18 P 32 Thermophoresis of aerosol particles—a kinetic analysis

18 P 32 Thermophoresis of aerosol particles—a kinetic analysis

J Aem,.~ol Sci., Vol 24. Suppl. I. pp. S I 8 3 - S I 8 4 , 1993 Printed in Great Britain 0021 8502/93 $6.00 + 0 . 0 0 Pergamon Press Ltd 18 P 33 ~/~...

113KB Sizes 2 Downloads 153 Views

J Aem,.~ol Sci., Vol 24. Suppl. I. pp. S I 8 3 - S I 8 4 , 1993 Printed in Great Britain

0021 8502/93 $6.00 + 0 . 0 0 Pergamon Press Ltd

18 P 33 ~/~FB~SIS

C~ A~K)SOL PARTIC[~/~ - A KINETIC ANALI"SIS

S. Beresnev

Ural State University, Department of Molecular Physics, Lenin Str. 51, 620083 Ekatherinburg, Russia

KEYkDRDS thermophoresis,

Knudsen

number,

acccmmodation

coefficients,

gas-kinetic

equation, integral-moment method

METHODS A kinetic theory for the thermophoretic force and

velocity

of

a

spherical

aerosol particle is presented. The analysis is carried out on the basis of the linearized BGK and S model (Shakhov, 1968) kinetic equations. The S model ( a third order model kinetic equation) yields 13 correct moments of the velocity distribution function and gives the correct

Prandtl

number

Pr

=

2/3

for

monatomic gas. The integral-moment method of solution for arbitrary values of the Enudsen number is employed.

The

possibility

of

arbitrary

energy

and

tangential momentum acccmr~x~ation of gas molecules on the particle surface is taken

into

account

in

the

boundary

condition.

The

particle-gas

conductivity ratio A is assumed to be arbitrary. NumericaI results

for

heat the

thermophoretic force and velocity for the whole range of Knudsen numbers have been obtained.

RESULTS In the case of complete accommodation the dimensionless thermophoretic force Fth for the whole range

of

/62 numbers

is

determined

by

the

following

analitical expression: Fth = ( ~ + ~

A)/[ 1 + (I + 2.5 A A ~ ) ~ ]

,

(i)

I/2

where

* v " 32[ ~m Fth = Fth / Fth , Fth : - I--5 8kT o

1

The functions ~,,z,a are dependent only on the A~ table I. S183

z

R o %g (v T)~, number

and

A = are

%e/Xg, given

in

SI84

~, BER~,S~[V

1000 800 600 400 200 100 80 60 40 20 I0 8

-1.324(-5) -2.067(-5) -3.673(-5) -8.256(-5) -3.291(-4) -1.307(-3) -2.036(-3) -3.598(-3) -8.004(-3) -3.115(-2) -1.109(-1) -1.836(-1)

1.366(-9) 2.677(-9) 6.379(-9) 2.175(-8) 1.791(-7) 1.502(-6) 2.987(-6) 7.225(-6) 2.439(-5) 1.066(-4) -1.852(-3) -6.174(-3)

-1.004 -1.006 -1.007 -1.011 -1.022 -1.044 -1.055 -1.074 -i. II0 -1.218 -1.415 -1.504

6 4 2 1 0.8 0.6 0.4 0.2 0.I 0.08 0.06 0.04

-0.2626 -0.4780 -1.059 -1.749 -1.952 -2.181 -2.439 -2.717 -2.857 -2.884 -2.910 -2.935

-0.0224 -0.1013 -0.7320 -3.078 -4.501 -7.034 -12.37 -28.89 -~2.20 -78.85 -106.6 -182.1

i.' The • ~, ~2, ~9 dependence on the inverse 102 number R = ~ di)~nsionless ~ h o r e t i e following form: Uth = U t ~ U ~ n =

Fth/F

velocity Uth in the same 8 % U th=

U,

5(8+~)

T

case

(v T)~ ,

-1.635 -1.847 -2.226 -2.533 -2.609 -2.691 -2.781 -2.881 -2.937 -2.949 -2.961 -2.973 I/2

/(210~)

has

the

(2)

O

where FU

is the dimensionless isothermal drag (Beresnev et al., 1990).

In flg 1,2 c ~ a r i s o n of th~oretical(for S model)and experimental data the thermophoretic force and velocity is presented. As may be seen, results for the S model agree satisfactorily with the experiment over range of /62 numbers studied at quite real tangential momentum and energy com~x~tion coefficients values. O. S

"~'"

~

"Ft h

~~%'~""~ •.Z/

$/

Oi ¢

-,

~

0. t

:L.O

~0.0

Mr*udmer,

i o

0.0

0.£ number

/" ~--~-~ / , e~/ /v // //

o

I

o. o ~

" "/ " ~:/" ! I

I i*u~r

o. ~

I I llJlJ

~. o

l

for the all ac-

The thermophoretic forcegFLh: /'2.. ~ . " a - A=I0 , b _/./~ .. theory and ~ i m e ~ t . .//*/" A=I0,1- o~=~_=I.0, 2- ~ =0.8, 3- ~ =0.6 4- Jacobsen ~nd Brock, 1369, NaCI-A~, A~240,5 ~ ek =~ =i.0, 6- ~ =0.8, m-Schadt and C ~ l e , ~ 9 6 t , NaCl-air ~, A~240, o-TC~air, A~8, A- f~-alr, A~440, x - Rosenblatt and LaMer,1948, TCP-air, A~8, • Schmitt, 1959, silicon oil- At, A~II. t.0 Mr,

----~-_-~-'_-~~ The thermophoretic velocity Ut~ for NaCl-particles in air(A~240) :theory and experiment. I- ~ = ~ = I 0,2- ~=0.8, I I IIIIII

~o. o

I

3- a_=0.6,4- Lipmtov and Chex~ova, 1989, • - ~redi et ai.,1979, x - Derjaguin et ~oo. o al., 1966. I IIIII

Bere~ev, S.A. ,V.G.Chavnyak, G.A.Fo~gagin( 1990), J.Fluid Mech. ,Vol. 219,405-421. Llpmtov,G.N. ,E.A.Chernova (1989), J.Aeroaol 8ci., Vol.20, 931"933. Hhakhov,E.M. (1988), Fluid Dyn., Vol. 3, 95,99.