2 . ELEMENTARY HEURISTIC REASONING I N SINGULAR PERTURBATIONS.
2.1.
The e l e m e n t a r y method of c o n s t r u c t i o n . The p u r p o s e of t h i s c h a p t e r i s t o d e s c r i b e , a n a l y z e and i l l u s -
t r a t e by examples t h e h e u r i s t i c r e a s o n i n g which i s i n common u s e i n s i n g u l a r p e r t u r b a t i o n problems and which i n g r e a t many s u c c e s s f u l a p p l i c a t i o n s h a s l e d t o t h e c o n s t r u c t i o n o f asympt o t i c a p p r o x i m a t i o n s of t h e s o l u t i o n s .
We s h a l l a t t e m p t t o f o r m a l i z e t h i s r e a s o n i n g and f o r m u l a t e exp l i c i t l y t h e underlying hypotheses. W e study i n t h i s chapter r e l a t i v i t y s i m p l e cases i n which v a r i o u s c o m p l i c a t i o n s ( t o be a n a l y z e d t h e n e x t c h a p t e r ) do n o t y e t a p p e a r . These e l e m e n t a r y
cases a r e i n e s s e n c e c h a r a c t e r i z e d by two p r o p e r t i e s which s i m plify the analysis:
I . The s t r u c t u r e of t h e a s y m p t o t i c a p p r o x i m a t i o n s v a l i d i n v a r i o u s subdomains of t h e domain of d e f i n i t i o n i s e n t i r e l y d i c t a t e d by t h e s t r u c t u r e o f t h e d i f f e r e n t i a l e q u a t i o n s and t h e boundary c o n d i t i o n s ( i n a s e n s e t o b e s p e c i f i e d s h o r t l y ) . 11. The a s y m p t o t i c a p p r o x i m a t i o n s i n t h e s e subdomains d h e r e
t h e r e g u l a r a p p r o x i m a t i o n i s n o t v a l i d , a r e g i v e n by l o c a l approximations of a r e l a t i v e l y simple s t r u c t u r e .
We s h a l l d e v e l o p h e r e t h e l i n e o f r e a s o n i n g w h i l e c o n s i d e r i n g a c l a s s o f l i n e a r p r o b l e m s ; n o n - l i n e a r problems w i l l be d i s c u s s e d
a t . t h e end o f t h i s c h a p t e r . We c o n s i d e r
where @ = 8(x,&), 5 E
5 ; L 1 i s a second o r d e r l i n e a r d i f f e r e n t i a l
o p e r a t o r and Lo i s f i r s t o r d e r l i n e a r d i f f e r e n t i a l o p e r a t o r .
44.
Elementary heuristic reasoning in singular perturbations
h ( X I a r e c o n t i n u o u s f u n c t i o n s for 5 E n -
r
of
5 we
5. 3 n t h e boundary
impose +(X,E)
=4
on
r
I f L1 and L o a r e p a r t i a l d i f f e r e n t i a l o p e r a t o r s , t h e n L1 i s assumed t o b e e l l i p t i c . The s t r u c t u r e of t h e d i f f e r e n t i a l e q u a t i o n s u g g e s t s a r e g u l a r approximation of t h e s t r u c t u r e
L e t u s assume t h a t t h e r e g u l a r a p p r o x i m a t i o n h a s i n d e e d t h e
s t r u c t u r e g i v e n a b o v e , i . e . t h a t no o t h e r terms o c c u r . Then t h e f o r m a l r e g u l a r a p p r o x i m a t i o n must s a t i s f y Lo$o
= ho(&) = -Ll$n-l
+ h n (-X I , n > 0. Next boundary c o n d i t i o n s f o r Qas must be s p e c i f i e d . S i n c e L o i s a f i r s t o r d e r o p e r a t o r , it i s i n g e n e r a l i m p o s s i b l e t o impose on Qas a l l t h e boundary c o n d i t i o n s t h a t must b e s a t i s f i e d by
@.
T h e r e f o r e a c h o i c e o f boundary c o n d i t i o n s t o b e imposed on gas must be made. T h e r e a r e u s u a l l y no h p r i o r i i n f o r m a t i o n
suggesting
how t h i s c n o i c e m u s t be made, a l t h o u g h i n c e r t a i n p r o b l e m s a p r e l i m i n a r y g l o b a l s t u d y o f t h e problem may p e r m i t a m o t i v a t e d choice
( S e e : Eckhaus
and
De J a g e r
(1966) ).
On
t h e o t h e r h a n d , and f o r t u n a t e l y , a wrong c h o i c e of boundary c o n d i t i o n s
f o r @as o f t e n m a n i f e s t s i t s e l f by t h e f a c t t h a t f u l l c o n s t r u c t i o n of a s y m p t o t i c a p p r o x i m a t i o n of @ a l o n g t h e l i n e s o f h e u r i s t i c reasoning does not succeed.
For t h e c l a s s o f p r o b l e m s c o n s i d e r e d here w e c a n impose
45.
Elementary heuristic reasoning in singvlar prturbations
Where I'
rS
=
r must yet be chosen. (It can occur that
r - rr
rr
= d ) . If
# d , then Oas cannot be an approximation of 0 in
is.
As outlinedin chapter 1, we shall assume that @as fails to be an approximation of @ in a small neighbourhood Ds of Ts. In Ds local approximations of
@
will be studied.
It will appear in the sequel that for large classes of problems it is sufficient for the construction of the asymptotic approximation of
in Ds to study local approximations is special local
variables, to be named the boundary layer variables. The determination of the boundary layer variables is one of the fundamental problems in singular perturbations. Large parts of chapter 3 will be devoted to this problem. In the elementary method that we study in this chapter, we proceed with the following simple reasoning: We remark that the construction of the regular approximation is in fact based on the implicit assumption that €L1@ is much smaller than La@. (If ho introducing
@
=
3
0 then the above statement needs a modification:
+
E@'
it is easily seen that the construction
of the regular approximation with La@, = 0 is in fact based on the implicit assumption that
L1@' is much smaller than Lo@').
In the region in which Qas fails to be an approximation the underlying implicit assumption is no more true. There are then two possibilities: either €L1@ and La@ are of the same order of magnitude or L a @ is smaller than €L1@. In this chapter we shall proceed on the basis of the hypothesis that it is sufficient to study local variables such that cL1@ =La@
are of the same order of magnitude.
However, we emphazise here already that the hypothesis may fail to be true, Problems in which this is the case will be studied in chapter 3 where it will be shown by a more fundamental analysis that the hypothesis is a special simple case of a more general criterium.
46. Elementary heuristic reasoning in singolar perturbations
E x p l i c i t l y now, l e t
rs,
represents
x
-+
6' be a t r a n s f o r m a t i o n s u c h t h a t x i = 0
s o t h a t xi c a n b e u s e d t o measure t h e d i s t a n c e
from i n t e r n a l p o i n t s o f D t o i n same neighbourhood o f
rsq
The t r a n s f o r m a t i o n i s d e f i n e d
rs.
Next i n t r o d u c e a t r a n s f o r m a t i o n t o l o c a l v a r i a b l e s 5'
-+
as f o l l o w s :
I n comparing w i t h e a r l i e r d e f i n i t i o n it i s clear t h a t t h e l o c a l v a r i a b l e i n t r o d u c e d h e r e i s o n e o f t h e most Simple p o s s i b l e t y p e , w i t h o n l y one o f t h e components o f 5' b e i n g " s t r e t c h e d " . The t r a n s f o r m a t i o n i n d u c e s t h e t r a n s f o r m a t i o n L -+
where L;
Lo
-+
and L$ a r e d i f f e r e n t i a l o p e r a t o r s i n t h e v a r i a b l e
s i d e r now any s u f f i c i e n t l y d i f f e r e n t i a b l e f u n c t i c n L;f
L;
and Lgf a r e n o n - t r i v i a l ,
The o r d e r f u n c t i o n 6
II ELifIl
--
1 I L$fll
1
in J
E
5; where 5;
L:
4. Con-
f(s),s u c h
contains
5, =
that 0
,
w i l l b e d e t e r m i n e d by t h e r e q u i r e m e n t
- OS(l)
We r e c a l l t h a t F ( E ) = O J l )
-5 E 6; means F ( E ) = O(1)
F ( E ) # o(1).
The l o c a l v a r i a b l e t h u s d e t e r m i n e d w i l l b e c a l l e d t h e boundary
laver v a r i a b l e . The l o c a l a p p r o x i m a t i o n i n a boundary l a y e r v a r i a b l e w i l l be c a l l e d a boundary l a y e r . (Some a u t h o r s u s e t h e t e r m "boundary l a y e r f u n c t i o n " o r "boundary l a y e r c o r r e c t i o n " , and d e n o t e by "a boundary l a y e r " t h e r e g i o n of
5
i n which t h e r e g u l a r
a p p r o x i m a t i o n i s n o t v a l i d . Although making t h i s d i s t i n c t i o n h a s some m e r i t s , w e s h a l l u s e h e r e f o r s i m p l i c i t y t h e term "boundary layer" i n t h e sense
d e f i n e d a b o v e 1.
c e d u r e d e s c r i b e d above d e t e r m i n e s
W e assume t h a t t h e prouniquely
(modulo and e q u i -
47.
Elementary heuristic reasoning in singular perturbations
v a l e n c e c l a s s ) . Problems i n which t h i s i s n o t t h e case w i l l be d e a l t with i n t h e next chapter. We now s t u d y formal l o c a l a p p r o x i m a t i o n s i n t h e b o u n d a r y l a y e r e introduce a formal expansion of t h e d i f f e r e n t i a l variable. W
o p e r a t o r E L * + L$ as f o l l o w s : 1 L e t f(2) b e a n y ( s u f f i c i e n t l y d i f f e r e n t i a b l e ) f u n c t i o n , f o r which Llf
and L o f a r e n o n - t r i v i a l .
E L1f + L o f =
1 -
%*
p Z
-
n-0
8;
bp,f %
%
where 6 * i s a n o r d e r f u n c t i o n c h o s e n s u c h t h a t 6 8 = O s ( l ) ; furthermore
%A+l
= o(%*) p may b e f i n i t e o r i n f i n i t e , yn a r e n
d i f f e r e n t i a l operators not containing Similarly, l e t the transformation 5 mation h ( 5 , ~ )
-+
E.
+. 5
induce t h e t r a n s f o r -
h*(S,E), a n d assume a n e x p a n s i o n
The d i f f e r e n t i a l e q u a t i o n t h e n t r a n s f o r m s t o
The most s i m p l e case a r i s e s when
%*n
= En
and
b*~S(~)=6~ n
The s t r u c t u r e o f t h e t r a n s f o r m e d d i f f e r e n t i a l e q u a t i o n s u g g e s t s i n t h i s case a l o c a l a p p r o x i m a t i o n o f t h e s t r u c t u r e
48. Elementary heuristic reasoning in singular perturbations
L e t u s assume t h a t t h e l o c a l a p p r o x i m a t i o n i n d e e d h a s t h e s t r u c t u r e g i v e n a b o v e , i . e . t h a t no o t h e r terms o c c u r . The f o r m a l l o c a l a p p r o x i m a t i o n c a n be d e f i n e d a l o n g t h e l i n e s d e s c r i b e d i n s e c t i o n 1 . 4 . E x p l i c i t l y we h a v e :
2090
h8
- Xi90
aP0$1 = h i
etc.
We c a n now impose on ( t h a t i s f o r El
=
0).
