ICARUS 42, 380-405 (19801
4°Ar-~gAr Ages of Allende E L M A R K. J E S S B E R G E R , B O G N A D O M I N I K , T H O M A S S T A U D A C H E R , AND G R E G O R Y F. H E R Z O G I Max-Planck-lnstitut ftir Kernphysik, P. O. Box I0 39 80, Heidelberg,. Germany Received February 20, 1979: revised February I. 1980 K - A r a n d / o r 4°Ar-3"qAr plateau ages of Allende s a m p l e s - - w h o l e rock, matrix, chondrules, white inclusions--range from 3.8 AE for matrix to ~5 AE for some white inclusions, but cluster strongly near 4.53 AE. This age marks the dominant K - A r resetting of Allende materials. Age spectra show disturbances due to ~ A r recoil or some other argon redistribution processes. Possible explanations for the apparent presolar ages (>4.6 AE) include: ~>20% loss of~gAr: ;~40% loss of~°K ~3.8 AE ago with no loss of ~"Ar; trapped argon of unique 4°Ar/a6Ar isotopic composition; admixture of "'very old" presolar grains.
One attractive feature of stepwise "~Ar:~gAr dating is that one can often separate the argon c o m p o n e n t s present in different phases on the basis of their activation energies. Lunar basalts, for example, show 4°Ar losses at low t e m p e r a t u r e s and from the magnitude of these losses and the diffusion p a r a m e t e r s o f 4"Ar, it has been possible to estimate the t e m p e r a t u r e history of such basalts (Turner, 19711. The average maximum t e m p e r a t u r e of ejecta and fallback blankets of a terrestrial crater has been inferred in a similar way (Jessberger et al., 1978: Jessberger and Staudacher, 1979). A second virtue is that with sufficient t e m p e r a t u r e resolution, stepwise heating can yield ages for minerals or phases included within a sample, but which are not easily separated for direct study. The first successful study of this kind was the dating of minute, relict, 4.47-AE-old plagioclase minerals in lunar highland breccia 65015 in which most of the plagioclase was - 4 . 0 AE old (Jessberger et al., 1974b). Similar results were obtained for Apollo breccias 67435 (Dominik and Jessberger, 19781 and 73215 (Jessberger et al., 19761 and were later confirmed by spotwise laser extraction (Eichhorn et al., 1978). In view of the evidence for late disturbances of Allende (Gray et al., 19731 and widespread speculation concerning possible extrasolar grains
INTRODUCTION
The Ailende C3V meteorite is a chondrite of unusual significance for it contains a variety of inclusions with extraordinary mineralogy and chemical and isotopic composition. The determination of ages for individual c o m p o n e n t s of this meteorite helps to establish a chronological framework for its formation and to constrain discussions of its origin. Studies to date have concluded that Allende formed about the same time as many other meteorites (Kirsten, 1978), i.e., - 4 . 5 5 AE ago, and that it has been disturbed at least once since then (Fireman et al., 1970; Podosek and Lewis, 1972; G r a y et al., 1973; Wetherill et al.. 1973; Chen and Tilton, 1976: Tatsumoto et al., 19761. As no full report of the ~°Ar-:~'~Ar ages of Allende has yet appeared and as different dating techniques may yield c o m p l e m e n t a r y information, we set out to measure the 4"Ar-:~"Ar ages of a representative suite of samples separated from AIlende. Results for one mineralogically unusual inclusion (Dominik et al., 1978) and for two inclusions with ages >4.5 AE (Jessberger and Dominik, 19791 have appeared elsewhere. k Present address: l~:partment of Chemistry, Rutgers University, New Brunswick, N.J. 08903. 380 0019- 1035/80/060380-26502.00/0 Copyright ~ 1980by Academic Ih-ess.Inc, All nghts of reproduction m any form reserved
4°Ar-39Ar AGES OF ALLENDE in Allende (Clayton et al., 1973; Clayton, 1975; Manuel and Sabu, 1975) it seemed probable that one or both of these capabilities of stepwise 4°Ar-39Ar dating might be turned to good account.
- - T h e black, zoned object is a metal-bearing chondrule significant amounts o f opaque seminated in forsterite and in ene.
381 (sample 8) containing phases disclinopyrox-
Fine-Grained Aggregates
SAMPLE DESCRIPTION The mineral composition and chemistry of the samples were determined using standard techniques: X-ray diffractometry, optical microscopy, SEM, and electron microprobe. The mineralogy of the fine-grained white inclusions was estimated from X-ray and SEM analysis only. All samples are numbered sequentially (cf. Table II). Our " w h o l e - r o c k " sample (sample 2) consisted of a 500-mg fragment chiseled from an 80-g piece of Allende, IBI. The sample was ground to - 5 0 / x m in an agate mortar and a 100-mg aliquot was irradiated without further treatment. In view of Allende's heterogeneity on a centimeter scale, this sample may not be truly representative of the whole rock. Three 3-mm slabs were sawed from IBI using a dry, diamond-impregnated wire. From these three slabs we collected the various samples. The " m a t r i x " sample (sample 1) comprised the residue from the powdered slabs after all visible inclusions and chondrules had been removed. A small but unknown amount of contamination with fragments of chondrules and inclusions undoubtedly remained. Chondrules
- - C h o n d r u l e s with isolated monosomatic olivine crystals (sample 3). These have tiny anorthitic glass inclusions which are similar in composition to those in porphyritic chondrules (McSween, 1977). - - B a r r e d chondrules (samples 4 and 5) are composed of olivine and Ca-Ai-rich glass. Pyroxene is usually absent. - - G r a n u l a r chondrules (samples 6 and 7) consist of forsterite, clinoenstatite, and C a Al-rich glass.
The three large (up to 5 ram) aphanitic white inclusions selected for study show a mineral composition typical of fine-grained aggregates (Wark and Lovering, 1977) previously described by Clarke et al. (1970) as type C. Two of them, samples 9 and 10, are oval; the third sample, II, is fluffy and irregular. X-Ray diffraction patterns of these inclusions show the presence of clinopyroxenes (hedenbergite and probably Tpx), sodalite, and nepheline; weak lines indicate a subordinate amount of forsterite and possibly melilite and spinel. SEM observation shows that the inclusions consist of individual angular or subrounded amoeboid aggregates from 1 to 12/xm. The larger ones, 7-12 p.m, are embedded in a very fine-grained matrix (1-3 Izm). The absence of contact rims between these aggregates is characteristic. They are rather loosely packed and isolated. The voids between the individual grains are up to 2 /xm in size. Some aggregates seem to contain only one mineral (Sodalite, nepheline, or hedenbergite), while others have nep.heline with acicular intergrowth of sodalite. Some amoeboid aggregates of sodalite crystals are found surrounded by nepheline. Wark and Lovering (1977) suggest that such compositions and sequences are identical to those observed in the rims o f both type A and type B coarse-grained inclusions. Coarse-Grained White Inclusions
The largest coarse-grained inclusion ( - 5 mm) was extracted from a slab using a dental drill; smaller inclusions ( - 1 mm) were handpicked under a binocular microscope after gentle grinding o f each slab in an agate mortar. Dust and matrix material adhering to the inclusions were removed as carefully as possible by means of tweezers,
382
JESSBERGER ET AL.
