35Cl and 37Cl quadrupole resonance in normal and deuterated KH(CCl3COO)2 and NH4(CCl3COO)2

35Cl and 37Cl quadrupole resonance in normal and deuterated KH(CCl3COO)2 and NH4(CCl3COO)2

Volume 25A, number 4 PHYSICS LETTERS 28 August 1967 35C1 AND 37C1 QUADRUPOLE RESONANCE IN NORMAL AND DEUTERATED KH(CC13COO) 2 AND NH4(CC13COO) 2 R...

126KB Sizes 12 Downloads 52 Views

Volume 25A, number 4

PHYSICS LETTERS

28 August 1967

35C1 AND 37C1 QUADRUPOLE RESONANCE IN NORMAL AND DEUTERATED KH(CC13COO) 2 AND NH4(CC13COO) 2 R. BLINC, M. MALI and Z. T R O N T E L J The University of Ljubljana and Nuclear Institute "J.Stefan", Ljubl~ana, Yugoslavia Received 24 July 1967

The existence of only 3 35C1 and 37C1 quadrupole resonance lines, respectively, in undeuterated and deuterated KH(CC13COO)2 and NH4H(CC13COO)2 demonstrates that the proton as well as the deuteron are centrally located in the O-H--O bonds on the quadrupole resonance time scale and that the H-bond potential does not change on deuteration.

In view of the l a r g e isotope effects on d e u t e r ation in h y d r o g e n - b o n d e d f e r r o e l e c t r i c s a s well as b e c a u s e of the biological i m p l i c a t i o n s of Hbonding [1-3], quite an effort has r e c e n t l y been made to e s t a b l i s h whether the s t r e n g t h and s y m m e t r y of the d e u t e r i u m bond d i f f e r s f r o m that of the hydrogen bond in s t r o n g l y H-bonded s u b s t a n ces [4]. To throw additional light on this p r o b l e m we decided to i n v e s t i g a t e the 35C1 and 37C1 p u r e quadrupole r e s o n a n c e s p e c t r a of p o l y c r y s t a l l i n e KH(CC13COO)2 and KD(CC13COO)2 a s well a s of i s o m o r p h o u s NH4H(CC13COO)2 and ND4D(CC13COO)2. T h e s e acid s a l t s a r e known to f o r m d i m e r s containing a v e r y s h o r t ( R o - - o = = 2.47~,) and p o s s i b l y s y m m e t r i c O - H - - O bond [5], and a r e in addition v e r y well suited for q u a drupole i n v e s t i g a t i o n s of H-bonding. If the H or D n u c l e u s is c e n t r a l l y located in the O - H - - O bond, all CC13 groups a r e c r y s t a l l o g r a p h i c a l l y e q u i -

v a l e n t , and one finds only 3 35C1 or 37C1 q u a d r u pole r e s o n a n c e l i n e s , r e s p e c t i v e l y . H, on the other hand, the H - b o n d potential is not s y m m e t r i c and the d i m e r can be d e s c r i b e d as c o n s i s t i n g of CC13COOH and CC13COO- u n i t s , the l i f e t i m e of which i s l o n g e r than 10-8s, one expects to find 6 35C1 or 37C1 r e s o n a n c e s f r e q u e n c i e s , r e s p e c tively, as t h e r e a r e now six n o n - e q u i v a l e n t c h l o r i n e s i t e s in the unit cell on the quadrupole r e s o n a n c e t i m e s c a l e . The v i b r a t i o n a l s p e c t r a as well as i n e l a s t i c n e u t r o n s c a t t e r i n g data in the u n d e u t e r a t e d compounds a r e in favour of the f i r s t p o s s i b i l i t y and W e i s s [6] r e a l l y found only 3 35C1 r e s o n a n c e l i n e s at 77OK. We i n v e s t i g a t e d the 35C1 and to extend the t i m e s c a l e of our m e a s u r e m e n t s a l s o the 37C1 r e s o n a n c e region. In the t e m p e r a t u r e r a n g e f r o m 90° to 63°K only 3 35C1 and 3 37C1 l i n e s w e r e found in KH(CCI3COO) 2 (v315 = 39 745 MHz, v3ii5 : 39 143 IOta --{4)

31~ . ,7oo

393001 ~ 6O

I

~

1.2.3: C|35 , ,.,o-'

i.m.m:c

060

' 79

/ / J J

3

70

60

T ('°K]

90 3090060

~O

~

TC'l]