@is t h e
boundary
However, s i n c e
condition for
along
rs
ZQis a s e c o n d o r d e r d i f f e -
r e n t i a l o p e r a t o r , @as i s n o t u n i q u e l y d e f i n e d by t h i s boundary condition. I n a f i n a l s t e p we assume t h a t f o r some q a n d m t h e r e g i o n s
@is o v e r l a p
and impose m a t c h i n g con-
d i t i o n s as d e s c r i b e d i n s e c t i o n 1 . 6 .
I f t h i s l e a d s t o unique
and
o f v a l i d i t y of Oas
d e t e r m i n a t i o n o f @ : s , t h e n t h e c o n s t r u c t i o n by h e u r i s t i c r e a s o n i n g h a s s u c c e e d e d . A l t e r n a t i v e l y , o n e c a n s t a r t from a h y p o t h e s i s on t h e s t r u c t u r e o f t h e u n i f o r m a p p r o x i m a t i o n and u s e c o r r e s ponding m a t c h i n g r u l e s ( s e e sec. 1 . 6 ) t o d e t e r m i n e
@&.
I n t h e c o n s t r u c t i o n d e s c r i b e d above one of t h e f u n d a m e n t a l h y p o t h e s e s c o n c e r n e d t h e s t r u c t u r e o f t h e r e g u l a r and l o c a l a p p r o x i m a t i o n s , as s u g g e s t e d by t h e s t r u c t u r e o f t h e e x p a n s i o n s o c c u r r i n g i n t h e d i f f e r e n t i a l e q u a t i o n . For s i m p l i c i t y w e h a v e c o n s i d e r e d t h e case i n which a l l e x p a n s i o n s were i n terms of i n t e g e r powers o f
E.
However, t h i s c a n b e e a s i l y g e n e r a l i z e d .
I n f a c t , l e t t h e boundary c o n d i t i o n be € - d e p e n d e n t and p o s s e s s a n a s y m p t o t i c e x p a n s i o n i n t e r m s of some o r d e r f u n c t i o n s , l e t t h e e x p a n s i o n o f h a n d h’
be i n terms of o t h e r o r d e r f u n c t i o n s a n d
49. Elementary heuristic reasoning in singular perturbations
let
b*
and
3;
n o t n e c e s s a r i l y be powers of E. Then t h e s t r u c -
t u r e of t h e problem s u g g e s t s t h a t sions contain a l l
t h e r e g u l a r and l o c a l expan-
powers and p r o d u c t s o f a l l t h e s e o r d e r
f u n c t i o n s . By h y p o t h e s i s no o t h e r t e r m s o c c u r and w i t h i n t h i s h y p o t h e s i s t h e r e i s no d i f f i c u l t y i n c a r r y i n g o u t t h e c o n s t r u c t i o n i n t h e more g e n e r a l c a s e a l o n g t h e l i n e s d e s c r i b e d above. However, i n v a r i o u s problems t h e h y p o t h e s i s i s n o t v a l i d and t h e l o c a l and r e g u l a r e x p a n s i o n s do c o n t a i n t e r m s of a n o r d e r o f magnitude t h a t i s n o t d i c t a t e d by t h e s t r u c t u r e of t h e d i f f e r e n t i a l e q u a t i o n and t h e boundary c o n d i t i o n s . Such problems
w i l l be s t u d i e d i n c h a p t e r 3 . I n a p p l i c a t i o n s it i s o f t e n a d v a n t a g e o u s t o modify somewhat t h e p r o c e d u r e as o u t l i n e d i n t h i s s e c t i o n i n o r d e r t o s i m p l i f y t h e c a l c u l a t i o n s . One s u c h m o d i f i c a t i o n w i l l be mentioned h e r e ( a n d used i n t h e s e q u e l ) b e c a u s e when a p p l i c a b l e it g r e a t l y s i m p l i f i e s t h e problem o f m a t c h i n g . ( I n f a c t t h e s i m p l i f i c a t i o n c a n be s o c o n s i d e r a b l e t h a t i t may a l l o w t h e s o l u t i o n o f l a r g e c l a s s e s o f problems w i t h o u t e v e r m e n t i o n i n g m a t c h i n g e x p l i c i t l y . T h i s h a s been done i n Eckhaus and d e J a g e r ( 1 9 6 6 ) . ) Suppose t h e f u n c t i o n a p p r o x i m a t i o n of @ i n
ads,
which by h y p o t h e s i s i s t h e r e g u l a r
6 0 c 5 , w i t h 5 - 50
i s d e f i n e d i n t h e whole domain
-
@ = @ -
5.
C o n s i d e r now
@as
W e have
w i t h boundary c o n d i t i o n s
d, i s a function that
m
50. Elementary heuristic reasoning in ringlar perturbations
@as on The r e g u l a r a p p r o x i m a t i o n of t o t h e o r d e r of magnitude
7
ern+',
in
rs
.
50 i s (by h y p o t h e s i s ) z e r o up
T h i s may v e r y much s i m p l i f y t h e
matching r e l a t i o n s €or t h e l o c a l a p p r o x i m a t i o n of
5.
Clearly,
t h e c o n d i t i o n f o r a p p l i c a b i l i t y of t h i s m o d i f i c a t i o n i s t h a t
-@asbe
defined i n
5.
Elementary heuristic reasoning in singlar perturbations
2.2.
51.
Applications t o l i n e a r ordinary d i f f e r e n t i a l equations with constant c o e f f i c i e n t s . 1 be a f u n c t i o n s a t i s f y i n g
x
L e t @ ( x , E ) ,0
€L1@ + L O O
where L1
a
0
n
2 dL + a l h -d; ; +
a0
dx
and t h e boundary c o n d i t i o n s @(O,E)
O(1,E)
a
B
where a and B a r e c o n s t a n t s i n d e p e n d e n t of
E.
I n a f i r s t a p p l i c a t i o n o f t h e method d e s c r i b e d i n t h e p r e c e e d i n g s e c t i o n w e s t u d y t h e case i n which t h e c o e f f i c i e n t s o f t h e d i f f e r e n t i a l o p e r a t o r €L1
+ Lo (i.e. a o ,
al,
a 2 , boy bl) are constants.
( N a t u r a l l y w e must have a
# O , since otherwise t h e equation 2 would be o f f i r s t o r d e r and it would be i n g e n e r a l i m p o s s i b l e t o s a t i s f y t h e two boundary c o n d i t i o n s ) . Although s i n g u l a r p e r t u r b a t i o n problems f o r l i n e a r c r d i n a r y d i f f e r e n t i a l e q u a t i o n s w i t h c o n s t a n t c o e f f i c i e n t s may seem v e r y s i m p l e , t h e i r d e t a i l e d s t u d y i s n e v e r t h e l e s s v e r y r e w a r d i n g and h e l p f u l i n g a i n i n g u n d e r s t a n d i n g o f t h e method and t h e phenomena. The r e a d e r who i s e x p e r i e n c e d i n s i n g u l a r p e r t u r b a t i o n s w i l l no d o u b t f i n d t h a t v a r i o u s d e t a i l s which seem t r i v i a l t o him a r e t r e a t e d i n t h i s section with considerable a t t e n t i o n . This i s done d e l i b e r a t e l l y : t h e p u r p o s e of t h e a n a l y s i s i s n o t t h e e f f i c i e n t construction of t h e approximation, but t h e i n v e s t i g a t i o n o f t h e s t e p s o f h e u r i s t i c r e a s o n i n g and t h e ( s o m e t i m e s i m p l i c i t ) underlying hypotheses.
52.
Elementary heuristic reasoning in singular perturbations
We commence w i t h t h e s t u d y of t h e r e g u l a r a p p r o x i m a t i o n . The s t r u c t u r e of t h e e q u a t i o n s u g g e s t s a f o r m a l r e g u l a r a p p r o x i m a t ion
Lo40 = 0
and
-
Lo+,
Ll$n-l,
n
I
depends on t h e c o e f f i c i e n t s o f L n
Explicit solution
. We
first
c o n s i d e r t h e case b o # 0 and bl # 0
We i n t r o d u c e
bo u = -
bl
and f i n d
- ux
4 0 ( x ) = coe
Suppose now t h a t t h e r e e x i s t s a r e g u l a r a p p r o x i m a t i o n of @ ( x , E ) valid i n
6 0 ,with
-
Do = { x ( O d x
p < 1)
and t h a t t h i s r e g u l a r a p p r o x i m a t i o n c a n be o b t a i n e d as a f o r m a l r e g u l a r a p p r o x i m a t i o n of a s t r u c t u r e d e f i n e d above. Imposing t h e bou'ndary c o n d i t i o l ~w e have -ux
4 0 = a e
F u r t h e r e l a b o r a t i o n shows t h a t 2
-
ala +
-ax xn e
j
n
1
53.
Elementary heuristic reasoning in sinylar perturbations
In general Q a S ( l # , ~8 ), s o t h a t ' i n d e e d p < 1. W e therefore s t u d y now l o c a l a p p r o x i m a t i o n s i n t h e neighbourhood of x = 1. Introduce t h e l o c a l variable c = - 1-x
,
&(El
t h e d i f f e r e n t i a l o p e r a t o r €L1 which w e f i n d EL;
= € -62
Lg = -6
a2
dL d .E2
-1 d bl
t
L O t r a n s f o r m s t o EL;
-1 d € 6 al F~t
+
bo
L e t f ( E) be any f u n c t i o n i n
58
={el0 Q
i f and o n l y i f 6
E.
5 < A < -1,
belonging t o t h e
W e find t h a t
p ( T h i s d e t e r m i n a t i o n i s v a l i d under t h e
c o n d i t i o n s al # 0 , bl # 0 , as a l r e a d y i m p o s e d ) .
We t h u s c h o s e as boundary l a y e r v a r i a b l e c = - 1-x E
The f o r m a l e x p a n s i o n o f t h e o p e r a t o r EL; n
EL;f
with
t
L$f
LZ, f o r
Baa
appropriately r e s t r i c t e d class defined i n 2 . 1 .
o
t
l L I;
n=O
Enxof
t
La r e a d s
54.
Elementary heuristic reasoning in singular perturbations
The s t r u c t u r e of t h e problem s u g g e s t s a f o r m a l l o c a l a p p r o x i -
m a t ion
with
E x p l i c i t s o l u t i o n for Jlo y i e l d s J ~ ~ ( s= )B:
e"
t
ct
where p = -bl
a2 F u r t h e r m o r e , it i s n o t d i f f i c u l t t o e s t a b l i s h t h a t f o r n
where P n ( 5) and S n ( 5) a r e
polynomials
Of
>
1
n-th order, with
c o e f f i c i e n t s depending on t h e c o n s t a n t s B* and C * , P P
p
n-1.
L e t u s now suppose t h a t t h e f o r m a l l o c a l a p p r o x i m a t i o n O * as as d e f i n e d above i n d e e d i s t h e l o c a l a p p r o x i m a t i o n of @ ( x , E ) i n t h e boundary l a y e r v a r i a b l e , v a l i d i n
6;.Imposing
t h e boundary con-
dition we find
BQ
t
CQ = 6
B;
t
Cf, t P n ( 0 )
t Sn(0)
= 0; n 2 1
We t h u s o b t a i n q t 1 r e l a t i o n s f o r t h e 2 ( q t l ) unknown i n t e g r a t i o n ,; c o n s t a n t s B * and C n
mined.
and c o n s e q u e n t l y
@is i s
not yet f u l l y deter-
55.