a dental drill, and ultrasonic washing in reagent-grade ethanol. In this manner a collection, sample 12, of five coarsegrained inclusions with a total weight of 108 mg was prepared. A small chip from the largest inclusion was selected for mineralogical and chemical analysis. The presence of clinopyroxene, spinel, melilite, anorthite, and traces of perovskite was established by microscopic examination and by X-ray diffraction m e a s u r e m e n t s . This mineral assemblage and the coarse crystalline structure are typical of type B Ca-rich inclusions (Grossman, 1975). Pyroxene forms highly fractured, prismatic or irregular crystals up to 250 p.m and smaller grains ( - 3 0 /xm) e m b e d d e d in melilite and anorthite: equal-sized melilite and anorthite occur as irregular or lath-shaped crystals. Spinel is present as small ( 5 4 0 / z m ) sub- or euhedral grains poikilitically enclosed in pyroxene or rarely in melilite and anorthite. Pentlandite and (Fe. Ni) were o b s e r v e d as minute isolated grains dispersed throughout the inclusion. In this sample, El Goresy et a/. (1978) detected refractory siderophile metals enclosed in silicates and spinel. The chemical composition (Table 1) of the main phases of our inclusion is consistent with that previously reported by others and summarized by G r o s s m a n (1975). The TABLE I AVERAGED ELECTRON MI(ROPROBI~ ANALYSIS o! MINERALS IN ONI: OF I H E COARSE-GRAINI..D C a - A I - R I ( H INCI.USIONS OF SAMPI.E 12
Aluminous titanopyroxene
Anorthitc
Melilitc
MnO FeO TiO., K~O CaO Si()e
0.01 {).1)3 1l.g8 0.05 23.96 33.16
0.01 ().06 0.03 0.07 2(). 19 43.26
0.03 0. I I 0.02 0.08 40.72 25.20
Na~O AI~O:~
0.03 36.10
0.03 31.09
MgO
0.(X) 22.62 6.67
0.06
1.66
Total
98.67
99.81
98.94
p y r o x e n e is of the AI-Ti-rich and Fe-poor variety typical of type B inclusions. The average TiO., (!1.8%) and AI.,O:~ (22.6%) contents are s o m e w h a t higher than those considered normal for type B, i.e., 6 - 8 and 15.1-21.4%, respectively. Accordingly, the MgO (6.7%) and SiO., (32.2%) contents are relatively lower. In all analyzed points, the FeO content is less than 0.05%. The plagioclase, which has nearly constant chemical composition, is almost pure anorthite. The Na.,O content is always less than 0.5%, and in some grains was not detectable (<0.01%). Melilite is rich in gehlenite and poor in akermanite. An examination of five grains revealed variations in the contents of MgO (0.99-2.52%), SiO,, (23.80-27.29%), and AI.,O.~ (29.24-33.88%). Average melilite is G%7.TAk12.:I. The mole percentage gehlenite in melilite varies from 82.2 to 92.8%. Sample 13 is a 5-mg sample from a small individual white, irregularly shaped inclusion. X-Ray diffraction patterns indicate a mineral composition typical of type B inclusions (Grossman, 1975). Samples 14-16 which were taken from a mineralogically unusual inclusion have been described by Dominik et al. (1978), samples 17 and 18 by Jessberger and Dominik (1979). Samples 19-23 were obtained from the National Museum of Natural History, Washington, D.C., through the courtesy of B. Mason and are described by Mason and Martin (1977). Their identification numbers are given in Table II. FXPERIMENTAL PROCEDURES AND DATA REDUCTION The samples were stacked in quartz ampoules which were then evacuated and irradiated in Mol/Belgium. Each ampoule contained three hornblende monitors (Schaeffer and Schaeffer, 1977) and one CaF2 monitor. After a 30-day cooling period the samples were loaded in the extraction system of the mass spectrometer. Stepwise degassing was peformed in a resistor-heated metal furnace (Staudacher et
4~Ar-:~'~Ar AGES OF ALLENDE al., 1978). This furnace has two separate e v a c u a t e d sections, an inner c h a m b e r for the crucible and sample gas and an outer one for the heating element and t h e r m o c o u ple. This construction facilitates repairs and lowers blanks. The extraction time was ~45 m i n / s t e p ; the furnace was not cooled between t e m p e r a t u r e steps. During extraction the gas underwent continuous, preliminary purification o v e r a hot Ti getter and two S A E S getters. During the last 10 min of each extraction step the Ar was transferred to the final cleanup line by adsorption on activated charcoal kept at -192°C. The s p e c t r o m e t e r background was monitored for 10 min prior to gas inlet. The background signal was always < 1 0 ~0 cm:~ S T P for 4~'Ar and was negligible for the other isotopes. After equilibration o f the gas in the spectrometer, 20 or more spectra were obtained in the m a s s / c h a r g e range 36 to 41 by computer-controlled magnetic field switching. The data were stored on magnetic tape for later detailed analysis. Before and after sample m e a s u r e m e n t s were carried out, a metered amount of atmospheric argon was admitted to the s p e c t r o m e t e r for to the s p e c t r o m e t e r for calibration. In reducing the data, we first eliminated doubtful, e x t r e m e values and then carried out a linear least-squares extrapolation of the measured isotopic ratios and a logarithmic least-squares extrapolation of the 4"Ar signals to gas inlet time. Additional corrections were made by following the list below: (1) mass discrimination (0.4 _+ 0.2)% /amu: (2) mass s p e c t r o m e t e r background: (3) d e c a y of :~gAr (negligible) and :~rAr during and alter the irradiation; (4) interfering nuclear side reactions on Ca, K, and CI (most of the needed factors were determined from the Ar composition of the CaF., and hornblende samples which were included in the ampoules): (5) flux gradient along the ampoules ( < - l ' ~ / c m along the 3-cm length); (6) blank (temperature in °C, 4"Ar in
383
10 -~° cm 3 STP) 1200, 6; 1300, 9; 1450, 18; 1550, 60; below 1450°C, the argon was atmospheric; an uncertainty o f 50% has been assigned to the blank. The data at this stage of reduction are compiled in the Appendix. The presence of chlorine in the samples prevented the correction of 4°Ar for trapped and spallogenic contributions. These corrections are thought to be small and normally would affect the K-derived 4°Ar/:~'~Ar ratios by less than 0.2%. The 4°Ar/'~:JAr ratios are converted to apparent ages using the J-values given for each sample in the Table AI and the 4°K d e c a y p a r a m e t e r s and K isotopic composition as r e c o m m e n d e d in Steiger and JS.ger (1977).
:~"Ar, :~SAr, a n d CI c o n c e n t r a t i o n s
:"~Ar and :~Ar of irradiated Allende comprise four c o m p o n e n t s in addition to possible atmospheric contamination: trapped :~Ar.t and :~Ar.r: spallogenic :~"Ar~ and 3SArc: reactor-produced ~8Ar~.~: and neutron-induced :~"Arc.~ (Smith et al., 1977). The spallogenic contribution can be estimated from (a) the known cosmic-ray exposure age of Allende, 5 my (Bogard et al.. 1971): (b) the :~"Arc production rate from Cressy and Bogard (1976) using K and Ca concentrations measured via :~'Ar and :~TAr, respectively (Table I1), and the Fe concentrations for c o m p a r a b l e samples from the literature (Clarke et al., 1970; G r o s s m a n , 1975: Mason and Martin, 1977): and (c) the conventional ratio :~Arc/:~Arc = 0.65. The Cl-derived c o m p o n e n t s are proportionally largest in the sample (15) with the lowest measured :";Ar/:~Ar ratio (= 0.019) and hence the lowest trapped c o m p o n e n t . After correction for spallogenic contributions we obtain (:3';Ar/a~Ar)c~ = 0.0148: this value is taken as the appropriate ratio for Cl-derived c o m p o n e n t s for the irradiation conditions of that sample. For other samples, adjustments must be made according to the value of J for the irradiations. The remaining c o m p o n e n t s can be resolved with the
384
JESSBERGER
ET AL.
T A B L E 11 Sample number
Weight (mg)
K (ppm)
Ca (%)
CI (ppm)
~OAr_agAr
K - A r age (AE) Age (AE)
Range (e/( a.,Ar ) -2-58
55.7 109.4
200 280
1.3 1.6
220 240
3.80 ± 0.09 4.43 ± 0.09
-4.57 ± 0.03
Chondrules 3 Monosomatic 4 Barred 5 Fine barred 6 Granular 7 Granular 8 Black
20.8 28.2 13.6 97.4 19.2 104.2
305 570 250 825 515 415
0.8 1.2 1.8 1.6 2.0 2.0
210 595 290 610 970 430
4.62 4.63 4.26 4.53 4.51 4.56
± ± + ± ± +
0.07 0.07 0.16 0.06 0.07 0.03
--4.56 ± 0.05 ----
White 9 10 11 12 13 14 15 16 17
88.3 85.9 81.2 108.4 5.0 26.0 5.6 10.7 15.1
840 2450 600 2(X) 670 240 450 480 155
1.4 6.9 6.4 16.0 17.5 2.2 6.2 7.8 11.9
560 1790 1250 620 151) 2810 4770 3430 170
4.52 4.33 4.44 4.82 4.49 4.20 4.40 4.23 5.12
-+ + -+ ± ± ± ± -~ =
0.07 0.08 0.07 0.06 0.03 0.13 0.11 0.10 0.03
-4.47 +- 0.01 4.55 ± 0.03 -4.50 ± 0.(12 4.52 +_ 0.02 4.53 ± 0.02 4.48 z 0.02 4.98 -- 0.06 5.43 -+ 0.04 4.92 _+ 0.03 5.37 ± 0.10 4.68 '- 0.12 5.27 _, 0.18 4.62 _+ 0.10 --
I 2
Matrix Whole rock
inclusions Fine Fine Iquffy Comp. of coarse Co arse Gray core" White core" White rim" Coarse n
18
Coarse n
40.9
70
10.6
50(1
5.08 ~ 0.08
19 20 21 23
Coarse" Co arse" Coarse" Coarse"
9.8 5.0 9.5 6.2
60 60 55 110
21.1 18.7 19.8 18.3
50 180 80 910
4.92 5.54 5.26 4.57
* 0. I 1 _+ 0.09 + 0.10 ± 0.41
-37-97 ---
31-91 0-80 -5-100 7-55 12-67 14-58 3-46 47-96 5-64 65-100 58-99" 64-100" 54-99" --
N o t e . S u m m a r y of the results of U'Ar-a~'Ar studies of whole rock, matrix, chondrules, and white inclusions samples of the Allende meteorite. Errors of K- and Ca c o n c e n t r a t i o n s are - 10'~. Those of the CI Concentrations are e s t i m a t e d to be < 3 0 % except for samp l e s I, 2, 13, 17, 18. 19-21 which may have no CI since (:~SAr/a'Arj,,,,,,,,,r~,,~ -. 0.65. The errors of the total K - A r ages include the weighted m e a n - s q u a r e variation around the average, the n-flux variation along the a m p o u l e s (*-1.4C~1. and the unc e rt a i nt y in ( ' " A r / K ) of the mo nitor (Schaeffer and Schaeffer, 19771. The errors of the plateau ages include the meansquare variation around the plateau value, the n-flux uncertainty (-0.5C~), and the error of the me a s ure d {4°Ar/:'"Ar) ratios of the monitors. " Dominik et al. ( 19781. r, Jessberg er and Dominik ( 19791. ' From high-temperature ('-900°C) correlation in the three-isotope diagram (U'Ar/:~'Arl vs (arAr/:"~Ar) (Fig.
5). a Samples taken from inclusions 4691 (No. 19). 3529,33 (No. 20). 3529,29 (No. 21). and 3529,26 (No. 231 of Mason and Martin ( 19771.
