bþ1 ¼ þ ; /ðxÞ x c 1 x 1 þ x the electrostatic interpretation means that the equilibrium position for the zeros under the presence of an external potential
ln Q ðx; nÞ lnðx cÞ2 ð1 xÞaþ1 ð1 þ xÞbþ1 ; where the first one is a short range potential corresponding to two unit charges located at the zeros of Q(x, n) and the second one is a long range potential associated with a polynomial perturbation of the weight function. References [1] R. Álvarez-Nodarse, F. Marcellán, J. Petronilho, WKB approximation and Krall-type orthogonal polynomials, Acta Appl. Math. 54 (1998) 27–58. [2] C. Bernardi, Y. Maday, Approximations Spectrales de Problèmes aux Limites Elliptiques, Mathematics and Applications, vol. 10, Springer-Verlag, Paris, 1992 (in French). [3] C.F. Bracciali, D.K. Dimitrov, A. Sri Ranga, Chain sequences and symmetric generalized orthogonal polynomials, J. Comput. Appl. Math. 143 (2002) 95– 106. [4] M.I. Bueno, F. Marcellán, Darboux transformations and perturbation of linear functionals, Lin. Alg. Appl. 384 (2004) 215–242. [5] T.S. Chihara, An Introduction to Orthogonal Polynomials. Mathematics and its Applications Series, Gordon and Breach, New York, 1978. [6] D.K. Dimitrov, F. Marcellán, F.R. Rafaeli, Monotonicity of zeros of Laguerre–Sobolev type orthogonal polynomials, J. Math. Anal. Appl. 368 (2010) 80–89. [7] D.K. Dimitrov, M.V. Mello, F.R. Rafaeli, Monotonicity of zeros of Jacobi–Sobolev type orthogonal polynomials, Appl. Numer. Math. 60 (2010) 263–276. [8] D.K. Dimitrov, W. Van Assche, Lamé differential equations and electrostatics, Proc. Amer. Math. Soc. 128 (2000) 3621–3628.
E.J. Huertas et al. / Applied Mathematics and Computation 218 (2012) 7109–7127
7127
[9] J. Dini, P. Maroni, La multiplication d’ une forme linéaire par une forme rationnelle. Application aux polynô mes de Laguerre-Hahn, Ann. Polon. Math. 52 (1990) 175–185. [10] H. Dueñas, F. Marcellán, Laguerre-type orthogonal polynomials. Electrostatic interpretation, Int. J. Pure Appl. Math. 38 (2007) 345–358. [11] H. Dueñas, F. Marcellán, Jacobi-type orthogonal polynomials: holonomic equation and electrostatic interpretation, Commun. Anal. Theory Cont. Frac. 15 (2008) 4–19. [12] W. Gautschi, Orthogonal polynomials: computation and approximation, in: Numerical Mathematics and Scientific Computation Series, Oxford University Press, New York, 2004. [13] F.A. Grünbaum, Variations on a theme of Heine and Stieltjes: an electrostatic interpretation of the zeros of certain polynomials, J. Comput. Appl. Math. 99 (1998) 189–194. [14] F.A. Grünbaum, Electrostatic interpretation for the zeros of certain polynomials and the Darboux process, J. Comput. Appl. Math. 133 (2001) 397–412. [15] F.A. Grünbaum, L. Haine, E. Horozov, On the Krall–Hermite and Krall–Bessel polynomials, Int. Math. Res. Notices 19 (1997) 956–966. [16] J.J. Guadalupe, M. Pérez, F.J. Ruiz, J.L. Varona, Asymptotic behaviour of ortoghonal polynomials relative to measures with mass points, Mathematika 40 (1993) 331–344. [17] M.E.H. Ismail, An electrostatics model for zeros of general orthogonal polynomials, Pacific J. Math. 193 (2000) 355–369. [18] M.E.H. Ismail, More on electrostatic models for zeros of orthogonal polynomials, Numer. Funct. Anal. Optim. 21 (2000) 191–204. [19] M.E.H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge UK, 2005. [20] J. Koekoek, R. Koekoek, On a differential equation for Koornwinder’s generalized Laguerre polynomials, Proc. Amer. Math. Soc. 112 (1991) 1045–1054. [21] J. Koekoek, R. Koekoek, Differential equations for generalized Jacobi polynomials, J. Comput. Appl. Math. 126 (2000) 1–31. [22] R. Koekoek, Generalizations of classical Laguerre polynomials and some q-analogues, Doctoral Dissertation, Techn. Univ. of Delft, The Netherlands, 1990. [23] T.H. Koornwinder, Orthogonal polynomials with weight function ð1 xÞa ð1 þ xÞb þ Mdðx þ 1Þ þ Ndðx 1Þ, Canad. Math. Bull. 27 (1984) 205–214. [24] A.M. Krall, Orthogonal polynomials satisfying fourth order differential equations, Proc. Roy. Soc. Edinburgh Sec. A 87 (1980/1981) 271–288. [25] H.L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation, Pennsylvania State Coll. Stud. 6 (1940) 24. [26] F. Marcellán, P. Maroni, Sur l’ adjonction d’ une masse de Dirac à une forme réguliére et semi-classique, Annal. Mat. Pura Appl. 162 (1992) 1–22. [27] F. Marcellán, A. Martínez-Finkelshtein, P. Martínez-González, Electrostatic models for zeros of polynomials: Old, new and some open problems, J. Comput. Appl. Math. 207 (2007) 258–272. [28] F. Marcellan, A. Ronveaux, Differential equations for classical type orthogonal polynomials, Canad. Math. Bull. 32 (1989) 404–411. [29] P. Maroni, Une théorie algébrique des polyn ômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in: C. Brezinski et al. (Eds.), Orthogonal Polynomials and Their Applications, Annals. Comput. Appl. Math. 9. Baltzer, Basel., 1991, pp. 95–130. [30] F. Peherstorfer, Linear combination of orthogonal polynomials generating positive quadrature formulas, Math. Comput. 55 (1990) 231–241. [31] F.R. Rafaeli, Zeros de Polinômios Ortogonais na Reta Real, Doctoral Dissertation, State University of Campinas – UNICAMP, 2010 (in Portuguese). [32] J. Shohat, A differential equation for orthogonal polynomials, Duke Math. J. 5 (1939) 401–417. [33] H. Stahl, V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge UK, 1992. [34] T.J. Stieltjes, Sur certain polynômes que verifient une equation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé, Acta Math. 6 (1885) 321–326. [35] T.J. Stieltjes, Sur quelques théorèmes d’algèbre, C.R. Acad. Sci., Paris 100 (1885) 439–440. [36] T.J. Stieltjes, Sur les polynômes de Jacobi, C.R. Acad. Sci., Paris 100 (1885) 620–622. [37] T.J. Stieltjes, Sur les racines de l’équation X n ¼ 0, Acta Math. 9 (1886) 385–400. }, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ., 4th ed., Amer. Math. Soc., vol. 23, Providence, RI, 1975. [38] G. Szego [39] V.B. Uvarov, The connection between systems of polynomials that are orthogonal with respect to different distribution functions, J. Comput. Math. Math. Phys. 9 (1969) 25–36. [40] G.J. Yoon, Darboux transforms and orthogonal polynomials, Bull. Korean Math. Soc. 39 (2002) 359–376. [41] A. Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math. 85 (1997) 67–83.