Elementary heuristic reasoning in singular perturbations
I n a f i n a l s t e p we suppose t h a t t h e r e g i o n s of v a l i d i t y o f t h e r e g u l a r approximation @
and t h e l o c a l a p p r o x i m a t i o n @ * o v e r l a p . as
as
I n t r o d u c e , as i n s e c t i o n 1 . 6 , i n t e r m e d i a t e v a r i a b l e 1-x Si = -
6i
with
E
<
Ai
3 1.
Writing t h e r e g u l a r expansion i n t e r m s o f t h e i n t e r m e d i a t e v a r i a b l e one e a s i l y sees t h a t f i n t h e n o t a t i o n of 1 . 6 )
C o n s i d e r n e x t t h e l o c a l a p p r o x i m a t i o n . The t r a n s f o r m a t i o n 5 induces a t r a n s f o r m a t i o n @ * ( 6 , ~ ) as
+
by i n s p e c t i o n t h a t @ ( i ) as
+
ci
@ ~ ~ ) ( 6 , 0 and ) it i s o b v i o u s
i s unbounded a s E
+
0 , unless
!J
Succes of t h e
c o n s t r u c t i o n . S u p p o s i n g t h e c o n d i t i o n s a t i s f i e d one f i n d s
T h e r e f o r e , by t h e m a t c h i n g r e l a t i o n
*
Co = a e
-U
The f i r s t term of t h e l o c a l a p p r o x i m a t i o n i s now f u l l y d e t e r m i n e d .
W e remark t h a t t h e r e l a t i o n which d e t e r m i n e d t h i s t e r m i s i n f a c t t h e s i m p l e matching c o n d i t i o n l i m JlO(C)
r”
l i m $a(x) X Y
P r o c e e d i n g now t o matching c o n d i t i o n s f o r t h e h i g h e r t e r m s o f t h e
56.
Elementary heuristic reasoning in singular perturbations
a p p r o x i m a t i o n s one must i n v e s t i g a t e r e l a t i o n s of t h e f o l l o w i n g type :
Here, on t h e l e f t hand s i d e , t h e i n f i n i t e power s e r i e s a r r i s e from t h e e x p a n s i o n o f t h e e x p o n e n t i a l f u n c t i o n e-ax o c c u r r i n g i n t h e r e g u l a r a p p r o x i m a t i o n , w h i l e on t h e r i g h t hand s i d e t h e terms O(E N )symbolize any power o f
terms t h a t a r e a s y m p t o t i c a l l y smaller t h a n
which a r i s e f r o m t h e e x p o n e n t i a l f u n c t i o n e
E
115
o c c u r r i n g i n t h e l o c a l a p p r o x i m a t i o n . I n t h e e x p r e s s i o n above t h e meaning o f t h e e x p a n s i o n o p e r a t o r E i S ) i s t h a t t h e terms
Ci
between b r a c k e t s s h o u l d b e a r r a n g e d a c c o r d i n g t o d e s c e n d i n g o r d e r s o f magnitude and t r u n c a t e d a t s + l terms.
It i s obvious t h a t e l a b o r a t i o n of t h e matching r u l e s r e q u i r e s t e d i o u s c a l c u l a t i o n s b e c a u s e of t h e p o l y n o m i a l s i n
ci
t h a t occur
on t h e r i g h t - and l e f t hand s i d e . The r e a d e r may c o n v i n c e h i m s e l f t h a t t h e c a l c u l a t i o n s r e m a i n t e d i o u s when i n s t e a d o f m a t c h i n g by o v e r l a p - h y p o t h e s i s m a t c h i n g r u l e s l i k e Van Dyke's a r e u s e d . However, a c o n s i d e r a b l e s i m p l i f i c a t i o n o f t h e m a t c h i n g problem i s a c h i e v e d when u s i n g a m o d i f i c a t i o n o f t h e method of c o n s t r u c t i o n t h a t h a s been mentioned i n 2 . 1 .
I n t h e p r e s e n t problem
t h e f u n c t i o n @ ( x , E ) , which by h y p o t h e s i s i s t h e r e g u l a r a p p r o x i mation i n domain
6
as
60c
D , i s a f u n c t i o n t h a t i s d e f i n e d i n t h e whole
{xlO
-Q(X,E)
x 4 1). I t i s t h e r e f o r e p o s s i b l e t o s t u d y
=
@(X,E)
-
Qas(X,E)
R e c o n s i d e r i n g t h e p r o b l e m i n t h i s f o r m u l a t i o n , a n d making u s e o f t h e r e l a t i o n s t h a t were u s e d t o d e t e r m i n e a a S ( x , ~ ) , w e h a v e
57. Elementary heuristic reawning in singular perturbations
5 i n 5 ={xlO < x < p
F u r t h e r m o r e , t h e r e g u l a r a p p r o x i m a t i o n of
i s smaller t h a n t h e o r d e r of magnitude S t u d y i n g now t h e l o c a l a p p r o x i m a t i o n of
E
~
< 1)
.
i n t h e boundary l a y e r
v a r i a b l e w e immediately f i n d
WherePn( 5) and
Sn(c) a g a i n are
p o l y n o m i a l s of t h e n - t h o r d e r . F u r t h e r -
more, it i s n o t d i f f i c u l t t o show t h a t
-
sn
o
if
Sn-l
o
Applying t h e boundary c o n d i t i o n w e have
-
BB + E8
-
BL +
8
-
4o(l)
Ff, + Pn(0) +
Sn(0) =
-
$1~(1)
T u r n i n g t o t h e problem o f m a t c h i n g w e o b s e r v e t h a t
p X
Theref o r e
where
so
0.
= 0
58.
Elementary heuristic reasoning in singular perturbations
Hence w e have
-
cg
so t h a t
Fg
t O(l)
= 0
= 0 . T h i s however, i m p l i e s t h a t 3,
-c ;
0 so t h a t w e f i n d
0
which i n terms i m p l i e s
3,
0, etc.
C o n t i n u i n g we o b t a i n
-
Ci = 0 ; n
< s
The v a l u e of s r e m a i n s unknown s i n c e w e d i d n o t make any h y p o t h e s i s c o n c e r n i n g t h e v a l u e of s up t o which t h e o v e r l a p h y p o t h e s i s i s v a l i d . I n t h e p r e s e n t problem t h e c o n s t r u c t i o n c a n be c o n t i n u e d f o r m andq a r b i t r a r y l a r g e , which s u g g e s t t h a t
z:
= 0 for a l l n.
I n f a c t t h e r e a d e r may v e r i f y by comparing t h e r e s u l t s t h u s obt a i n e d w i t h t h e a s y m p t o t i c e x p a n s i o n of t h e e x a c t s o l u t i o n of t h e problem, t h a t t h e p r o c e d u r e i n d e e d l e a d s t o t h e c o r r e c t r e s u l t , E x p l i c i t l y , i n t h e f i r s t approximation w e have:
We p r e s e n t l y re-examine t h e c o n d i t i o n s t h a t have been imposed on t h e c o e f f i c i e n t o f t h e d i f f e r e n t i a l e q u a t i o n and s t u d y t h e e f f e c t of v i o l a t i n g t h e s e c o n d i t i o n s .
W e have found t h a t matching was i m p o s s i b l e u n l e s s
? J = bl -
p >O.
Reviewing t h e h y p o t h e s i s it a p p e a r s t h a t t h e
c h o i c e of t h e boundary c o n d i t i o n t o b e imposed on t h e r e g u l a r a p p r o x i m a t i o n was i n f a c t a n a r b i t r a r y c h o i c e . Suppose i n s t e a d t h a t under t h e p r e s e n t c o n d i t i o n t h e r e g u l a r approximation i s v a l i d i n
59.
Elementary heuristic reasoning in sin@lar perturbations
We a r e t h e n l e d t o s t u d y l o c a l a p p r o x i m a t i o n s i n t h e v i c i n i t y o f x = 0 . R e p e a t i n g t h e a n a l y s i s a n a l o g o u s l y one f i n d s t h a t m a t c h i n g now s u c c e e d s . I n t h e f i r s t a p p r o x i m a t i o n one f i n d s :
Hence t h e s i g n of p d e t e r m i n e s a t which e n d p o i n t
of t h e i n t e r -
v a l t h e boundary l a y e r i s s i t u a t e d . Next w e s t u d y t h e c o n d i t i o n bo # 0; bl # 0 Suppose w e have bo = 0 ; bl # 0
.
We must now r e c o n s i d e r t h e r e g u l a r a p p r o x i m a t i o n and w e f i n d
that
However, w i t h t h i s m o d i f i c a t i o n t h e c o n s t r u c t i o n r e m a i n s e s s e n t i a l y t h e same a s i n t h e p r e c e e d i n g c a s e s . More d r a m a t i c e f f e c t s o c c u r when bo # 0 ; bl = 0
-
I t i s o b v i o u s t h a t i n t h i s case t h e whole c o n s t r u c t i o n must be
r e c o n s i d e r e d s i n c e u l o s e s i t s meaning and P becomes z e r o . We s h a l l now s t u d y t h i s case i n some d e t a i l . Suppose, as b e f o r e , t h a t t h e r e e x i s t s a r e g u l a r a p p r o x i m a t i o n of the structure
60.
Elementary heuristic reasoning in sinylar perturbations
Oas
=
m
x
n =0
EnOJx)
which c a n b e c o n s t r u c t e d as a f o r m a l r e g u l a r a p p r o x i m a t i o n . We see i m m e d i a t e l y t h a t
, OQnQm O n z o ' Hence t h e r e g i o n of v a l i d i t y o f t h e r e g u l a r a p p r o x i m a t i o n cannot c o n t a i n t h e endpoints
B
f 0.
of t h e i n t e r v a l , when a # 0 and
W e t h e r e f o r e assume
C o n s i d e r n e x t l o c a l a p p r o x i m a t i o n s i n t h e neighbourhood o f x = l and i n t r o d u c e f o r t h i s p u r p o s e a l o c a l v a r i a b l e
The d e t e r m i n a t i o n o f 6 i s done as i n t h e p r e c e e d i n g c a s e s . One f i n d s now t h a t
&. T h e r e f o r e w e t a k e
i f and o n l y i f 6
a
The o p e r a t o r EL;
+ L t i n t h i s boundary l a y e r v a r i a b l e r e a d s
EL; t La =
where
L
2 clnZn n=O
Elementary heuristic reasoning in singular perturbations
61.
This suggests a local approximation of the structure 1
and with boundary conditions $6l)(0) = B; J ~ ; ” C O )
If bo/ao >
=
0;
n
1
0 then the solutions of the equations determining
$:I all ) have oscillatory
behaviour. It is easily seen that
in this case all attempts to establish matching with the regular approximation fail. However, and fortunately, the case can be dismissed, because for bo/ao > 0 existence and unicity of solutions of the complete problem are no more assured. We
therefore take
Then in general
where PA’) and PA2) are polynomials of of the n-th order in
4.
The boundary conditions are Pi1)
t Pi2)
= 6
We now assume overlap hypothesis between this local approximation
62.