The
equations
conversion
(cm a STP/g) aSArc~
(a6Ar/aSAr)T+c I -
aSAr.,,+c~
(aGAr/aSAr)ct -
(a6Ar/aSAr)T (a~Ar/aSArh,
and
argon
analysis
of
been
C38
=
obtained
n-irradiated
glass (Pyrex,
Code 7740; 750 ppm
Su,
communication)).
dates (aSAr/aSAr)T = 5.35.
factor
has
dix.
private
of the glass The
resulting
are given C!
3SAr(.i/CI from
the
CI-bearing CI (Y.-S. The
in the
argon Appen-
concentrations
of
4°Ar-:~"Ar AGES OF ALLENDE
385
0
0
~-2
-2~ NO.I
-3
No.2
5
...,.- .,,L •
_
_
.
,
No. 4
--
MAIRIX
_,! ,.._----_._J
_ . .
WHOLE R O C K
i
BARRED OLIVINE
MONOSOM. CHONDRULE
.5 1 .5 FRACTION 39Ar N RELEASED
"
-3
4v
.5
0
No.3 _
2
.5
!
0
~-2 NO.5
-3 <
No 7
NO.8
-3
Lt
S
5~ < 4~
4 GRANULAR OLIVINE
GRANULAR OLIVINE
BLACK CHONDRULE
.'5
.5
.5
2 .5
1
2
FRACTION 39Ar ~ RELEASED
FIG. 1. Apparent ages and K/Ca ratios of matrix, whole rock, and chondrule samples from Allende versus the fraction',d :mAr release. Sample numbers refer to Table II.
Allende materials are given in Table !I. Lower limits of CI concentrations may be estimated as in Jessberger et al. (1974a).
almost perfect plateau, sample 5 with a high-temperature plateau, sample 10 with a well-defined intermediate-temperature plateau, and samples 2 and I I with low- to intermediate-temperature plateaus. The other spectra are disturbed and we are unable to interpret them in detail within the framework of the present understanding of the 4°Ar-:mAr technique. For all but three of these samples we have simply calculated K - A t ages from the integrated amounts of 4°Ar and 39Ar. Samples 19, 20, and 21 are
4°Ar-3"°Ar Results
Figures 1-4 show apparent age and K / C a spectra of the present study. Table II summarizes the results and also includes those published previously. From inspection of Figs. i - 4 it is evident that only a few Allende samples reported here show simple age patterns. These are sample 13 with an
0
I
g -2
t
'r No. 9
NO.10
~ No. 11
-3
v
"- .
4
FINE
3 2
GRAINED INCLUSION .5
-
WHITE INCLUSION ' i FINE-GRAINED ~ .5
o
1
"
N:~.12 . .
,
-2
.
3
I
WHITE FLUFFY INCLUSION .5
.
4 v
I COARSE-GRAINED i' INCLUSIONSCG1 1
3 ~ 2 <
.5
FRACTION 39Ar~ RELEASED
F r o . 2. Apparent age and K/Ca patterns of fine-grained inclusion samples (samples 9 - I I) and of a composite sample of several coarse-grained inclusions (sample 12) from A l l e n d e .
386
JESSBERGER ET AL. I ~0 -I
~_~
t
~
~ 1
;
I
I
I
I
I
T
I
I
1
N o . 13
10 .2
300
~: .0_3 I i
z..5
-
?-1_ !.~
AUendeo,/21::w20h',ncluslons te#
~.\ \
43 <
1
"#19
i
200 <
.
coarse - 9ramec
P~ldsion
<
100 0 FRACTION
39Ar*
the exceptions. They have the highest C a / K ratios (Table II) and hence the largest relative correction ( ~ 5 0 % ) for the undesired side reaction r ' C a ( n , a P " A r . These corrections introduce large errors. To obtain ages for these samples we resort to a three-isotope plot of n~Ar/S"Ar or :~rAr/39Ar before the correction for the side reaction (Fig. 5). Above an ~900°C release temperature. the data are well correlated (correlation factors >0.98). The x-intercepts correspond to the :3TAr/:~:~Ar ratio as determined from K-free CaF.,, the y-intercepts to the 4°Ar~"Ar ages as listed in Table II. In comparing the age patterns it is rei
........
i
z~q = ""
lo-' t -
"~ 6.0 <
<
-
~-F"~"
I
i
|
_# ?o
#21L k--
i: .....
#23
~ [: .... •
Ct 19
t_
J
- ~ ~.A- _ ~.; ~ . _ ~
Allende white inclusmns= ~#23
i # 2 O
-..
CaF2
4.0 2b Frachonal
39Ar
Or[ ~ 0
I L 500
i
L
i
I
I
1000
i'r,'i~
k-.l
37Ar/39Ar
F](;. 5. ( 4 ° A r / ' A r ) versus (~:Ar/S"Ar) before correction lbr Ca-derived :'Ar lbr three white Allende inclusions (of. Fig. 4). Filled symbols indicate data points of the -.900°C fractions used lot calculating the correlation lines, for which the correlation coefficients are 0.98 (sample 20) and .0.99 (samples 19 and 21).
markable that there appears to be no relation between the type of pattern and the nature of the samples. For example, olivine chondrules samples 4 and 6 have patterns similar to that of inclusion sample 9, a finegrained white inclusion: high ages in the first 50% of :~!'Ar release and younger ages in the second half. The integrated ages are about 4.5 AE (Table II) and a p p e a r to be meaningful. This observation suggests that closed-system redistribution of 4"Ar or :"'Ar produced the o b s e r v e d "'reversed-to-normal'" age patterns (Jessberger et al., 1977). DISCUSSION
l
5.0
o
•
RELEASED
Ft(;. 3. Age and K / C a spectra of coarse-grained Allende inclusion No. 13.
10"2
~
C.5
Release
FiG. 4. Age and K / C a spectra of four white inclusion samples from Allende. Large error bars result from low K / C a ratios.
By and large the K, Ca, and CI contents of the samples (Table lI) agree with literature values for c o m p a r a b l e samples (Marvin et al., 1970: Wakita and Schmitt, 1970: Clarke et al., 1970: Fireman et al., 1970: Martin and Mason, 1974: Wanke et al., 1974: G r o s s m a n , 1975: N a g a s a w a et al., 1977). The ages cluster strongly as evident from Fig. 6 which includes all ages from the "'Ar-:~"Ar studies of Allende. Ten out of
4°Ar-'~'~Ar AGES OF ALLENDE ,
4.53
100
i
8O
8O
40
3.80 0
3.0
, ~ 7 ,
,
4.0 5.0 /'0At- 3OAr Age [AE]
,
6.0
FiG. 6. 4°Ar-'~gAr age distribution in the Allende meteorite. The distribution curve should be read like a histogram and was obtained by s u m m i n g the error distribution c u r v e s - - a s s u m e d to be given by o"-t • (21r) -''2 e x p ( - x Z / ( 2 o a ) ) - - - o f t h e individual ages to take into account the widely varying uncertainties. The data are taken from Table II: plateau ages are used wher e possible. For samples 17 and 18, both the intermediate- and the high-temperature ages were used.
fourteen samples of white inclusions belong to that cluster. Thus 4.53 AE m a r k s a major resetting event in the K - A r history of Allende's constituents. This age is somewhat younger than the oldest model and isochron ages calculated from R b - S r and Pb data (Gray et al., 1973; T a t s u m o t o et al., 1976; Chen and Tilton, 1976), but is the same as the age of the solar system inferred by Kirsten (1980) from a literature survey to be 4.53 _+ 0.02 AE. The matrix has a K - A r age 0.7 AE less than that o f the main cluster. G r a y et al. (1973) previously inferred a late disturbance from R b - S r systematics. Perhaps some single disturbance 3.8 AE ago managed to reset the K - A r clock in Aliende's matrix without altering those in the rest o f the meteorite. As the relative labilities of K and 4°Ar under the relevant conditions in space are unknown, the 3.8-AE figure might not be definite even if the singleevent model is correct. The young age of the matrix can also be interpreted as reflecting long-term, low-temperature leakage of 4°Ar from fine-grained material (Green et al., 1971) as has also been ob-
387
served for the Murchison C2 chondrite (Dominik and Jessberger, 1979). Our most interesting results are the ages well in excess of 4.5 AE. The ages of samples 17 and 18 have been discussed elsewhere (Jessberger and Dominik, 1979). Here we will discuss five possible explanations for the exceedingly old ages using sample 12 as an example. It is pointed out that ages - 5 . 0 AE imply substantial ( > 2 0 % ) amounts of extra 4°Ar as c o m p a r e d to 4.5-AE ages. Extraneous Argon
The addition of 350 × 10- ~ cm '~ S T P / g of ";°Ar would have raised the K - A r age of sample 12 to 4.8 AE from the expected 4.5 AE. No more than 2 × 10 -" cm :~ S T P / g of this c o m p o n e n t is " l u n a r , " " p l a n e t a r y prim o r d i a l , " or cosmogenic for the ~°Ar/:"~Ar ratios of these three reservoirs of Ar are 0.4 ( H e y m a n n et al., 1975), 1.4 × 10 -3 (Begemann et al., 1976), and 0.3 ( H u n e k e et al., 1972), respectively, and the total o b s e r v e d 3';Ar content of sample 12 is only 4.6 × 10 ~ cm :~ STP/g. A trapped c o m p o n e n t with "~Ar/:~Ar - 7 5 would raise the K - A r age as needed. This putative c o m p o n e n t has n e v e r been observed. Its production in the nebula, p r e s u m a b l y from K decay, would require (1) long times or high-K material, (2) large-scale separation of 4°Ar from K, and (3) most importantly, preferential incorporation of 4°Ar relative to K from the gas phase into the inclusions. Contamination with terrestrial 4°Ar could explain the high age of sample 12. Figure 7 shows an isochron plot of the data which, were atmospheric contamination present, should intercept the y axis at (4°Ar/:~Ar)o = 295.5. Despite the scatter o f the data around the calculated K - A r age line, a fit yields an intercept of 20 _+ 20 which suggests that atmospheric argon is an unlikely source for the extra "'Ar. For samples 17 and 18, a t m o s p h e r i c argon has been dismissed as the source for the very old ages (Jessberger and Dominik, 1979). The present data, however, do not rule
388
JESSBERGER ET AL.