90

60t TC'l ] 90,

Fig. 1. Temperature dependence (a) and relative change (b) of the 35C1 and 37C1 quadrupole resonance frequencies in NH4H(CC13COO)2 as a function of temperature. 289

Volume 25A, number 4 MHz

PHYSICS LETTERS

v 35 i i i = 39 110 MHz at 77°K) and

NH4H(CC13CO0)2 (v 35 = 39 765 MHz, v 35 = = 39 395 MHz, v ~ i =~39 285 MHz at 77°~) thus c o n f i r m i n g the c~iiclusion that on the t i m e s c a l e of the q u a d r u p o l e r e s o n a n c e m e a s u r e m e n t s the proton o c c u p i e s a" ¢en£ral position in the O - H - - O bond in t h e s e compounds. On the b a s i s of the quadrupole r e s o n a n c e data alone one is not able to say wh et h er this is a t r u l y s y m m e t r i c a l single m i n i m u m type of H-bond o r w h e th e r the a p p e a r ance of only 3 q u a d r u p o l e l in e s is the r e s u l t of r a p i d flipping of the proton between two e q u i v a l e n t e q u i l i b r i u m s i t e s . In combination with i n f o r m a tion f r o m the m e t h o d s [7], h o w e v e r , the e x i s tance of a single m i n i m u m H-bond p o t e n ti a l s e e m s to be m o r e p r o b a b l e . In KD(CC13COO) 2 and in ND4D(CC13COO)2 both the n u m b e r and f r e quency of the 35C1 and 37C1 r e s o n a n c e l i n e s c o i n c i d e with the ones found in the u n d e u t e r a t e d a n a l o g u e s , within the l i m i t s of e x p e r i m e n t a l e r r o r (KD(CC13COO)2 : v 35 = 39 744 MHz, v ~ ~= 39 1 4 5 M H z , v 35 =39111 MHz; III ND4D(CC13COO)2 : v 35 = 39 765 MHz, v ~

=

= 3 9 3 9 8 M H z , v 3 ~ = 3 9 2 8 7 M H z ) . Thus one may say that in t h e s e compounds the d e u t e r o n as well as the proton a r e c e n t r a l l y l o c a t e d in the O - H - - O bonds on the quadrupole r e s o n a n c e t i m e s c a l e , and that the s y m m e t r y of the H-bond p o t e n t i a l does not change on d e u t e r a t i o n . As a b y - p r o d u c t of this i n v e s t i g a t i o n , we have a l s o studied the r e l a t i v e change (w m -co)/¢om of the 35Cl and 37C1 quadrupole r e s o n a n c e f r e q u e n -

28 August 1967

c i e s as a function of t e m p e r a t u r e . If the t e m p e r a t u r e f a c t o r s due to t o r s i o n a l and v i b r a t i o n a l m o tion [8] would be equal for all 3 c h l o r i n e s i t e s and f o r both i s o t o p e s , all e x p e r i m e n t a l points should fit the s a m e (w m -w)/w m v e r s u s T c u r v e . This is not the c a s e (fig. 1). W h e r e a s f o r the two low f r e q u e n c y l i n e s (II and HI) the 35C1 c u r v e s depend m o r e s t r o n g l y on t e m p e r a t u r e than the 37C1 ones, the opposite is t r u e for the high f r e q u e n c y line (I). The usual, s i m p l i f i e d p i c t u r e of the t o r s i o n a l motion as the only f a c t o r which d e t e r m i n e s the t e m p e r a t u r e dependence of the e l e c t r i c field g r a d i e n t s in c r y s t a l s [8] is thus c l e a r l y not a d e quate and o t h er v i b r a t i o n a l m o d e s as well as v i b r o n i c i n t e r a c t i o n s have to be taken into a c count.

References 1. G. Shirane and F. Jona, Ferroe]ectric crystals, (Oxford 1962). 2. G. C. Pimentel, The hydrogen bond (San Francisco and London 1960). 3. D. Had~i, H-bonding, (Pergamon Press, London, 1957). 4. J.A. Ibers, J. Chem. Phys. 36 (1962) 1356. 5. J.C. Speakman et al., J. Chem. Soc. (London) (1949) 3357; (1951) 185; (1954) 180, 787; (1961) 1151,1164; (1963) 4350, 4355. 6. D. Biedenkapp and A.Weiss, Ber. Bunsenges. Phys. Chem. 70 (1966) 788. 7. B. Bline, D. Had~i and A. Novak, Z. Elektrochem., Bet. Bunsenges. Phys. Chem. 64 (1960) 567. 8. H. Bayer, Z. Physik 130 (1951) 227.