Elementary heuristic reasoning in singular perturbations
-ghere
JE
= o ( 1 ) . I t i s q u i t e o b v i o u s t h a t t h e matching r e l a -
I
t i o n can o n l y be s a t i s f i e d i f
For t h e f i r s t a p p r o x i m a t i o n t h i s y i e l d s p
p
I
0
The r e a d e r w i l l f i n d no d i f f i c u l t y i n c o n v i n c i n g h i m s e l f t h a t h i g h e r a p p r o x i m a t i o n s of V
1
are a l s o uniquely defined
by t h e s e c o n d i t i o n s . I n t h e f i n a l s t e p t h e l o c a l approximation i n t h e v i c i n i t y of x = 0 must be c o n s t r u c t e d . The a n a l y s i s i s e n t i r e l y a n a l o g o u s t o t h e a n a l y s i s of t h e v i c i n i t y of x
1. I n t h e boundary
layer variable 50
=
X
one f i n d s a l o c a l a p p r o x i m a t i o n
with
+(Oo)
= a e- w ' ~ , etc.
Comparing w i t h t h e e x p a n s i o n o f t h e e x a c t s o l u t i o n o f t h e problem i t c a n be e s t a b l i s h e d t h a t t h e r e s u l t s o b t a i n e d a r e i n d e e d c o r r e c t . I n f a c t one f i n d s
Elementary heuristic reasoning in singular perturbations
63.
We see that the case under consideration is characterized by the appearance of boundary layers at both ends of the interval, in contrast with the preceding
case bl # 0. One more
difference between the two cases should also be mentioned: In physical application it i s customary to speak of the !‘thickness”of a boundary layer, as expressed by the order of magnitude of the order function that determines the transformation to the boundary layer variable. It thus appears that the thickness of boundary layers is bl = 0.
E
when bl
f
0 and JE when
64.
Elementary heuristic reasoning in singlar perturbations
2.3.
Applications t o l i n e a r ordinary d i f f e r e n t i a l equations w i t h non-constant
W e s t u d y now
coefficients.
@ ( x , E ) ,0 4
x G 1, s a t i s f y i n g t h e e q u a t i o n
€L1@ + L o @ = h ( x , E ) n
with boundary c o n d i t i o n s = a(€);
Q(O,E)
Q(1,E)
=
B(E)
A s i n The p r e c e e d i n g s e c t i o n , w e s h a l l i n v e s t i g a t e t h e e f f e c t s o f v a r i o u s c o n d i t i o n s c o n c e r n i n g t h e d a t a of t h e p r o b l e m . We s h a l l f i n d t h a t i n c e r t a i n a s p e c t s t h e a n a l y s i s i s a v e r y g e n e r a l i s a t i o n o f t h e c a s e of c o n s t a n t c o e f f i -
straightforward
c i e n t s . However, e n t i r e l y new phenomena w i l l also a p p e a r . We assume a t t h e o u t s e t t h a t t h e c o e f f i c i e n t s a a , a l , a 2 , b o , b l
areat l e a s t c o n t i n u o u s , which i s a n e c e s s a r y c o n d i t i o n f o r e x i s t e n c e and u n i c i t y of s o l u t i o n s . F o r t h e same r e a s o n w e s h a l l assume a 2 ( x ) #
o
o
in
d x
1 (no s i n g u l a r p o i n t s ) .
F u r t h e r m o r e , f o r s i m p l i c i t y o f t h e a n a l y s i s w e assume e x p a n s i o n s m
h(x,E) =
x
n =0
Enhn(x)
00
a(€) =
c
n =0
Enan
00
B(E)
n =0
E
n
8,
T h i s a s s u m p t i o n i s n o t e s s e n t i a l , as h a s b e e n p o i n t e d o u t i n 2 . 1 . C o n s i d e r f i r s t t h e formal r e g u l a r a p p r o x i m a t i o n
Elementary heuristic reasoning in singular perturbations
65.
Explicit solutions read
where q(x) =
x
bo(t)
I 7 bl t )
dt
I f w e wish t h e f o r m a l r e g u l a r a p p r o x i m a t i o n t o be d e f i n e d i n 0
x
<
1, t h e n w e must have
bl(x) # 0 f o r 0
x G 1
Problems i n which t h e c o e f f i c i e n t b l ( x ) p o s s e s s e s z e r o s i n t h e interval 0
G 1 a r e c a l l e d t u r n i n g - p o i n t problems.
Assuming t h a t we have no t u r n i n g - p o i n t s we must f u r t h e r remark t h a t i n g e n e r a l t h e e x p a n s i o n c a n n o t be c o n t i n u e d i n d e f i n i t l y , i . e . t h e number o f terms m + l may be l i m i t e d by d i f f e r e n t i a b i l i t y
p r o p e r t i e s o f t h e c o e f f i c i e n t s of L O and L1. Only i n t h e case of i n f i n i t l y
d i f f e r e n t i a b l e c o e f f i c i e n t s c a n m be t a k e n a r b i -
t r a r i l y large. Suppose now t h a t t h e r e e x i s t s a r e g u l a r a p p r o x i m a t i o n o f @ ( x , E ) valid in
bo, with -
Do = { x ~ O<
X
d p < 11
and t h a t t h i s r e g u l a r a p p r o x i m a t i o n c a n be o b t a i n e d a s a f o r m a l r e g u l a r a p p r o x i m a t i o n of a s t r u c t u r e d e f i n e d above. Then imposing t h e boundary c o n d i t i o n s w e o b t a i n
66.
Elementary heuristic reasoning in singular perturbations
W e n e x t p r o c e e d as i n t h e second p a r t o f 2 . 2 , duce
-a
that is, we intro-
= @ - @as
and s t u d y t h e problem d e f i n e d by
-
O(O,E)
m
=
z
n=m+1
Ena
-@ ( l , E )
=
m
x
n =0
'ngn
-
m C
n =0
P$Jn(1)
hypothesis t h e r e g u l a r approximation of
By t h e p r e c e d i n g
i s smaller t h a n
*
n'
E
~
5
i n 50
s, o it i s s u f f i c i e n t t o c o n s t r u c t l o c a l
a p p r o x i m a t i o n s i n t h e v i c i n i t y o f x = 1. C o n s i d e r f o r t h i s purpose t h e l o c a l v a r i a b l e
D e t e r m i n i n g 6 as i n t h e p r e c e e d i n g s e c t i o n one a g a i n f i n d s &=
E
Next t h e f o r m a l e x p a n s i o n o f t h e o p e r a t o r EL; + Lz i n t h e bound a r y l a y e r v a r i a b l e must be e s t a b l i s h e d . Suppose f o r s i m p l i c i t y t h a t t h e c o e f f i c i e n t s of t h e d i f f e r e n t i a l e q u a t i o n p o s s e s conv e r g e n t 'Paylor s e r i e s e x p a n s i o n s i n t h e v i c i n i t y of x = 1. We t h e n have
a;')
= ai(l)
b:')
= bi(l)
Consequently, f o r any ( s u f f i c i e n t l y d i f f e r e n t i a b l e ) f u n c t i o n f ( c ) m
with
67.
Elementary heuristic reasoning in singular perturbations
etc. The s t r u c t u r e o f t h e problem s u g g e s t s a f o r m a l l o c a l a p p r o x i mation of t h e s t r u c t u r e
etc. A s i n t h e case o f c o n s t a n t c o e f f i c i e n t s , w e f i n d
with
F u r t h e r m o r e it i s n o t d i f f i c u l t t o e s t a b l i s h t h a t f o r n 2 1 one
Pn
yn
are p o l y n o m i a l s of t h e n - t h o r d e r w i t h c o e f f i c i e n t s d e p e n d i n g on B* c * p < n . I n p a r t i c u l a r P' P'
where
sn-l=
and
sn3 0
0.
Assuming now t h a t
5s:
i s t h e l o c a l a p p r o x i m a t i o n o f 0 v a l i d in
t h e v i c i n i t y o f x = 1 w e impose t h e boundary c o n d i t i o n s
if
68.
Elementary heuristic reasoning in singular perturbations
F i n a l l y , a s s u m i n g t h a t t h e domain o f v a l i d i t y o f
Tas * overlaps
w i t h t h e domain o f v a l i d i t y of t h e r e g u l a r a p p r o x i m a t i o n m a t c h i n g c a n b e a c o m p l i s h e d as i n t h e c a s e of c o n s t a n t c o e f f i c i e n t s . A g a i n we f i n d t h a t m a t c h i n g i s o n l y p o s s i b l e i f P < O
Under t h i s c o n d i t i o n
= 0 and
sn
3
0.
Hence, when no t u r n i n g - p o i n t s o c c u r , t h e r e s u l t s a r e e n t i r e l y a n a l o g o u s t o those o b t a i n e d f o r c o n s t a n t c o e f f i c i e n t s , a n d t h e method o f a n a l y s i s i s a p p l i c a b l e w i t h o u t any e s s e n t i a l m o d i f i c a t i o n ( t h o u g h t h e c a l c u l a t i o n s a r e somwhat more e x t e n s i v e ) . One f i n d s i n d e e d , by r e p e a t i n g t h e a n a l y s i s , t h a t f o r p > 0 t h e boundary l a y e r o c c u r s i n t h e v i c i n i t y of x = 0 , w h i l e i n t h e
case t h a t bl
0 , a s i n t h e case o f c o n s t a n t c o e f f i -
c i e n t s , two b o u n d a r y l a y e r s o f " t h i c k n e s s " JE o c c u r a t x
0
a n d x = 1. Summarizing w e c a n s t a t e t h a t t h e e f f e c t o f n o n - c o n s t a n t c o e f f i c i e n t s may be t w o f o l d :
I.
If t h e c o e f f i c i e n t s a r e n o t i n f i n i t l y d i f f e r e n t i a b l e t h e n
t h e r e g u l a r a n d l o c a l a p p r o x i m a t i o n s c a n n o t be c o n s t r u c t e d up t o a n a r b i t r a r y number o f terms. 11. The e l e m e n t a r y method o f c o n s t r u c t i o n f a i l s i f t u r n i n g
p o i n t s occur'. We r e m a r k t h a t t h e r e s u l t s o f t h i s a n d t h e p r e c e e d i n g s e c t i o n can be extended w i t h o u t any e s s e n t i a l d i f f i c u l t i e s t o h i g h e r o r d e r
Elementary heuristic reasoning in singular perturbations
69.
linear differential equations. A summary of results on the higher order problems, obtained by somewhat different method of construction then the one followed here, can be found in O'Malley (1968).
70. Elementary heuristic reasoning in singular perturbations
2.4.
Remarks on t h e t u r n i n g - p o i n t p r o b l e m .
Research on problems w i t h t u r n i n g p o i n t s h a s a l o n g h i s t o r y i n applied
m a t h e m a t i c s . The o r i g i n seems t o l i e i n quantum mecha-
n i c s w h e r e p h e s o c a l l e d " c l a s s i c a l t u r n i n g p o i n t " i s d e f i n e d as
a p o i n t i n which t h e k i n e t i c e n e r g y o f a p a r t i c l e e q u a l s i t s p o t e n t i a l energy. E x p l i c i t l y , f o r t h e one-dimensional Schroedinger equation d2@
E-
dx
x
2
+ Q(x)@ 0
xg i s a c l a s s i c a l t u r n i n g p o i n t when
Q(xo)
0-
I n t h i s connection turning-point
problems h a v e been s t u d i e d as
i n i t i a l v a l u e p r o b l e m s . P a r t i c u l a r l y i n t e r e s t i n g phenomena o c c u r when
The s o l u t i o n s t h e n h a v e e x p o n e n t i a l b e h a v i o u r a t o n e s i d e o f t h e t u r n i n g p o i n t and a ( r a p i d l y ) o s c i l l a t i n g b e h a v i o u r a t t h e o t h e r s i d e . Study o f t h e s e problems h a s r e s u l t e d i n t h e w e l l known W.K.B.J.-method
and v a r i o u s more s o p h i s t i c a t e d methods
o f c o n s t r u c t i o n , s u c h as t h e o n e d e v e l o p e d by R . E .