14oo
long irradiation of K and Ca if the grains are much larger than, say, 0.1 /zm.
/4OAr\ k~)
1200
R e c o i l loss o f "~'~Ar
K-Ar age : 4.82 AE ',
,ooo
.... -
/ 600
/
* 770
815o ~60
/.00 200
t'~°°~/e:sg{~° ,~1210 /ell20
17,0,~IIvI070
{39Ar,~ \36Ar)
~1460 O0
I
I
2
I
I
4
1
1
6
1
I
8
I
FI(;. 7. (~"Ar/:l'iAr) v e r s u s (:'"Ar/:l"Ar) for s a m p l e 12, a c o m p o s i t e o f w h i t e i n c l u s i o n s . N u m b e r s give the r e l e a s e t e m p e r a t u r e . A l s o s h o w n is the line t h r o u g h the o r i g i n with a s l o p e c o r r e s p o n d i n g to the K - A r age a r o u n d w h i c h the d a t a p o i n t s s c a t t e r .
out unequivocally atmospheric contaminat i o n - a s is always the case in extraterrestrial samples. Additional work will be needed to determine the extent to which coarse-grained inclusions may adsorb atmospheric argon. Stardust
Clayton (1975, 1977a) has predicted the existence of detectable amounts of "~Ar produced by 4"K d e c a y in " s t a r d u s t , " i.e., in interstellar grains. If 6% of the K, present in sample 12 4.5 AE ago, originated in micrometer-sized stardust an average of 8 AE ago and retained all its daughter 4°Ar, the 4.8-AE age would result (Clayton, 1977b). One objection to this hypothesis is that Ar loss evidently did not o c c u r but might have during accretionary heating (Chou et al., 1976). This objection, however, applies to all noble gas anomalies supposedly brought into the solar system via grains. A second objection is the absence of large amounts of cosmic-ray-produced argon that are expected from the
Neutron irradiation produces :~gAr, the experimental measure of K, via the reaction 3'JK(n, p)'~gAr. 3"~Arhas a recoil range of - 0 . 1 p,m (Turner and Cadogan, 1974) so that some '~'~Ar loss is expected w h e n e v e r the K-bearing phases are fine grained and concentrated close to grain surfaces. Herzog et al. (private communication) have shown that K is indeed c o n c e n t r a t e d in fine-grained veins and rim material in two type B inclusions that were not included in the present work. Some :~gAr recoil loss from the sample therefore seems probable but whether the amount would suffice to raise its age from 4.5 to 4.8 AE is uncertain. About 3 × 10 -~ cm :~S T P / g or - 2 0 % of the :~:~Arwould have had to recoil out of sample 12 to make this change. The largest recoil losses reported to date are only about 6% (Alexander et al., 1977). P o t a s s i u m Loss
R b - S r data (Gray et al., 1973) and the matrix K - A r age indicate an " e v e n t " late in the history of Allende. If Rb was mobilized, then K probably was too. To increase the total K - A r age of sample 12 from 4.5 to 4.8 AE, about 40% of the K would have had to have been lost 3.8 AE ago (or 17% at 1 my ago) assuming no loss o f ~°Ar occurred simultaneously. Other loss sequences can be imagined but all require the preferential removal of K o v e r Ar. Although a combined study of K migration and Ar diffusion has not yet been performed on extraterrestrial material, a larger mobility for K than for ""Ar seems physically improbable. A n o m a l o u s ~"K / K
Our age calculations assume that "~K = 1.167 × 10-' K, i.e., normal, terrestrial isotopic composition (Steiger and Jiiger, 1977). The 4.8-AE age could be explained if the "~K/K ratio were 20% higher than the terrestrial value. A ~°K e n h a n c e m e n t is
4°Ar-'~aAr AGES OF ALLENDE believed to be produced in s u p e r n o v a s ( C a m e r o n and Truran, 1977). H o w e v e r Stegmann and Begemann (1979) have shown that the isotopic composition in one sample of these apparently ancient inclusions (sample 18) is normal; other inclusions not dated by 4°Ar-~gAr technique also have normal K isotopic ratios ( B e g e m a n n and Stegmann, 1976; Birck et al., 1977). We have been informed by G. Lugmair (private communication) that one o f the anomalously old inclusions, sample 20, has an a n o m a l o u s 149Sm/lS°Sm ratio due to a neutron fluence calculated to be 8 × 1016 n / c m 2 and that the 6°C0 activity appears to indicate a recent (-<10 years) irradiation although there exists no record of an artificial irradiation. Pending experimental disproof, h o w e v e r , it can be speculated that the irradiation occurred early in the inclusion's history. Than a fluence o f this size would produce a aaArc~ concentration of 1.7 x l0 -r cm '~ S T P / g assuming a CI content of 175 p p m (Table II), a neutron absorption cross section o f 30 b, and the c o m p l e t e decay o f asCI. An alternative calculation, based on the 36Arc~ production rate of Smith et al. (1977), gives 3.4 × l0 -'q cm a STP/g. The value estimated from experimental data, 5.4 × l0 -~ cm "~ S T P / g agrees with the calculations a b o u t as well as can be e x p e c t e d considering the uncertainties involved. According to G. Lugmair (private communication) sample 20 also has a small but significant ~44Sm deficiency
389
which, h o w e v e r , is independent from a possible recent neutron irradiation.
CONCLUSIONS (1) The K - A t clocks in Allende materials underwent a major resetting on the average 4.53 _+ 0.03 AE ago. (2) The K - A t clock in Allende matrix was probably reset 3.8 AE ago. G r a y et al. (1973) inferred the identical u p p e r bound for a disturbance from their R b - S r results which suggests that the inequality may actually be an equality. Alternatively, the young age reflects the leakiness o f the fine-grained matrix material at low temperatures. (3) The anomalously high apparent ages o f some white inclusions m a y be caused by any o f a n u m b e r o f factors. The two explanations we find hardest to discredit are a t m o s p h e r i c contamination and the presence of ancient interstellar grains.
APPENDIX Argon data o f n-irradiated Allende materials are listed for each extraction fraction as the amount per gram for each isotope in units of 10 -n ( - - E - n) cm "~ S T P / g (see Table AI). The samples are ordered according to their sample n u m b e r (cL Table lI). The stage of reduction is described in the text. Errors are lcr. d = [exp(Mm) !] 39Arm/4°Arm is given for each sample.
390
JESSBERGER
ET AL.
TABLE
AI
SAMPLE rl
II* .0915 36AR E-11
37Ali E-l@
39AR c-11
39AR e-11
40AR E -9
+*
540 10
68 4
176 19
55 1
535 7
3.955 0.034
t-
264 9
69 5
115 12
45 2
lb0 6
2.452 Ln.087
+-
229 10
123 2
105 9
49 1
382 6
3.255 0.052
+-
171 7
149 3
7fi 11
93 2
4@9 6
3.590 0.068
l-
216 15
461 6
233 9
92 2
936 6
3,034 0.041
+-
152 14
4a7 5
260 15
73 3
751 6
4.1636 0.063
t-
199 8
342 5
209 11
64 3
525 6
3.679 0.064
+-
190 11
415 4
179 15
47 2
446 6
3.906 0.055
t-
293 8
664 b
201 8
49 3
432 6
3.929 0.092
t-
485 14
987 5
224 12
57 1
531 7
3.e93 0,040
t-
640 16
1326 9
294 15
61 2
706 9
4,244 0,062
+-
649 19
1267 8
242 17
60 2
554 e
3,969 0.053
t-
913 13
lb69 B
293 19
58 2
442 10
3.571 8.069
+-
1 445 13
2956 13
516 9
59 2
325 14
3.069 0.094
+-
1 35e 13
4797 24
762 14
44 2
234 12
3.034 0.100
+-
1 419 29
9331 55
799 19
51 2
359 12
3.426 0.069
l-
1397 11
7155 27
79b 18
bl 1
595 12
3.950 0.041
t-
601 B
2181 12
277 15
41 2
464 8
4.196 0.092
t-
301 20
Y
171 6
27 2
300 8
4.192 0.129
t-
226 11
701 6
171 10
20 3
263 9
4.455 0.239
+-
282 14
549 6
246 13
64 1
706 19
4.164 0.047
TOTAL +-
11956 63
36i02 12
6324 62
1127 9
9977 42
3.794 0.016
TEMP. tc1 350 391 430 470 510 560 61@ 650 700 760 920 970 9210 990 1038 1096 1140 1190 1254’ 1350 1500
APP.ACE I AE 1
40Ar-3gAr AGES
391
OF ALLENDE
TABLE AIXontinued SALPI&
JR .0Ql5
02
TMP. ICI
36AP E-11
37AR E-10
18AR e-11
350
t-
521 1
83 4
21;
*r
366 4
126 1
*-
283 5
+I
230 9
400 450 496
39AR c-11
125 5
“;‘;;“I” 5,067 0.046
ci7e s
4,396 0,032
731 20
101s 4
4,822 0,045
13;
1162 11
1701 3
4.619 0,015
%
Y
2111 4
4.s90 e.011
32:
1650 !I
2406 I
4,604 0.008
2s;
QSS 8
1104 3
4,409 0.011
36:
‘::
1166 3
4.671 0.028
‘::
45:
100 10 311 3
2U9 18
4e:
229 7
39E
157 5
211:
239 5
40AR e -9
226 5
323
236 13
518 Q
17% 3
4.659 0,020
t-
351 5
614 4
273 4
541 4
796 4
4,601 0.014
*-
412 1
824 3
la:
602 13
840 4
4,540 0,037
+-
419 6
1072 5
223 16
726 Q
925 5
709 1
1695 5
356 10
92s 6
1110 6
+r
llQ1 6
2125 8
399 10
1228 5
1376 11
1900 +=
961 7
37Q7 11
347 6
124 8
bT9 9
105F +-
133fi 10
7562 29
YT:
664 9
$2
3,621 0,040
1125 t-
1865 15
15951 40
12;;
916 11
Yi
3,739 1.836
1295 +r
2411 14
6956 25
981 11
1291 6
1435 +-
214 5
918 3
128 6
245 !I
TOTAL +-
12431 3’)
46516 65
760 810 855 900 9s0
t=
“E
11931 43
%
2’: 20616 3s
4.371 9.022 4.255 0.051 t*::: .