Langer ( 1 9 4 9 ) .
I t i s i n t e r e s t i n g t o remark t h a t t u r n i n g - p o i n t problems as defined i n t h e preceding
s e c t i o n (and i n t h i s we have followed
t h e e s t a b l i s h e d c u s t o m , f o r example O'Malley ( 1 9 7 2 ) ) ,
do not
e n t i r e l y c o i n c i d e w i t h t h e " c l a s s i c a l " t u r n i n g p o i n t o f quantumm e c h a n i c s . T h i s c a n be s e e n f r o m t h e f o l l o w i n g example:
71. Elementary heuristic reasoning in singular perturbations
E -
d 2 @ + x -d @ 2 dx
dx
+
c@ = 0
where c i s a c o n s t a n t . A c c o r d i n g t o 2 . 3 w e h a v e a t u r n i n g p o i n t a t x = 0 . However, i n t r o d u c i n g Liouville-transformation 2
- -X
@ = e we o b t a i n E2
4E
-@
2q + / t x 2 dx
-
&(C-t)]
m=
0
T h e r e f o r e w e have no " c l a s s i c a l " t u r n i n g p o i n t s i f c <
"classical" t u r n i n g p o i n t a t x turning points f o r c >
i.
For
0 if c
$ and
two
t,
one
"classical"
s m a l l t h e s e points l i e very
6
c l o s e t o g e t h e r , and a r e g i v e n by xg = T 2G dzqI n what f o l l o w s t u r n i n g - p o i n t s
w i l l be understood t o be defined
i n t h e sense of s e c t i o n 2.3.
L e t u s c o n s i d e r a problem as s t u d i e d i n t h a t s e c t i o n w i t h b l ( x g ) = 0 . The r e g u l a r a p p r o x i m a t i o n c a n n o t be d e f i n e d i n a n interval containing
xg.
However, w e may a t t e m p t a g e n e r a l i z a -
t i o n o f t h e method o f c o n s t r u c t i o n s o as t o accomodate t h i s c a s e . Suppose t h e r e g u l a r a p p r o x i m a t i o n as d e f i n e d i n 2 . 3 e x i s t s i n m o d i f i e d domain
60which
does not c o n t a i n x =
XO.
This s u g g e s t s
t h a t w e s t u d y l o c a l a p p r o x i m a t i o n s i n t h e v i c i n i t y of x = x g as w e l l a s t h e boundary l a y e r a t e n d p o i n t s o f t h e i n t e r v a l . We would e x p e c t t h a t m a t c h i n g c o n d i t i o n s between t h e r e g u l a r approximation and t h e various local approximations w i l l f u l l y determine t h e s o l u t i o n s . I n f a c t t h i s expectation is not
72.
Elementary heuristic reasoning in singular perturbations
always f u l f i l l e d , as can be s e e n from t h e f o l l o w i n g example: Consider @ ( x , E ) , -1 Q x =G 1, s a t i s f y i n g d2@ €2 + px-do = dx dx
0
w i t h boundary c o n d i t i o n s
@(-l,~) = a ; @(1,~) = 6 a , 8 and p a r e c o n s t a n t s . We f i n d t h a t t h e r e g u l a r a p p r o x i m a t i o n , v a l i d by h y p o t h e s i s i n some r e g i o n s 0 < p o G x G p1 < 1 i s @:s = A+
(constant)
S i m i l a r l y i n -1 < pml d x Q - P o < 0
@as =
A-
(constant)
Near x = 1 t h e boundary l a y e r v a r i a b l e i s
and t h e f i r s t t e r m of t h e l o c a l a p p r o x i m a t i o n r e a d s
Near x = -1 t h e boundary l a y e r v a r i a b l e is
and t h e f i r s t t e r m o f t h e l o c a l a p p r o x i m a t i o n r e a d s
F i n a l l y , n e a r x = 0 , t h e boundary l a y e r v a r i a b l e i s 50
X
I n t h e s i m p l e problem under c o n s i d e r a t i o n h e r e w e r e t a i n i n 5 0 t h e f u l l d i f f e r e n t i a l e q u a t i o n . However, w i t h i n t h e c o n c e p t s o f t h e method t h a t we s t u d y , we i n t e r p r e t t h e e q u a t i o n i n
60 as
73.
Elementary heuristic reasoning in singular perturbations
one generating formal local approximations near x
0. We
We attempt now to determine all the unknown constants by
1) Imposing boundary conditions at x=-1 and x=l. 2 )
$A1)
Matching
3 ) Matching
and @:s
@zs
4) Matching
as well as
@as
and and
(0)
,
$o
@asand
.
(0)
$0
In doing so it is essential to distinguish two cases: p > 0 and p < 0.
(0) = B
Bo
-
= .f
-m
a
t2
G ' r dt
Cko) = I(at6) Hence all constants are determined. 1I.p < 0 (the bad case)
The procedure yields
'A
A- = Cil)
I
C6-l' =
Cia)
A
where A is an undetermined constant. Furthermore
= a - A; Bi-')
= B
- A;
Bi0)2 0
We see that o u r method fails to produce a full determination of the (presumed) asymptotic approximations.
74.
Elementary heuristic reasoning in singular perturbations
The f a c t t h a t e l e m e n t a r y h e u r i s t i c r e a s o n i n g may f a i l t o d e t e r mine a s y m p t o t i c a p p r o x i m a t i o n i n boundary v a l u e problems w i t h t u r n i n g p o i n t s h a s b e e n p o i n t e d o u t by A c k e r b e r g and O'Malley ( 1 9 7 0 ) . These a u t h o r s have s t u d i e d , by a d i f f e r e n t method of a n a l y s i s ,
a c l a s s o f s u c h problems and h a v e r e v e a l e d v a r i o u s u n e x p e c t e d f e a t u r e s i n t h e b e h a v i o u r of t h e s o l u t i o n s . From t h e p o i n t of view of our a n a l y s i s w e must r e t a i n t h e conc l u s i o n t h a t a s u b c l a s s of t h e class o f boundary v a l u e problems w i t h t u r n i n g p o i n t s ( e x a m p l i f i e d h e r e by t h e case p < 0 ) marks one o f t h e l i m i t s o f a p p l i c a b i l i t y o f t h e method b a s e d on t h e elementary h e u r i s t i c reasoning as developed i n t h i s c h a p t e r . The i n t e r e s t e d r e a d e r may f i n d some f u r t h e r i n f o r m a t i o n on t h e phenomena d e s c r i b e d above i n Watts ( 1 9 7 1 ) and f u r t h e r m o r e i n Cook and Eckhaus.
75.
Elementary heuristic reasoning in singular perturbations
2.5. Linear e l l i p t i c problems without turning-points. Consider 0 = @ ( x , Y , E ) ,
(x,y)
E
5
C
IR 2 ,
€L1@ + L o @ = h
with
€L1
t
L o i s assumed t o b e e l l i p t i c i n 5 , on t h e boundary
r
of D
t h e value of @ i s p r e s c r i b e d . I n analogy t o t h e problems f o r o r d i n a r y d i f f e r e n t i a l equations w e s h a l l say t h a t t h e problem h a s no t u r n i n g p o i n t s i f t h e c h a r a c t e r i s t i c s of t h e o p e r a t o r
L O do n o t i n t e r s e c t i n
5.
That t h i s indeed i s t h e analoge w i l l
become c l e a r i n c o n s t r u c t i n g t h e a p p r o x i m a t i o n s . Problems o f t h i s t y p e have b e e n s t u d i e d by L e v i n s o n ( 1 9 5 0 ) , V i s i k and L y n s t e r n i k ( 1 9 5 7 ) , and Eckhaus and d e J a g e r ( 1 9 6 6 ) . I n t h i s s e c t i o n we s h a l l a p p l y t o t h e s e problems t h e r e a s o n i n g developed i n t h e
preceding p a r t of t h i s chapter.
W e assume t h a t by a p r e l i m i n a r y t r a n s f o r m a t i o n o f c o o r d i n a t e s t h e problems h a s b e e n b r o u g h t i n t o s u c h a form t h a t
- r(x,y) aY where p i s a c o n s t a n t . I t i s n o t d i f f i c u l t t o see t h a t i n c a s e s Lo = t p
a
without t u r n i n g p o i n t s such a t r a n s f o r m a t i o n can always be achieved. Furthermore, w e t a k e a > 0 , and i n o r d e r t o a s s u r e u n i c i t y of solution r - c f . 0 I n what f o l l o w s , a n d u n t i l t h e c o n t r a r y i s s t a t e d , w e t a k e The case 1.1
0 , t h a t i s t h e c a s e i n which t h e " u n p e r t u r b e d "
f
C
76.
Elementary heuristic reasoning in singular perturbations
o p e r a t o r i s o f z e r o t h o r d e r , w i l l be t r e a t e d s e p a r a t e r y . A s i n t h e preceding
s e c t i o n s , t h e a i m o f o u r a n a l y s i s is t o
i n v e s t i g a t e t h e a p p l i c a b i l i t y and t h e l i m i t a t i o n s of t h e e l e m e n t a r y h e u r i s t i c r e a s o n i n g . We s h a l l c o n s i d e r convex domains
-
D and u s e r e s u l t s of Eckhaus and de J a g e r ( 1 9 6 6 ) . For s i m p l i c i t y we
t d k e t h e f u n c t i o n h = h ( x , y ) t o be i n d e p e n d e n t o f
6,
snd s i m i -
l a r l y iri t h e boundary c o n d i t i o n
O = @ o n r t h e f u n c t i o n $ w i l l be i n d e p e n d e n t of E. The s t r u c t u r e o f t h e d i f f e r e n t i a l e q u a t i o n s u g g e s t s a r e g u l a r a p p r o x i m a t i o n of t h e s t r u c t u r e
m
For t h e formal r e g u l a r approximation w e o b t a i n :
en,
Where
n=O, 1 , . . . m y a r e as y e t undetermined f u n c t i o n s .
Assuming t h a t t h e r e i n d e e d e x i s t s a r e g u l a r a p p r o x i m a t i o n o f t h i s s t r u c t u r e w e must d e c i d e what boundary c o n d i t i o n s s h o u l d be imposed on @as. Before making t h e d e c i s i o n we a n a l y z e t h e boundary
r
of D .
C o n s i d e r any l i n e x = c o n s t a n t t h a t c u t s
r.
(Such l i n e s c u t
r
t w i c e ) . L e t y = y+ and y = y- be t h e p o i n t s of i n t e r s e c t i o n o f x = c o n s t a n t and y
y ..with y
+
w i t h y-
< y+.
+
r
and
d e n o t e by
> y- and by
r0
r-
r+
the collection of a l l points
t h e c o l l e c t i o n of a l l p o i n t s y = y,
w i l l i n d i c a t e t h e c o l l e c t i o n of a l l p o i n t s s u c h
77.
Elementary heuristic reasoning in singular perturbations
that y- = y+. Finally, if
r
contains segments on which x =
constant, then the collection of these segments will be indicated by
rC.
In fig. 2.1 the situation is sketched in which
r
= d (no
characteristic boundaries). Then
r where
ro
=
r + u r- u r a
consists of the two extremal points A and B.
fig. 2.1 In fig. 2.2 an example is sketched of a situation in which
# d
fig. 2.2 With these preliminaries we return to the question of boundary
.
conditions for @ as It is immediately obvious that we have the choice between r + and r- and that in both cases QaS is uniquely defined. A s has been shown in Eckhaus and de Jager (1966), a global
78.
Elementary heuristic reasoning in singular perturbations
s t u d y of t h e p r o p e r t i e s of t h e d i f f e r e n t i a l e q u a t i o n p e r m i t s i n t h e p r e s e n t problem a m o t i v a t e d c h o i c e (which depends on t h e s i g n Of
11).
I n t h e p r e s e n t a n a l y s i s w e a r b i t r a r i l y c h o s e t o impose
t h e boundary c o n d i t i o n s on
r-. r+
It i s c l e a r t h a t i n g e n e r a l Qas f $ on
and
rc.
In t h e
v i c i n i t y of t h e s e b o u n d a r i e s l o c a l a p p r o x i m a t i o n s w i l l have t o be c o n s t r u c t e d , F u r t h e r m o r e , t h e v a l u e of m up t o which t h e f o r m a l r e g u l a r a p p r o x i m a t i o n as d e f i n e d above c a n be c o n s t r u c t e d , depends on t h e d i f f e r e n t i a b i l i t y p r o p e r t i e s of t h e c o e f f i c i e n t s of t h e d i f f e r e n t i a l e q u a t i o n , t h e c u r v e t i o n $ on
r-.
r-
and t h e f u n c -
T h i s c o u l d s u g g e s t t h a t w i t h s u f f i c i e n t l y smooth
d a t a m c a n be t a k e n a r b i t r a r i l y l a r g e . However, a t c l o s e r anal y s i s a fundamental l i m i t a t i o n o f t h e c o n s t r u c t i o n p r o c e d u r e
ra # of r o .
o c c u r s when
at points
d,
and
lines x
constant are tangent t o
r
Imposing t h e boundary c o n d i t i o n w e have
Consider i n f a c t
where $ - ( X I are t h e v a l u e s o f $ on
r_
expressed as f u n c t i o n o f x .
It i s not d i f f i 1 c u l t t o see t h a t i n cases i n which t h e c o n f i g u r a t i o n i s as
w e must e v a l u a t e L
In order t o c a l c u l a t e
sketched i n f i g . 2 . 1 ,
Ll$0
w i l l i n general contain singularities
a t t h e p o i n t s A and B . (See Eckhaus and de J a g e r ( 1 9 6 6 ) or Eckhaus (1972)).
For t h i s r e a s o n w e d e f i n e
-
-
D; = D
where
V(ro) a r e
boundary I'D
- v(ro)
s m a l l neighbourhoods o f
t h o s e p o i n t s of t h e
a t which t h e c h a r a c t e r i s t i c s of t h e o p e r a t o r L1
79.
Elementary heuristic reasoning in sinylar perturbations
(that is lines x = constant) are tangent t o r . The method of analysis as developed in this chapter is only applicable to
-
Dk if m > 0. Since Qas is defined in
-
0 = 0
Ek,
we introduce
- cpas
We have &LIT + LOT =
-€
m+ 1 Ll@m
with boundary conditions
-@
= 0 on
cp
=
-
@
-
ron I'+
cpas
U
rc
If we assume that Qas indeed is the regular approximation of @
of
in ED such that
r+
U
rc,
5
-
ED only consists of small neighbourhoods in 5 0 is zero
than the regular approximation of
up to the order
ern+'.
approximations along
We now proceed to construct the local
r+
and
rc.
2.5.1. The ordinary boundary layer. Consider the situation as sketched in fig. 2.1, with
r+
a smooth curve. We must introduce a transformation to new variables x,y
+
x',y' such that say y'
r + while D i to r + .
0 represents
Y' measures the distance from internal points of
Within these stipulations various choices are possible. F o r example one may take x' = x; y'
y+(x)
-
y
This transformation can be used in 54, however the transformation introduces singularities in
6.
Another possibility is a transformation x,y
+
v,p
as indi-
cated in fig. 2.1, such that v measures the distance along
r+
80.
Elementary heuristic reasoning in singular perturbations
w h i l e p m e a s u r e s t h e d i s t a n c e a l o n g a normal t o
r+.
The d i s -
advantage of t h i s transformation i s , t h a t it only i s defined i n a s t r i p along o f l’+
r+’
s i n c e t h e normals from d i f f e r e n t p o i n t s
may i n t e r s e c t a t some d i s t a n c e from
r+.
Now, no matter what t r a n s f o r m a t i o n one u s e s , i f t h e c o n s t r u c t i o n by h e u r i s t i c
r e a s o n i n g i s c o r r e c t t h e n t h e r e s u l t s must
be e q u i v a l e n t . One s h o u l d t h e r e f o r e u s e t h o s e new v a r i a b l e s t h a t a r e o p t i m a l f o r t h e p u r p o s e of t h e a n a l y s i s . The v a r i a bles x’, y’ lead t o simpliest calculations i n
5’. r
However,
f o r t h e f u r t h e r developement o f t h e t h e o r y ( c h a p t e r 3 ) t h e v a r i a b l e s V‘,p a r e b e t t e r a d a p t e d
i n s p i t e of c e r t a i n a r t i -
f i c i a l d i f f i c u l t i e s which t h e y i n t r o d u c e . We t h e r e f o r e u s e h e r e x,y
+
w,p.
Let u s c o n s i d e r f i r s t a s i m p l e p r o b l e m i n which t h e r e a s o n i n g
w i l l n o t be o b s c u r e d by t h e c o m p l e x i t y o f t h e c a l c u l a t i o n s . Such p r o t o t y p e problem a r i s e s when w e t a k e
€L1 + L o
EA + u- a
aY where A i s t h e L a p l a c e o p e r a t o r . A s boundary w e t a k e :
r
=
I X , Y ~ X ~ + Y = ~11.
The v a r i a b l e s @ , p a r e now s i m p l y a s s o c i a t e d t o p o l a r c o o r d i n a t e s and a r e e x p l i c i t l y g i v e n by
x = ( 1 - p ) cos w ; y =
(1-p)
s i n b.
The t r a n s f o r m a t i o n x , y e p , V i s d e f i n e d e v e r y w h e r e , e x c e p t a t p = 1 . Furthermore
r+
= cp,e1
P=
o, o
< zp<
We i n t r o d u c e t h e l o c a l v a r i a b l e
TI
Elementary heuristic reasoning in singular perturbations
81.
6.- P
6(E)
and w e f i n d :
I t i s o b v i o u s t h a t f o r any f u n c t i o n f ( c , W )
L f f are n o n - t r i v i a l , I E L i f II
w e have
= o
-rmir
i f and o n l y i f 6
EJ
f o r which L i f and
p
E.
We t h e r e f o r e t a k e
6 = Q E
Expanding EL;
t
L$ w e obtain
EL;
t
Lf
E
where
00
L:
n.0
'
Enz
etc. T h i s s u g g e s t s a l o c a l a p p r o x i m a t i o n i n t h e boundary l a y e r v a r i a b l e
The formal l o c a l a p p r o x i m a t i o n must s a t i s f y XOdJO
0
= -del$n-l
-
....
-%h-l$~ ; q < m t 2
82.
Elementary heuristic reasoning in singular perturbations
It i s c l e a r t h a t a l t h o u g h J1,
= + n ( c , 2 c ) a r e f u n c t i o n s o f two
v a r i a b l e s , t h e y a r e d e f i n e d as s o l u t i o n s o f o r d i n a r y d i f f e r e n -
t i a l e q u a t i o n s i n which Z* a p p e a r s as a p a r a m e t e r . For t h i s r e a s o n t h e l o c a l a p p r o x i m a t i o n i n t h e boundary l a y e r v a r i a b l e a l o n g I'+ i s c a l l e d a n o r d i n a r y boundary l a y e r . E x p l i c i t l y w e have as s o l u t i o n s J ~ ~ ( s , z "=) B ~ W ) e p
sinst +
CQW)
F u r t h e r m o r e , it i s n o t d i f f i c u l t t o e s t a b l i s h t h a t f o r 1
an( S , F )
''5 + c*(z') n
n 4 q
+ Pn ( 5 , ~ ) e' + S~(~,ZP) where Pn andSn a r e p o l y n o m i a l s of t h e n - t h order i n t h e v a r i a b l e 6,
= BA(ZY) e p ' i n
w i t h c o e f f i c i e n t s d e p e n d i n g on B * C*, p < n . I n p a r t i c u l a r P' P sn 5 0 o f sn-l = 0 .
I n o r d e r t o d e t e r m i n e a l l t h e unknown f u n c t i o n s of tC m a t c h i n g c o n d i t i o n s must b e imposed. We r e c a l l t h a t t h e r e g u l a r a p p r o x i m a t i o n f o r 3 i s z e r o up t o o r d e r
ern+'.
A s i n t h e case o f o r d i -
n a r y d i f f e r e n t i a l e q u a t i o n s , one e a s i l y f i n d s t h a t m a t c h i n g i s only possible i f U < O
Under t h i s c o n d i t i o n one f i n d s
C.
0 a n d Sn 2 0 n Hence, t h e f o r m a l l o c a l a p p r o x i m a t i o n i s f u l l y d e t e r m i n e d . I f p > 0 t h e n t h e c o n s t r u c t i o n f a i l s . Again as i n t h e case o f o r d i n a r y d i f f e r e n t i a l e q u a t i o n s , t h e h y p o t h e s i s must b e r e c o n -
83.
Elementary heuristic reasoning in singular perturbations
boundary conditions along I'+ and as constructing boundary layer along I'- one succeeds again in sidered: imposing on @
determining the formal approximations. Turning to more general problems, that is problems for the general operator
EL^
i
L o and arbitrary shape of the boundary
I', one finds that the same reasoning leads to analogous results. The reader may find the detailed computations in Eckhaus and de Jager ( 1 9 6 6 1 , The only complication arises
(also summarized in Eckhaus (1972)). because the boundary layer is
r+.
determined in a strip along
However the difficulty can be
easily, although somewhat artificially, overcome. Let x,y
+
p , 'Vbe a one to one transformation in 0 Q p Q po
where p o is some constant independent of
E.
At p
=$pa
the
values of T i s are asymptotically small. We now introduce a
t
"smothing function" (or "cutoff function" or "mollifier") such that
X(P)
=
1 for 0 G p Q $ p o 0 for
x( p ) E C
m
,
p > po
Using as local approximation
we have a function that is defined in
-
Dr
and that is equal to
@is
in the domain in which T* is not asymptotically small. as Eckhaus and de Jager ( 1 9 6 6 ) contains the proof of the asymptotic validity of the results outlined above. 2.5.2.
The parabolic boundary layer.
We now study cases in which the boundary that coincide with a characteristic
r
contains segments
of the operator LO (that
is lines x = constant). A typical example is
84.
Elementary heuristic reasoning in singular perturbations
Then T c i s t h e u n i o n of x = 0 and x = 1, 0
y
<
1.
The d i f f e r e n c e between t h e cases p > 0 and p < 0 h a s a l r e a d y been shown i n t h e p r e c e e d i n g a n a l y s i s . W e now t a k e 1.1 < 0 , and specifically
)J
= -1. (The c o n s t r u c t i o n for
p > 0 is entirely
a n a l o g o u s ) . Again w e e x p l i c i t l y s t u d y t h e s i m p l e c a s e
We f i r s t a n a l y s e l o c a l a p p r o x i m a t i o n s i n t h e v i c i n i t y of x = 0 .