JESSBERGER
392
ET AL.
TABLE AI-Continued SAPYLB
x3
J* 36AR E-IQ
TEW. [ c I
3lAk E -9
39AR E-10
.8815
3?AF E-1L‘
4@AR E -8
APP.AGE I AE I
+-
53 3
3t: 2
ZIP 3
260 5
311 2
4.282 0.030
+-
14 2
29 2
38 2
160 6
227 2
4.561 h.061
+-
19 2
3c 2
68 2
lb3 3
217 2
4.468 L1.033
+-
17 2
46 1
66 3
152 2
266 2
4.919 ul.e23
+-
21 3
75 2
82 3
2Cl 6
34c 2
4.861 L3.@4E
+-
16 2
17.3 2
51 1
231 5
357 2
4.667 R.03.a
+-
12 4
552 3
19 3
256 5
356 2
4.533 u.030
+-
13 3
471 3
23 3
140 5
196 2
4.540 0.864
+-
2ti 3
760 3
26 3
141 6
213 2
O.@lYI
+-
11 3
242 3
18 2
38 4
66 5
4.092 0.213
TOTAL t-
195 9
7
412 8
1747 15
2549
36AF. t-1r
37AK E-lU
3BAR E-l@
39AIX E-12
4QAR E -e
AFP.AGE t AE I
tm
32 6
78 1
96 1
4@7 3
674 1
4.824 0.014
+-
34 2
121 1
179 2
310 3
527 1
4.865 0.014
+-
45 3
191 2
176 3
369 4
654 1
4.939 0.021
+-
24 4
176 1
164 3
265 3
414 1
4.726 0.021
+-
35 1
379 2
205 2
501 4
685 1
4.504 0.014
+-
23 2
864 3
99 1
437 4
549 1
4.363 B.017
+-
18 2
991 3
51 3
281 3
379 1
4.419 0.017
t-
23 2
4485 16
72 5
476 4
621 2
4.426 fd.015
+-
i
1259
5
40 3
146 3
104 3
4.372 0.03e
l-
:
138 2
:
29 4
44 4
4.665 0.243
8
3223 11
490
580 67fl 790 68@ 965 1Obl 114r 13U 1471’
sAI.PLC
TEW. I c
60~ 690 77b 66r 95w 104r 113e 123’Z 133L 146C
1
TUTAL +-
2357
$4
8663
18
lUE9
4.612 0.015
7 .C815
J’
247 9
4,667
4130 6
4,622 0.006
““Ar-3gAr AGES
TABLE
OF ALLENDE
AI-Continued
sAb!PtE. 15
TEMP. L c I
34b 41u 460 545 6la b9D
14W’
3BAR E-11
87
227 5
+-
i:
130 12
t-
7 6
455 21
14
189 28
4r)E 7
t-
-
39AR E-10
4EAR E -e
APP.AGE C AE I
148 3
45 2
2.246 0.068
69 4
35 2
2.945 0.126
90 8
135 2
4.521 0.141
13 7
lD4 2
4.560 0.111
t-
11 2
534 11
27 25
/SW 9
12u 2
3.635 0.096
t-
12 4
535 32
263 47
71 6
104 2
4.635 0.146
t-
7 4
635 13
289 25
7e 3
119 2
4.691 0.071
-
539 17
201 43
i4 9
93 3
4.312 0.201
-
lL55 19
269 39
95 12
144 3
4.686 0.218
11 4
2417 14
399 29
168 9
238 3
4.375 0.085
12 4
4759 42
442 40
ai, 13
130 3
4.668 0.254
t-
129e
E-l@
37Ali E-lcr
16 4
B3U
lE0P
JE .OB15
36AH
+-
76b
91@
393
tt-
t-
7 5
25ClU 11111’
1467 41
175 10
254 3
4.668 0,093
-
14C7E 78
If.03 71
98 9
130 4
4.451 0.152
3007 zc!
339 41
50 7
54 6
4.128 n.289
5365C 150
5360 14P
1452 31
1705 11
4.254 0.043
t-
To’fAL t-
84 12
JESSBERGER
394
ET AL.
TABLE AIXontinued sAPPLE 16 TEkt?. LCI
J= .oe1s 36AR E-11
37AR El1C
t-
123 2
186 1
t-
95 4
t*
APP.ACE t AE 1 -
39AR E-11
40AR E -9
169 2
1398 3
1563 5
4.183 0.007
299 1
191 4
20W4 4
3105 6
4.712 a.004
91 3
414 1
344 5
2704 5
4165 7
4.703 0.004
to
96 2
398 2
592 5
2549 5
3895 7
4,690 0.004
to
152 5
434 2
1255 5
2639 8
3846 8
4.611 0.006
t-
138 4
437 1
1132 4
1958 7
3125 8
4.7b2 0,007
t-
131 4
451 1
197 4
1762 6
3133 9
4.943 W.008
t-
141 5
JWU 2
en2 4
1778 6
309P l@
4.913 0.006
+-
120 5
569 2
922 4
1911 6
3064 11
4,770 ti,BQB
t-
129 5
9w 3
lC71 5
2682 5
3972 13
4,630 0.0’36
t-
153 s
1665 6
1181 8
4326 8
5935 13
4.510 0,005
134 21
2754 1u
865 9
5204 9
6895 16
4,453 Id.005
10513 t-
87 6
4941 16
384 9
4435 8
5390 18
4.3116 Ld.BQ6
lll(”
+-
92 B
8907 29
311 11
3523 9
3882 21
4.151 0.010
t-
101 8
6615 22
283 8
2@17 8
2531 23
4.363 0.016
t-
91 11
g4::
281 12
3778 11
4714 28
4,354 0.011
131rr
t-
22 12
2477 6
139 4
700 6
751 36
4.100 0.079
139F
l-
JE 15
3892 13
193 6
1159 4
1239 44
4.102 0.057
1501J
t-
76 18
1749 6
149 5
704 5
830 54
4.261 0.107
TOTAL t-
2818 41
47~92 54
40w 460 52W 570 630 690 730 785 83E 890 950
10loV +a
117v 1230
3EAf?
E-11
Y
47214 30
s51c
4.519 0.003
““Ar-3gAr AGES OF ALLENDE
TABLE sAN’LL
Ja 36AE
rci
E.ll’
3BAR
E.lC
39Ai-T
4i?AR
E-l@
L -8
APP.AGE
t AE I
+”
83
2
76 1
415 6
691 2
4.83) 0.025
t-
28 2
62 2
151 2
354 4
394 2
4.166 0.018
+-
22 4
17c 1
286 4
275 9
400 2
4.609 a.055
.
32 2
221 1
299 4
3kt6 5
373 2
4.318 0,027
t-
27 3
248 2
338 s
322 9
49P 2
4.648 0.047
t-
32 2
541 2
313 5
403 8
647 2
4.471 Ur.027
t-
25 2
1174 6
Bl 4
409 7
551 2
4.480 0.1627
t-
a7 2
1839 7
124 6
247 0
326 2
4.447 0.157
1404 6
77 3
147 12
197 s
4.381 0.137
5822 12
1747 12
2958 23
4Y51 a
r.sa1 0.013
6Ok’ 710 em l
901 1CW
1451‘
37AI: -9
E
./‘BlS
117 4
501:
l24f
AI-Continued
87
TEW.
111r
395
+.
TOTAL +-
309
e
396
JESSBERGER
ET AL.
TABLE AIXontinued 5AhPbL .a 39AR E-11
39AR E-11
40AR E -9
APP.AGE 1 AC I
+-
192 10
54 4
125 7
373 10
600
4.776 0.044
+-
46 6
73 3
66 5
292 13
333
+-
39 5
149 2
69 12
474 10
655
+-
b3 5
381 5
1124 20
1690
l-
37 5
494
1154 12
1664
+r
57 7
Ii44
1655
3b:
l-
63 9
312 2
54:
l-
b9 5
35:
42 7
409
+-
62 6
648
+-
l-
91 6
604
*-
b9 5
696
+-
75 7
972
350
390
470
510
550
590
635
670
720
765
905
660
905
ll2P
1002 14
1372
555 11
788 17
1193
445
602
3
4.922 0.037
3
4.6b3 0.030
3
4.592 0.017
3
4,599 0.010
3
4,507 0.023
3
4.673 0.035
3
4.671 0,023
3
4.716 0.034
3
4.735 0.027
3
4.653 0.030
910
3
9 545 11
753 15
1169
7
443 10
711 11
1117
5
467 11
826 15
1235
3
516 10
1147 12
1656
4
699
9
2061
130 7
1933 14
414 17
1729 21
2369
143 9
3537 13
443 9
1966 12
2462
1*9
5570 190
250 lb
1454 16
1914
25;
1185 19
1565
2166
4
4.207 0.072
4
4.595 0.017
3
4.541 0.021
4
4.509 0,020
4
4.446 0.011
4
4,442 0.019
4
4.449 0.027
4
4.54m 0,009
4
4.540 0.015
5
4,492 0.032 4.513 0.031
111 10
6545
106 7
6225 30
275 14
1551
l.
+-
84 6
11919 41
313 19
1791 16
2501
48 IF
6700 26
221 10
1072 20
1454
l-
l-
37 9
39e9 14
151 10
625 11
959 5
l.
20 12
2410 lfi
13;
456 19
659
l.
11 7
457
129P
1445
1525
7
3
1). ll7r:
1355
7
I474 19
l-
l-
435
9
l-
107~
e
3
6
11:
1020
263 6
1287
l-
9611
1225
.0915
37Afi E-10
Lc I
430
P 36AR E-11
TEW.
TOTAL
l-
lEl6 35
23
7
3
50 5
67 14
57890 2m0
7966 53
23661 72
333::
4.593
7
l.179
94 10
4,355 0.397 4.555 0.005
4oAr-3sArAGES OF ALLENDE
TABLE SAMPLC
TEW,
AI-Continued
t9
Jr 36AR E-11
[Cl
397
3lAR L-10
38~R E-11
WAR E-11
.08lS
UAR E -9
APP.AGE I AE I
5
604 B
577 4
3,922 0.022
54 3
67 3
520 9
614 3
4.264 0.029
53 6
129 2
111 9
12S0 7
ilS7 4
4.539 0.010
t’
50 3
204 2
188 1
1907 10
3111 4
4.799 0.009
*-
63 4
253 4
321 8
2421 12
3895 5
4.771 0.908
la
76 5
302 3
476 5
2673 18
4392 5
4,811 0.011
+-
81 5
323 3
859 9
2850 18
4422 4
4.715
+-
86 5
206 3
742 5
1576 12
24S3 4
4,721 0.013
t-
83 8
235 3
966 11
1736 14
2777 4
4,766 0.914
+-
137 6
407 3
g8i
3090 a2
5399 5
4.914 0.012
+-
145 4
317 3
613 11
1955 11
3b@2 4
5,004
t-
142 6
393 3
b73 6
1659 12
2847 4
4,084 0.012
l.
94 9
471 5
645 6
1766 16
2637 4
4.651 0.015
+-
105 7
775 4
2453 10
3219 4
4.437 0.007
*-
106 17
1362 7
679 9
3543 14
4316 4
4.314 0.006
+-
163 7
4289 1s
772 10
5698 21
6588 4
4,229 0.006
108f. +-
185 7
9723 32
464 13
5597 20
6169 4
4,151 0.006
+-
89 10
6931 24
211 12
2107 15
2395 5
4.202 0.012
l-
122 6
7043 25
163 13
22j6
11
26QP 4
4.294 0.009
129e t-
47 7
2836 12
1,:
730 19
691 5
3.904 0.643
13SP +-
31 5
3337 13
146 12
850 16
719 6
3.729 0.032
1496 +-
3i 8
2681 10
153 9
891 i4
Y:
3.602 0.037
TOTAL *-
2029 33
42328 56
659S9 a2
4.511 e.002
350
+-
113 5
57 2
l-
27 5
t-
398 430 475
515 550 590 630 680 130
770 815 860 910 950 102c
11% 12lP
l@l
1Y
48050 60
0.011
0,010
398
JESSBERGER
TABLE
ET AL.
AIXontinued
SArJPLk r1ll TENP, ICJ
J= .@815
3bAR E-11
37AR
E -9
38AR E-11
39AR E-le
40AR E
-8
APP.AGL [
AC
I
t-
lb4 5
296 1
663 11
t-
59 3
302 1
490 15
1253 3
1456 1
4,239 0.004
l-
90 3
473 2
6b7 23
2131 4
2736 2
4.400 0.003
t’
133 3
530 2
1416 29
2334 4
3092 3
4,447 0,003
t-
156 3
499 1
2619 21
1698 3
2530 3
4.462 0,002
t-
262 6
bU3 3
3331 29
1651 3
2202 3
4.463 0,003
392 5
114 3
5c91 23
1202 2
1615 2
4.476
+a
t-
329 4
535 2
4653 19
5ee 1
799 1
4.495 0,004
t-
232 6
352 2
3270 14
299 1
408 1
4,505 0,005
t-
213 5
365 2
2777 12
25s 1
344 1
4,486 Y.607
t-
113 5
230 1
1229 5
153 1
267 1
4.494 0.011
+-
126 5
3w 2
1256 6
173 1
219 1
4,376 w.013
+-
124 6
653 3
1115 6
169 1
219 1
4,233 0,012
l.
176 9
3102 14
922 32
253 1
222 2
3.766 0,015
t-
175 10
3416 lb
663 3s
229 1
134 2
3.162 0,024
t-
226 13
4562 22
1@50 47
260 2
112 2
2,574 0.030
t-
77 10
1379 7
555 15
63 1
21 3
2.391 0.165
t-
131 15
1909 9
651 21
106 1
23 4
l.E71 0.205
TOTAL +r
3160 3P
20321 34
32137 97
14029 9
410 459; 490 538 666 60V 640 670
liti 760 610 070 930 960 10x l09C It60 lZb@
968 2
044 1
3.776 0,003
1717;
0.003
4,322 0.001
399
40Ar-3gAr AGES OF ALLENDE
TABLE
AI-Continued
SAMWE ill
Jm .0BlS 36AR
L-11
37AR E -9
38AR Y-11
39AR Eill
40AR L 99
l-
764 4
139 1
690 5
3882 9
3e44 8
4.353 0.805
t-
208 4
87 1
447 5
2482 a
3s71 8
4.569 0.006
t-
193 5
104 1
b22 6
3119 6
4463 8
4.580 0.004
t-
216 4
137 1
1135 7
3777 7
5370 9
4.569 0.004
t-
271 6
158 A
1821 6
3198 10
4534 1R
0.006
t-
293 7
155 1
2172 10
2107 9
2906 10
4.519 0.009
t-
333 6
lb7 1
a474 8
1531 7
2231 11
4.610 0.011
t-
264 5
137 1
1645 6
1048 8
1619 11
4,707 0.017
t-
242 5
138 1
1210 6
936 10
1442 12
4.703 0,023
t-
352 6
213 1
125s 6
1168 6
1774 12
4,679 0.014
t-
388 6
302 1
12m0 5
1313 4
Y
4.389 0.013
t-
559 8
606 2
13Y
7
2282 14
4.460 0.0l2
+-
658 7
806 3
1861 8
2398 16
4.407 0.013
t-
655 8
1445 5
1050 16
1455 10
1671 19
4.219 0.e21
t-
1243 14
4789 16
1668 49
1905 19
1600 22
3.717 0.02b
t-
1087 14
4030 13
1377 42
1464 17
1165 25
3.631 0.038
t=
1221 13
29B6 10
723 13
678 28
3,898 0,072
t-
348 1%
1316 7
633 15
567 a
LB4 49
4.096 0.134
t-
146 20
10b6 3
526 13
572 6
587 58
4.035 0.162
TOTAb t=
9451 42
la794 2s
23938 80
34033 42
TEMP.
I c I
390 430 475 520 565 590 645 680 720 7i0 830 880 930 980
1040 1105 120P 1305 1400
l7i4
446z:
APP.ACE I AE 1
4.565
4.436 0,004
400
JESSBERGER
ET AL.
TABLE AI-Continued sA!‘FLC ~12 TEMF. [Cl
J= .ca15
36AR E-11
37AR E -9
38Ali c-11
39AR E-11
40AR E. -9
APP.ACE t Ae: I
*-
238 9
32 1
lU5 11
264 9
7@5 4
5.641 0,060
t-
187 6
66 1
122 7
373 11
787 3
5.235 0.051
t-
112 7
74 1
112 5
455 6
923 3
5.168 0.021
t-
99 4
70 1
87 1C
452 8
854 3
5.049 E.029
t-
82 5
108 1
166 8
662 e
1147 3
4.901 B.021
t-
80 3
159 1
291 6
692 7
1lW
3
4,756 0.017
t-
Y@ 5
218 1
372 6
592 7
855 3
4,596 0,020
t-
67 5
283 1
424 6
420 11
785 3
4.846 0.043
t-
234 6
546 1
636 8
782 9
1536 3
5.113 a.021
tr
64 2
143 1
171 2
203 3
404 3
5.135 0.024
t-
186 5
435 1
378 I
139 7
887 3
5.W85 0,027
t-
129 7
531 1
371 8
403 4
628 3
4.724 0.819
t-
157 6
818 2
458 11
SW 5
719 3
4.589 a.(n19
t-
251 8
1584 3
664 17
7ta9 6
955 3
4.481 0.(115
t-
352 13
3838 9
lOb8 41
745 15
917 3
4.330 ti.034
187C’ t-
402 15
4598 13
974 5F
606 18
807 3
4.460 0.051
1120
t-
375 In
3619 6
8LY 37
767 15
1051 5
4.518 0.033
t-
6~8 21
9895 21
1670 1OD
1202 38
1897 6
4,744 0.053
1321’ +-
595 30
13979 29
16b0 140
867 53
147s 6
4.869 cl.104
146P
245 15
6400 51
2413 69
224 25
352 16
4.734 rd.197
4554 _.