Introduce t h e l o c a l v a r i a b l e
g = k T By t h i s t r a n s f o r m a t i o n €L1 t L o
+
EL*
1
+ L t and it i s n o t d i f f i -
c u l t t o see t h a t f o r any f u n c t i o n f ( g , Y )
f o r which L;f
and Lbf
ai?e n o n - t r i v i a l we h a v e
I1 EL;fll = i f and o n l y i f 6
zz
OS(l)
JE. We t h e r e f o r e t a k e as boundary l a y e r v a r i a b l e
O b v i o u s l y we have
The s t r u c t u r e o f t h e e q u a t i o n s s u g g e s t s a l o c a l a p p r o x i m a t i o n o f the structure
The f o r m a l l o c a l a p p r o x i m a t i o n o f t h i s s t r u c t u r e must s a t i s f y
a
- - -
a c2
a c0 aY
= 0
85.
Elementary heuristic reasoning in singular perturbations
C l e a r l y w e have p a r a b o l i c d i f f e r e n t i a l e q u a t i o n s and f o r t h i s r e a s o n t h e boundary l a y e r i s c a l l e d a p a r a b o l i c boundary l a y e r . A p a r a b o l i c boundary l a y e r h a s a “ t h i c k n e s s ” JE i n c o n t r a s t t o
t h e o r d i n a r y boundary l a y e r which had a “ t h i c k n e s s ”
E.
Next boundary c o n d i t i o n s f o r cln must be s p e c i f i e d . R e c a l l i n g t h e f o r m u l a t i o n o f t h e problem a t t h e b e g i n n i n g of t h i s s e c t i o n
w e have “O(0,Y)
= 4J - [ 4 0 l , = ,
en(OYy)=
-
[ 4 ~ ~ 1 n~ 2=1~ ;
F u r t h e r m o r e , t h e supposed domain of v a l i d i t y of t h i s l o c a l approxi m a t i o n c o n t a i n s ( f o r y = 0 ) a p a r t of
-@
r-
o n which w e must have
= 0. We t h e r e f o r e impose Lon( C , O )
= 0, n 2
L e t us consider f i r s t
‘“0.
o
Writing
bo(O,y) = g ( y )
w e have e x p l i c i t l y
n > 0 one f i n d s t h a t i n g e n e r a l t h e s o l u t i o n P a s s i n g now t o w n’ becomes s i n g u l a r a t 5 = 0, y
0, t h e s i n g u l a r i t y a r i s e s from
-
s i n g u l a r i t y o f ’2vo ( s e e f o r d e t a i l s Eckhaus and d e J a g e r ( 1 9 6 6 ) ) . aY2 T h e r e f o r e t h e method o f a n a l y s i s as d e v e l o p e d i n t h i s c h a p t e r f a i l s i n t h e immediate v i c i n i t y o f t h e c o r n e r p o i n t 5 = 0 , y = O ; t h e f a i l u r e shows e x p l i c i t l y i n t h e h i g h e r a p p r o x i m a t i o n s LPnyn 2 2 .
86. Elementary heuristic reasoning in singular perturbations
The r e a d e r w i l l have no d i f f i c u l t y i n r e p e a t i n g t h e a n a l y s i s f o r t h e v i c i n i t y of x = 1, where t h e p r o p e r boundary l a y e r variable reads 1-x
6 ’ J E
F u r t h e r m o r e , t h e case o f more g e n e r a l d i f f e r e n t i a l o p e r a t o r
EL^
+ L o i n t r o d u c e s no e s s e n t i a l y new phenomena. The c a l c u l a -
t i o n s c a n be found i n Eckhaus and d e J a g e r (19661, where t h e complete a p p r o x i m a t i o n ,
i n c l u d i n g t h e o r d i n a r y boundary l a y e r
a l o n g y = 1, h a s a l s o been g i v e n and t h e a s y m p t o t i c v a l i d i t y o f t h e f i r s t a p p r o x i m a t i o n h a s been e s t a b l i s h e d .
2.5.3.
The case of z e r o t h o r d e r u n p e r t u r b e d o p e r a t o r .
I n t h e s p e c i a l case p = 0 t h e d i f f e r e n t i a l e q u a t i o n as d e f i n e d i n t h e b e g i n n i n g of t h i s s e c t i o n t a k e s t h e form €LIQ
The o p e r a t o r L
-
rQ= h(x,y)
h a s n o c h a r a c t e r i s t i c s i n t h i s case. Again w e
s t u d y e x p l i c i t l y a s i m p l e p r o t o t y p e problem
EA@ - @
h(x,y)
where A i s t h e L a p l a c e o p e r a t o r . A s boundary we t a k e t h e c i r c l e
r
= { X , y l x 2 t y 2 = 11
A f o r m a l r e g u l a r a p p r o x i m a t i o n of a s t r u c t u r e s u g g e s t e d by t h e
d i f f e r e n t i a l equatlon is
with
87. Elementary heuristic reasoning in singular perturbations
The v a l u e o f m up t o which t h e f o r m a l r e g u l a r a p p r o x i m a t i o n c a n be c o n s t r u c t e d , depends on t h e d i f f e r e n t i a b i l i t y p r o p e r t i e s of h(x,y).
If h E Coo t h e n m c a n be t a k e n a r b i t r a r i l y l a r g e and CP a s
is defined i n
fi
( i n c o n t r a s t w i t h t h e case p #
a).
However, i n g e n e r a l CPas
f $I
r
on
r.
where $I a r e t h e p r e s c r i b e d v a l u e s o f @ on b e a r e g u l a r a p p r o x i m a t i o n of CP i n
only
r
E
T h e r e f o r e CP as c a n
c
such t h a t
E,,.
Introduce again
-
@ = @ - aa s
w e have
with
-
CAT
-
-CP
4 -
0
-E
m+ 1
*+m
m
c cnqn on r
n- 0
By h y p o t h e s i s t h e r e g u l a r a p p r o x i m a t i o n of 5 i n 50 i s z e r o up t h e o r d e r o f magnitude
E
~
.
Next w e s t u d y local a p p r o x i m a t i o n s a l o n g
r.
Introduce x
(1-6E)cos 4 ; y
(1-65) s i n ( -
so t h a t
Lo
-*
L8
-1
For any f u n c t i o n f ( 5 , W )
i f and o n l y i f 6
for which L i f and L i f a r e n o n - t r i v i a l w e have
/'?. Hence w e t a k e
88.
Elementary heuristic reasoning in singular perturbations
6.J-Z Expanding now EL; + L$ w e f i n d m
etc
I
This s u g g e s t s l o c a l approximation of t h e s t r u c t u r e
-zl$n-l
Q0+,
-
.. . - x n ~;o1
n =Z q
E x p l i c i t l y w e have
=
$0(5,&)
BO(C)e-‘+
cO(@)e 5
Furthermore it i s n o t d i f f i c u l t t o e s t a b l i s h t h a t for n 2 1
where Pn and Sn are p o l y n o m i a l s i n depend on Bp, p = 0,
1,
Cp, p
... n-1.
Suppose now t h a t
-Do
5 o f which t h e c o e f f i c i e n t s
n. I n p a r t i c u l a r S
@is h a s
n
=
0 if C
P
= 0 for
a domain of v a l i d i t y t h a t o v e r l a p s w i t h
( i n which t h e r e g u l a r a p p r o x i m a t i o n i s z e r o t o t h e o r d e r Em + l )
Then imposing matching r e l a t i o n s one immediately f i n d s t h a t C n E O
O G n < q
89.
Elementary heuristic reasoning in singular perturbations
Consequently a l s o S n = 0 0 ; 1 G n G q Next we impose t h e boundary c o n d i t i o n s : Bo(ty)
= 4I -
B
+ P to,(?)
n
((4)
[4101r
n
BnW) + P ( 0 , P ) n
= 0 i f n i s odd = - [ $n]
i f n i s even.
C l e a r l y a l l t h e unknown f u n c t i o n s Bn((<) a r e d e t e r m i n e d by t i i e s e relations. Hence w e h a v e f o u n d a n o r d i n a r y b o u d a r y l a y e r a l o n g t h e whole boundary I'. U n l i k e t h e case p # 0 , t h e o r d i n a r y boundary l a y e r now h a s a " t h i c k n e s s "
e.
P a s s i n g t o more g e n e r a l o p e r a t o r s L1 and more g e n e r a l domains o n e e a s i l y f i n d s t h a t t h e c o n s t r u c t i o n proceeds analogously, without a n y e s s e n t i a l c o m p l i c a t i o n s ( e x c e p t for c o m p u t a t i o n a l l a b o u r ) i f a l l t h e d a t a a r e s u f f i c i e n t l y smooth. Hence it a p p e a r s t h a t t h e
case p = 0 d i f f e r s from t h e p r e c e e d i n g cases 11 f0
by t h e b e h a v i o u r
o f t h e s o l u t i o n ( b o u n d a r v l a y e r a l o n g t h e whole b o u n d a r y ) , b u t d o e s n o t i n t r o d u c e any new l i m i t a t i o n s on t h e a p p l i c a b i l i t y of t h e elementary h e u r i s t i c reasoning studied i n t h i s chapter.
90.
Elementary heuristic reasoning in singular perturbations
2 . 6 . On n o n - l i n e a r problems.
I n t h e p r e c e d i n g s e c t i o n s w e have developed and s t u d i e d t h e e l e m e n t a r y method o f a n a l y s i s w h i l e c o n s i d e r i n g l i n e a r problems.
We s h a l l now show t h a t t h e r e a r e no e s s e n t i a l d i f f i c u l t i e s i n a p p l y i n g t h e method t o n o n - l i n e a r problems, a s l o n g as t h e s e problems s a t i s f y t h e h y p o t h e s e s on t h e s t r u c t u r e s o f t h e a p p r o x i m a t i o n s on which t h e method is based. L e t u s , once a g a i n , s k e t c h t h e r e a s o n i n g , t h i s t i m e w i t h o u t s u p p o s i n g t h e problems t o be linear. We c o n s i d e r O ( E , E ) ,
~fE
5
satisfying
E L ~ O+ L O O = 0
where L @ and L o @ c a n be n o n - l i n e a r e x p r e s s i o n s i n @ and i t s
1
d e r i v a t i v e s w i t h r e s p e c t t o t h e components o f
~f.
The s t r u c t u r e of t h e problem s u g g e s t s a r e g u l a r e x p a n s i o n o f the structure
W e assume t h a t t h e r e g u l a r e x p a n s i o n h a s i n d e e d t h i s s t r u c t u r e ,
i . e . t h a t no o t h e r t e r m s o c c u r . Formal r e g u l a r e x p a n s i o n c a n now be d e f i n e d as d e s c r i b e d i n c h a p t e r 1. One f i n d s Lo40 = 0
= Rn
n > O
The d i f f e r e n t i a l e q u a t i o n s f o r @
n
a r e o b t a i n e d by s u b s t i t u t i n g
@asf o r @ i n t h e f u l l d i f f e r e n t i a l e q u a t i o n o f t h e problem, expanding and p u t t i n g t h e c o e f f i c i e n t s o f c p , p = 0,1,.
. ., e q u a l
t o z e r o . I t s h o u l d be n o t e d , t h a t LA, n > 0 , always are l i n e a r
o p e r a t o r s (while R n depends on 4 p’ P < n ) .
91.