47388 __
1295P 21r
11376 81
18712 22
37t, 410 455 4916 535 585 625 670 72@ 77w 815 86ti 91li Y6ti l0lV
1216
t-
TOTAL t-
51
b5
4.e13 0.012
401
40Ar-39Ar AGES OF ALLENDE
TABLE sAKPLE
113 37AR E =a
+m
28 2
267 3
+-
52 3
*-
938 102P 114e 14w
19~~ e-10
Xf.
5:x
2i
573 25
650 16
4.441 0.064
a9 3
772 1P
Y
50) 9
Y
0,029 4.541
+-
123 4
1367 2c
66 5
64s 11
781 9
4,549 0.025
+.
‘“!
3840 140
::
790 30
931 as
4.502 0,048
+r
101 3
6690 110
:3
470 23
144 7
4.44s 0,079
+a
1°:
9470 22P
x:
456 12
843 I1
4.52V 0.040
+-
‘i’:
29V4C 280
2:;:
792 17
%
0.041 4.511
769 15
52740 400
590 93
s2::
0.017 4.499
4444 53
SARPLC; (19
670 790 910 103c 1150 127f 144P 155@
J.
.Q692
36AFf E-IQ
37AR E-10
3EAR E-11
39AR E-11
40AR E -8
*a
16 1
58 3
61 4
229 7
70 3
5,190 0.082
+-
27 1
196 5
144 5
754 14
145 3
4,004 0,042
t-
2V 1
290 1
161 4
393 6
71 3
4,871 0.072
t-
42 1
656 9
179 7
323 e
68 4
4.963 0,097
+.
74 2
3331 23
3::
320 16
58 4
4.692 0.146
+-
57 4
9554 53
576 29
244 39
42 S
4.610 0,335
*-
43 3
7156 42
434 24
156 34
PI 6
4,6Sl 0,584
+a
37 5
7513 39
527 29
322 35
58 13
4,692 0,409
+-
57 V
12744 01
623 44
136 68
:t
5.233 1,256
*-
26 12
“Y
257 26
_
_
400
47000 120
TEMP. ICI
550
APP .ACC I A,k 1
222 s
TarAL +.
400
,094s
40AR P =V
291 3
670 600
MAR E-10 B 1
630 550
Jr
3$AR e-10
TERP. [Cl
AI-Continued
TOTAL +a
16
33:x
2837 09
APP.AGE f AC I
4.086 0.096
402
JESSBERGER
TABLE
ET AL.
AI-Continued
sAlrPLli r2o
TEHP ,
38AR E-10
39AR E-10
40AR E -8
*r
69 2
176 6
42 1
64 1
274 5
6.706 0.944
I)-
105 2
239 7
96 2
63 1
152 5
5.192 0,065
+r
72 2
484 9
69 1
35 1
120 6
5.612 0,094
+r
70 3
1428 13
82 1
38 1
93 7
8,216 0.140
+.
72 3
4513 38
96 2
39 3
90 a
4.966 0,201
*r
46 4
4520 27
59 2
20 2
41 10
4.011 0,456
65 6
8565 83
“:
26 4
38 15
4,367 0.702
17 e
-
500 640
w 100p 1lZP
1279:
l.
150~
.0692
37AR $ -9
ICI
760
Jr
36AR e-10
14510 120
+r
TOTAL +=
499 9
34800 150
51:
321 10
5.325 6.067
795 23 J= .n692
sAFPLE 421 TEMF. t c 1
APP.AGE t AE I
36AR El1B
37bR E *9
38AR 6-l 1
39AR E-11
40AR E -a
APP.AGE t AB; 1
16 1
51
+=
4
178 4
61 3
5.184 0.083
t-
43 1
221 5
5b8 8
140 3
5.223 0.039
t-
125 2
214 5
563 9
385 10
66 3
5,950 0.074
t-
s2 1
1029 12
393 8
369 8
97 4
5.331 0,075
*c
49 2
17lk3 23
33@ 1n
309 11
51 4
4.535 0,149
102fw +a
59 3
57s3 28
507 20
423 29
65 5
4,437 0.174
114v+ tw
28 3
“ir:
326 14
168 20
a9 8
4,426 0.482
126fht t*
39 5
6735 34
560 23
317 34
47 13
4.376 0.490
137PI *r
68 9
12900 22c
634 53
394 62
5:
4.156 0,679
154n
38 12
4972 33
273 22
:x
*-
64 34
TOTAL +I
516 16
37610 230
400 650 670 790 910r
Y
3167 66
695 44
403
““AI--~~A~AGES OF ALLENDE
TABLE SAMPLE #23
AI-Continued J=
ALLEtiDE 3BAR
39AR
.6326.
MAR
APP.ACE
36AR E-1r
37AR E -9
*-
45 1
235 2
9ti7 8
74 2
191 3
3,967 11.843
+-
74 2
414 2
2431 23
64 1
201 3
4.371 9.037
+*
51 2
432 2
1211 22
29 1
123 3
4.970 0.069
+-
58 2
lC13 4
11164 25
33 1
93 3
4.206 0.871
+-
58 2
2464 11
630 51
24 2
71 3
4.204 (6.130
+--
51 2
2668 14
666 33
I7 2
67 3
4.762 O.lW
+-
169 3
9813 34
1540 280
6 3
111 4
1.46t3 1.338
+-
16 8
2817 12
235 45
TOTAL l-
461 10
19137 41
8760 220
246 6
e3k? 8
4.S21 0.244
TEHP, 1 C 1 55s 610 78@ 908 1llZP 114f 128f l44f
E-11
E-11
PYhEX-GLASS W
E -8
J=
COHRLCTIOI’ FLIP ATHOSPIIERIC ARGOL 36AR E-11
37AR E-11
G-11
30AR
39AR
t-
279 3
190 6
1329 6
a24 5
822 1
+-
173 3
4i# 2
337 5
436 4
S@8 1
TOTAL l-
432 4
1260 7
1329 2
TEMP. CC1 14kx 1556
220
6
1666
9
E-11
40AR
E-9
t
.OlO
AE
I
404
JESSBERGER ET AL. ACKNOWLEDGMENTS
CRESSY, P. J., AND BOGARD, D. D. (1976). On the calculation of cosmic-ray exposure ages of stone meteorites. Geochim. C o s m o c h i m . Acta 40, 749. DOMINIK, B., AND JESSBERGER, E. K. (1978). Early lunar differentiation: 4.42 AE old plagioclase clasts in Apollo 16 breccia 67435. Earth Planet. Sci. Lett. 38, 407-415. I~MINIK, B. AND JESSBERGER, E. K. (1979). 4°ArREFERENCES a"Ar dating of Murchison, Allende and Leoville ALEXANDER. E. C., JR., SAITO, K., DRAGON, J. C., whole rock samples. I n L u n a r P l a n e t . Sci. X, p. 306. COSCIO, M. R., JR., AND PEPlN,. R. O. (1977). '°ArThe Lunar Sci. Inst., Houston. ~aAr and rare gas studies of lunar soils. In L u n a r Sci. DOMINIK, B., JESSBERGER, E. K., STAUDACHER,TH.. VIII. pp. 10-12. The Lunar Sci. Inst., Houston. NAGEL, K., AND El GORESY, A. (1978). A new type BEGEMANN, F., AND STEGMANN, W. (1976). Implicaof white inclusion in Allende: Petrography, mineral tions from the absence of a 4'K anomaly in an chemistry, 4°Ar-.~Ar ages, and genetic implications. Allende inclusion. N a t u r e 259, 549-550. In Proc. Lunar Planet. Sci. Conf. 9th. p. 1249. BEGEMANN, F., WEBER, H. W., AND HINTENBERBER, Pergamon, Oxford. H. (1976). On the primordial abundance of argon-40. EICHItORN, G., JAMES, O. B., SCHAEFEFR, O. A.. Astrophys. J. 203, LI55-L157. AND M(JI.I ER, H. W. (1978). Laser a"Ar-4°Ar datBIRCK, J. L., LORIN, J. C., AND AI.I.EGRE, C. (1977). ing of two clasts from Consortium breccia 73215. Potassium isotopic determination in some meteoritic In Proc. Lunar Planet. Sci. ('on.f. 9th. p. 855. and lunar samples: Evidence for irradiation effects. Pergamon, Oxford. Meteoritics 12, 179-180. EL GORESY, A., NAGEL, K., AND RAMDOHR, P. BOGARD, D. D.. CLARK, R. S., KEITII, J. E., AND (1978). Fremdlinge and their noble relatives. In REYNOLDS, M. A. (1971). Noble gases and radionu,°roe. Lunar Planet. Sci. Con/: 9th. pp. 1279-1303. clides in Lost City and other recently fallen meteorPergamon, Oxford. ites. J. Geophys. Res. 76, No. 17, 4076--4083. FIREMAN, E. L., DEI:ELICE, J., AND NORTON, E. BOGARD, D. D., HUSAtN, L., AND WRIGHT, R. J. (1970). Ages of the Allende meteorite. Geochim. (1976). 4°Ar-aSAr dating of collisional events in C o s m o e h i m Acta 34, 873. chondrite parent bodies. J. Geophys. Res. 81, 5664GRAY, C. H., PAPANASrASSIOU, D. A., AND WAS5678. SERBURG, G. J. (1973). The identification of early CAMERON, A. G. W., AND TRURAN, J. W. (1977). The condensates from the solar nebula. Icarus 20, 213supernova trigger for formation of the solar system. 