Elementary heuristic reasoning in singular perturbations
I n r e g i o n s where @
as i s n o t a n a p p r o x i m a t i o n of @ l o c a l a p p r o x i m a t i o n s i n t h e boundary l a y e r v a r i a b l e s a r e s t u d i e d . I n t h e e l e mentary method t h e boundary l a y e r v a r i a b l e s a r e d e t e r m i n e d from t h e h y p o t h e s e s t h a t i n t h e r e g i o n under c o n s i d e r a t i o n it i s s u f f i c i e n t t o s t u d y l o c a l v a r i a b l e s f o r which E L @ and L o $ a r e 1 o f t h e same o r d e r o f m a g n i t u d e . A t t h i s s t a g e , i n a n o n - l i n e a r problem, a d i f f i c u l t y may a r i s e : l e t 5 t o l o c a l v a r i a b l e s , which i n d u c e s
ZO@ +g$@*. In
+
@(x,E)
4
be a t r a n s f o r m a t i o n
+
@*(&,E),
+x:@*,
a n o n - l i n e a r problem t h e r e l a t i v e o r d e r of magni-
t u d e o f E X ; @ * a n d g e t @ *may depend on t h e o r d e r of magnitude of @ * . The d i f f i c u l t y c a n be overcome i f , by some r e a s o n i n g , i n f o r m a t i o n on t h e o r d e r of magnitude of @ * i n t h e r e g i o n under c o n s i d e r a t i o n c a n be deduced. F o r example: i f t h e r e g i o n of v a l i d i t y of t h e l o c a l a p p r o x i m a t i o n c o n t a i n s p a r t o f t h e boundary on which t h e v a l u e s o f @ a r e p r e s c r i b e d , t h e n t h e o r d e r o f magnitude of @ * f o l l o w s i m m e d i a t e l y . The most s i m p l e case a r i s e s i f @ * = Os(l) and t h e d e t e r m i n a t i o n o f t h e boundary l a y e r v a r i a b l e i s t h e n e x a c t l y
as i n t h e l i n e a r case. I n t h e e l e m e n t a r y problems t h i s d e t e r m i n a t i o n
i s u n i q u e ( s i m p l e boundary l a y e r s t r u c t u r e ) . Given t h e boundary l a y e r v a r i a b l e s , f o r m a l l o c a l a p p r o x i m a t i o n s c a n b e d e f i n e d , as d e s c r i b e d i n c h a p t e r 1. One o f t h e h y p o t h e s e s o f t h e e l e m e n t a r y method i s a g a i n , t h a t t h e l o c a l a p p r o x i m a t i o n c o n t a i n s no o t h e r
terms t h e n t h o s e t h a t a r e d i c t a t e d by t h e s t r u c t u r e of
EL;$*
t
L o @ * and t h e boundary c o n d i t i o n s .
I t may be a d v a n t a g e o u s , as i n t h e l i n e a r case, t o u s e a m o d i f i c a t i o n o f t h e p r o c e d u r e o u t l i n e d above i n o r d e r t o s i m p l i f y t h e problem o f matching. If t h e r e g i o n o f v a l i d i t y of @as i s s u c h t h a t boundary
92.
Elementary heuristic reasoning in sinwlar perturbations
c o n d i t i o n s can be imposed which d e t e r m i n e Qas u n i q u e l y , and i f (Pas
t h u s determined i s d e f i n e d i n
study
5 =
-
Q
(Pas.
5 , t h e n i n s t e a d of
The r e g u l a r a p p r o x i m a t i o n of
t h e o r d e r of magnitude
m+ 1
E
.
5 is
@ w e may
z e r o up t o
We i l l u s t r a t e now t h e p r e c e d i n g d i s c u s s i o n by c o n s i d e r i n g a c l a s s of problems s t u d i e d i n O'Malley (1968). ( O ' M a l l e y ' s o r i g i n a l a n a l y s i s d o e s n o t s t r i c t l y f o l l o w t h e l i n e of r e a s o n i n g o u t l i n e d above, b u t c a n be i n t e r p r e t e d i n terms o f t h i s r e a s o n i n g ) .
n
E -
-
d L @+ f ( x , Q ) d @ t g ( x , @ ) = 0 2 dx dx
w i t h boundary c o n d i t i o n s
We assume a t t h e o u t s e t t h a t t h e problem i s one w i t h o u t t u r n i n g p o i n t s . T h i s means t h a t t h e r e e x i s t s a c o n s t a n t K > 0 , independend o f
E
such t h a t If(x,@)l2 K; 0 Q x G 1
I n t h e above c o n d i t i o n t h e as y e t unknown f u n c t i o n @ o c c u r s . However, p u r s u i n g t h e a n a l y s i s on t h e b a s i s of t h e h y p o t h e s i s t h a t t h e r e a r e no t u r n i n g p o i n t s i t w i l l b e p o s s i b l e t o d e r i v e e x p l i c i t c o n d i t i o n s which a s s u r e i n d e e d t h e n o n - e x i s t e n c e of such p o i n t s .
For s i m p l i c i t y w e assume f u r t h e r m o r e t h a t f and g a r e i n f i n i t e l y d i f f e r e n t i a b l e f u n c t i o n s . F u r t h e r c o n d i t i o n s f o r f and g will b e f o r m u l a t e d as t h e need f o r them arises.
93.
Elementary heuristic reasoning in singular perturbations
The problem s u g g e s t s a r e g u l a r e x p a n s i o n o f t h e s t r u c t u r e @as
=
m
z
n =0
En$n(X)
W e f i n d f o r t h e formal r e g u l a r approximation
etc. Suppose t h a t t h e r e e x i s t s s u c h r e g u l a r a p p r o x i m a t i o n i n 0
p
Q
x
1, and t h a t t h i s a p p r o x i m a t i o n i s g i v e n by t h e
f o r m a l a p p r o x i m a t i o n . One t h e n must assume f and g t o be such t h a t t h e ( n o n - l i n e a r ) problem f o r $ o h a s a s o l u t i o n w i t h $ o ( l , ~ =) 8 . We s h a l l assume t h a t $ o t h u s d e t e r m i n e d i s def i n e d i n 0 Q x Q 1. Because of n o n - e x i s t e n c e o f t u r n i n g p o i n t s
, we
have If ( x ,
$ 0 )
I>K>O
i n t h e domain o f v a l i d i t y o f t h e r e g u l a r a p p r o x i m a t i o n , and t h i s i n t u r n a s s u r e s t h e e x i s t e n c e of $ l . We s h a l l s u p p o s e
t h e n tJ1
pursuing t h e a n a l y s i s , t h a t
<
x
w i l l be d e f i n e d i n 0
on,
n
?
1 and i t c a n be shown by 1, a l s o a r e d e f i n e d i n 0 Q x
<
The r e g u l a r a p p r o x i m a t i o n w i l l i n g e n e r a l f a i l i n t h e neighbourhood o f x = 0 . We t h e r e f o r e p r o c e e d now t o d e t e r m i n e t h e boundary l a y e r variable. Introduce
c = 6(E) -
We have @(X,E)
+
@*(5,E)
1.
94.
Elementary heuristic reasoning in singrlar perturbations
I n t h e e l e m e n t a r y method t h e boundary l a y e r v a r i a b l e i s d e t e r mined by t h e r e q u i r e m e n t t h a t EL*@* and Lz@* be of t h e t h e same 1 o r d e r of magnitude. I n g e n e r a l t h e r e l a t i v e o r d e r of magnitude o f EL;@*
and La$* depends on @ * and t h e b e h a v i o u r o f f . However,
by t h e h y p o t h e s i s o f n o n - e x i s t e n c e of t u r n i n g p o i n t s w e have If
6
I
2 K > 0 , and it f o l l o w s t h a t EL;@* E
.
L$@* i f and o n l y i f
Thus
I n o r d e r t o s i m p l i f y t h e problem of matching of t h e l o c a l a p p r o x i m a t i o n s and t h e r e g u l a r a p p r o x i m a t i o n w e now w r i t e
T h i s m o d i f i c a t i o n o f t h e method c a n be i n t r o d u c e d b e c a u s e Oas d e f i n e d i n 0 G x G 1. L e t now x
+
5 induce
T(x,E)
+
~ * ( E , E ) . The r e a d e r may c o n v i n c e
h i m s e l f ( o r v e r i f y by c o n s u l t i n g O'Malley (196811, t h a t t h e s t r u c t u r e of t h e d i f f e r e n t i a l e q u a t i o n f o r
z*
suggests a l o c a l
approximation of t h e s t r u c t u r e
F u r t h e r m o r e , t h e terms o f t h e form 1 1 d e f i n e d by
proximat i
are
is
95. Elementary heuristic reasoning in singular perturbations
where p n depends on $
We now a n a l y z e
d$o
50
I
- = dS
Hence
0
$0.
f(O,@o(O)
P
,p
n . T h e boundary c o n d i t i o n s a r e :
I n t e g r a t i o n of t h e e q u a t i o n y i e l d s t
t ) d t + Co
i s a monotonic f u n c t i o n . We r e c a l l t h a t t h e r e g u l a r
$0
approximation of
7 i s z e r o up t o t h e o r d e r o f magnitude
E
.
m t1
T h e r e f o r e matching i s o n l y p o s s i b l e i f
co =
0
and i f t h e a l r e a d y imposed c o n d i t i o n of n o n - e x i s t e n c e o f t u r n i n g points reads f ( x , @ ) 2- K > 0
.
Suppose now t h a t t h e f o r m a l a p p r o x i m a t i o n s i n d e e d a r e v a l i d a p p r o x i m a t i o n s . Then it i s n o t d i f f i c u l t t o deduce t h a t t h e above c o n d i t i o n c a n be i n t e r p r e t e d as f ( x , @ o ) 2- K > 0 ,
0
1
and f(0,x)
f o r all
x
a
K > 0
between a and $ o ( 0 ) .
P r o c e e d i n g now t o
an,
n > 0, the
terms o f t h e l o c a l a p p r o x i m a t i o n c a n u n i q u e l y be d e f i n e d by u s i n g t h e matching c o n d i t i o n
l i m $,
5%
= 0.
The d e t a i l s o f t h e a n a l y s i s c a n b e found i n O'Malley (1968), where a l s o t h e proof of t h e a s y m p t o t i c v a l i d i t y of t h e r e s u l t i s g i v e n .
96.
Elementary heuristic reasoning in singular perturbations
I t c a n a l s o b e shown t h a t i f - f ( x , O ) 2 K
0 , t h e n i n s t e a d of
a boundary l a y e r n e a r x = 0 o n e h a s a boundary l a y e r n e a r x = 1. Various o t h e r i n t e r e s t i n g n o n - l i n e a r problems belong t o t h e class i n which t h e h y p o t h e s e s o f t h e e l e m e n t a r y method are s a t i s f i e d .
For f u r t h e r i n f o r m a t i o n t h e r e a d e r s h o u l d c o n s u l t O'Malley ( 1 9 7 2 ) and t h e b i b l i o g r a p h y t h e r e i n c o n t a i n e d . I t thus a p p e a r s t h a t n o n - l i n e a r i t y of a p r o b l e m d o e s n o t n e c e s s a r i l y p r o d u c e any e s s e n t i a l d i f f i c u l t i e s i n t h e a n a l y s i s . On t h e o t h e r hand, (and t h i s w i l l be s e e n i n t h e next c h a p t e r ) i f a n o n - l i n e a r problem d o e s n o t b e l o n g t o t h e c l a s s t h a t c a n b e t r e a t e d by t h e e l e m e n t a r y method o f t h i s c h a p t e r , t h e n t h e r e may a r i s e s e r i o u s d i f f i c u l t i e s of a t y p e t h a t i s not encountered i n l i n e a r problems