239. Icarus 30, 447-461. GREEN, H. W., RADCLIFFE, S. V., AND HEUER, A. H. CHEN, C. L., AND TILTON, G. R. (1976). Isotopic lead (1971). Allende meteorite: A high voltage electron investigations on the Allende carbonaceous chonpetrographic study. Science 172, 936-938. drite. Geochim. Cosmochim. Acta 40, 635-643. GROSSMAN, L. (1975). Petrography and mineral chemCHOU, C. L., BAEDL-CKER,P. A., AND WASSON, J. T. istry in Ca-AI-rich inclusions in the Allende meteor(1976). Allende inclusions: Volatile element distriite. Geochirn. Cosmochim. Acta 39, 433. bution and evidence for incomplete volatilization of HEYMANN, D., WALTON, J. R., JORDAN, J. L., LApresolar solids. Geochirn. C o s m o c h i m . Acta 40, 85KATOS, S., AND YANIV, A. (1975). Light and dark 94. soils at the Apollo 16 landing site. Moon 13, 81-110. CLARKE, R. S., Jr., JAROSEVICH, E., MASON, B., HUNEKE, J. C., AND SM, TH, S. P. (1976). The realities NELEN, J., GOMEZ, M., AND HYDE, J. R. (1970). of recoil: "~SArrecoil out of small grains and anomaThe Allende, Mexico, meteorite shower. Smithson. lous age patterns in aSArJ°Ar dating. In Proc. Lunar Contrib. Earth Sci.. No. 5. Sci. Conf. 7th. pp. 1987-2008. Pergamon, Oxford. CLAYTON, D. D. (1975). Z=Na, Ne-E, extinct radioacHUNEKE, J. C., PODOSEK, F. A., AND WASSERBURG, tive anomalies and unsupported 4°At. N a t u r e 257, G. J. (1972). Gas retention and cosmic ray exposure 36. ages of a basalt fragment from mare Fecunditatis. CLAYTON, D. D. (1977a). Precondensed matter: Key Earth Planet. Sci. Lett. 13, 375-383. to the early solar system. Moon & Planets 19, 109. JESSBERGER, E. K., AND DOMINIK, B. (1979). GeronCLAYTON, D. D. (1977b). Interstellar potassium and tology of the Allende meteorite. Nature 277, 554argon. Earth Planet. Sci. Lett. 36, 381-390. 555. CLAYTON, R. N. (1978). Isotopic anomalies in the JESSBERGER, E. K., AND STAUDACHER, Th. (1979). early solar system. Anna. Rev. Nucl. Sci. 28, 501. On the maximum initial temperature of the CLAYTON, R. N., GROSSMAN, L., AND MAYEDA, T. N6rdlinger Ries ejecta. Meteoritics 14, 432-434. K. (1973). A component of primitive nuclear compo- JESSBERGER, E. K., DOMINIK, B., KIRSTEN, T., AND sition in carbonaceous meteorites. Science 182, STAUDACHER, Th. (1977). New 4°Ar-.~gAr ages of 485-487. Apollo 16 breccias and 4.42 AE old anorthosites. In The authors would like to thank B. Mason for generously providing us with valuable Allende inclusions. We thank T. Kirsten, A. EIGoresy, J. L. Jordan. and D. D. Clayton for many stimulating discussions and two reviewers for helpful criticisms.
4°Ar-:~.~Ar A G E S O F A L L E N D E L u n a r Sci. VII! pp. 511-513. The L u n a r Sci. Inst., Houston. JESSBERGER, E. K., HUNEKE, J. C., "AND WASSER8URG, G. J. (1974a). High resolution argon analysis of neutron-irradiated Apollo 16 rocks and separated minerals. In Proc. L u n a r Sci. ConJ~ 5th. pp. 14191449. Pergamon, Oxford. JESSBERGER, E. K., HUNEKE, J. C., AND WASSERaURG, G. J. (1974b). Evidence for a 4.5 A E age of plagioclase clasts in a lunar highland breccia. Nature 248, 199-201. JESSBERGER, E. K., KIRSTEN, T., AND STAUDACHER, TH. (1976). A r g o n - a r g o n ages o f C o n s o r t i u m breccia 73215. In Proc. Lunar Sci. Cont" 7th. pp. 22012215. Pergamon, Oxford. JESSBERGER, E. K., SrAUDACHER, TH., DOMINIK, B., KIRSrEN, T., AND SCHAEFFER, O. A. (1978). Limited r e s p o n s e o f the K - A r s y s t e m to the N/Srdlinger Ries giant meteorite impact. N a t u r e 271,338. KIRSTEN, T. (1978). Time and solar s y s t e m . In The Origin o f the Solar S y s t e m . (S. F. Derrnott, Ed.), pp. 267. Wiley, London. KIRStEN, T. (1980). Chronology of the solar s y s t e m . In Landoldt-Bisrnstein. A s t r o n o m y a n d Astrophysics (H. H. Voigt and K. Schaifers, Eds.). Springer-Verlag, B e r l i n / H e i d e l b e r g / N e w York, in press. MANUEL, O. K., SABU, D. D. (1975). Elemental and isotopic inhomogeneities in noble gases: The case for local s y n t h e s i s o f the chemical elements. Trans. Mo. Acad. Sci. 9, 104. MARTIN, P. M., AND MASON, B. (1974). Major and trace e l e m e n t s in the Allende meteorite. Nature 249, 533-555. MARVIN. U. B., W o o o , J. A., AND DICKEY, J. S., Jr. (1970). Ca-Al-rich p h a s e s in the Allende meteorite. Earth Planet. Sci. Lett. 7, 346-350. MASON, B., AND MARTIN, P. M. (1977). Geochemical differences a m o n g c o m p o n e n t s o f the Allende meteorite. In Min. Sei. Invest. (B. Mason. Ed). Smithson. Contrib. Earth Sci., No. 19. McSWEEN, H. Y.. JR. (1977). On the nature and origin o f isolated olivine grains in c a r b o n a c e o u s chondrites. Geochim. Cosmochim. Acta 41, 411-418. NAGASAWA, H., BLANCltARD, D. P., JACOBS, J. W., BRANNON, J. C., PHIl POTrS, J. A., AND ONt;Ma, N. (1977). Trace element distribution in mineral separates of the Allende inclusions and their genetic implications. Geochim. Cosmochim. Acta 41, 1587. PODOSEK, F. A., ~,NO LEWIS, R. S. (1972). ~Zgl and
405
z"Pu a b u n d a n c e s in white inclusions on the Allende meteorite. Earth Planet. Sci. Lett. 15, 101-109. SCHAEEI-ER, G. A., AND SCHAEtFER, O. A. (1977). agAr-~°Ar ages of lunar rocks. In Proc. Lunar Sci. Conf. 8th, pp. 840-841. Pergamon, Oxford. sMItH, S. p., HuNEKE, J. C., RAJah, r . S., aND WASSERBURG, G. J. (1977). Neon and argon in the Allende meteorite. Geochim. Cosmochim. Acta 41, 627-648. STAUDACHER, TH., JESSBERGER, E. K., D()RFLINGER, D., AND KIKO, J. (1978). Refined ultrahigh v a c u u m furnace for rare gas analysis. J. Phys. E: J. Sci. lnstrum. II, 781. SrEGMAnN, W., A.'qD BEGEMANN, F. (1979). Allende meteorite: Old age but normal isotopic composition of potassium. N a t u r e 282, 290. STEIGER, R. H., AND J~GEr, E. (1977). S u b c o m m i s sion on Geochronology: Convention on the use of decay c o n s t a n t s in geo- and c o s m o c h r o n o l o g y . Earth Planet. Sci. Lett. 36, 359-362. TATsUMOTO, M., UnRUH, D. M., AND DEsBOROuGH, G. A. (1976). U - T h - P b and R b - S r s y s t e m a t i c s of Allende and U - T h - P b s y s t e m a t i c s o f Orgueil. Genchim. Cosmochim. Acta 40, 617-634. TURNer, G. (1969). Thermal histories of meteorites by the "~gAr-4°Ar method. In Meteorite Research IP. M. Millman, Ed.L pp. 407-417. Reidel. Dordrecht. TURNER, G. (1971). ~°Ar-S'~Ar ages from the lunar maria. Earth Planet. Sci. Lett. II, 169-191. TURNER, G. (1977). P o t a s s i u m - a r g o n chronology of the moon. Phys. Chem. Earth 10, 145. TURNER, G.. AND CADOGAN, P. H. (1974). Possible effects of SgAr recoil in ~°Ar-a'~Ar dating, in Proc. Lunar Sci. Coqf: 5th, pp. 1601-1615. Pergamon, Oxford. WAKITA. H., AND SCHMITt. R. A. (1970). Rare earth and other elemental a b u n d a n c e s in the Allende meteorite. N a t u r e 227, 478. W,~NKE, H., BADDENHAUSEN, H., PALMF, H., AND SPEI'tEL, B. (1974). On the chemistry of the AIlende inclusions and their origin as high temperature c o n d e n s a t e s . Earth Planet. Sci. Lett. 23, I-7. WARK, D. A., AND LOVERiNG, J. F. (1977). Marker e v e n t s in the early evolution of the solar system: Evidence from rims on calcium-aluminum-rich inclusions in c a r b o n a c e o u s chondrites. In Proc. L , n a r Sci. C o t ! f 8th. pp. 9 5 - 112. Pergamon, Oxford. WETHERII I., G. W., MARK, R., .aND I.EE-Hu, C. (1973). Initial strontium-87 ratios and the early history of the solar system. Science 182, 281-282.