W. THIRJtING Institute for Theoretical Physics, University of Vienna, Austria Received 12 March 1963
R e c e n t l y S c h w i n g e r 1) p r e s e n t e d a n e x p l i c i t e x a m p l e of a gauge i n v a r i a n t t h e o r y w h e r e the photon a c q u i r e s a m a s s . T h e m e c h a n i s m which p r o d u c e s t h e photon m a s s i s f o r m a l l y i d e n t i c a l with the one which p r o d u c e s the M e i s s n e r O c h s e n f i e l d effect 2). T h e p r o p e r v a c u u m p o l a r i s a t i o n p a r t i s in both c a s e s p r o p o r t i o n a l to the t r a n s v e r s a l p r o j e c t i o n o p e r a t o r t i m e s a f u n c t i o n which h a s a f i r s t o r d e r p o l e f o r k2 = 0. T h i s i m p l i e s a t o t a l q u e n c h i n g of the e x t e r n a l c u r r e n t a n d h e n c e l e a d s to the P r o c a o r London e q u a t i o n s r e s p e c t i v e l y . In t h i s n o t e we want to p o i n t out that the s a m e s i t u a t i o n , n a m e l y a pole i n the p r o p e r s e l f e n e r g y p a r t l e a d s to a f e r m i o n m a s s i n a ~ ' 5 - i n v a r i a n t t h e o r y . On g e n e r a l grounds ~5-invariants implies either mass zero or a d e g e n e r a c y 3) ** c o r r e s p o n d i n g to f e r m i o n C P d u b l e t s . H o w e v e r , no d y n a m i c a l m e c h a n i s m h a s b e e n g i v e n which could r e a l i s e the s e c o n d p o s s i b i l i t y . Although i t i s d i f f i c u l t to find a n e x p l i c i t and r e a l i s t i c m o d e l which shows t h e s e f e a t u r e s we s h a l l s e e what the n e c e s s a r y and s u f f i c i e n t c o n d i t i o n s a r e f o r a m a s s to e m e r g e i n a v 5 - i n v a r i a n t t h e o r y . In a C P - i n v a r i a n t r e l a t i v i s t i c t h e o r y the f e r m i o n p r o p a g a t o r i s of the f o r m 1 s(p)
-
mo
_ P z(p)
'
(1)
w h e r e r. i s the p r o p e r s e l f e n e r g y p a r t . F o r Yuhawa c o u p l i n g s the c a n o n i c a l c o m m u t a t i o n r u l e s i m p l y lira ~ - 0 and we h a v e the s p e c t r a l r e p r e s e n t a t i o n ** *
r,(p) = ? --OO
da p(a) a-~O
(2)
F o r m e t r i c and e n e r g y s p e c t r u m both p o s i t i v e p >/0. In a 7 5 - i n v a r i a n t t h e o r y s(-p) = - S(p) so that m o = 0, p(-a) = p(a) and h e n c e * The research reported in this document has been partly sponsored by the U.S. Government. ** We do not consider a degenerate ground state as Z umino 4). *** Note the lower limit of integration which makes only one spectral function necessary.
a - p2
-oo
"
F r o m t h i s f o r m it i s u s u a l l y c o n c l u d e d that S h a s a pole f o r ig = 0 and h e n c e that t h e r e a r e m a s s l e s s f e r m i o n s . T h i s i s t r u e u n l e s s p i s of the f o r m
p(a) = cS(a) + ½(r(a) ,
(r -= 0
for
ral < M .
(4)
In t h i s e a s e the p o l e s of S o c c u r f o r p2 = Z ff
D(Z) : Z - C + f ~ da__~(_a)Z _ 0 . M
(5)
a2 - Z
Since D(0) < 0 a n d D ' > 0 f o r Z < M 2 we have one z e r o if D(M2) > 0 o t h e r w i s e n o n e . In the f i r s t c a s e t h e r e i s a p a i r of f e r m i o n s with m a s s = 0, in the s e c o n d t h e r e a r e no s t a b l e f e r m i o n s . In p a r t i c u l a r if Z i s p r o p o r t i o n a l to S, o r =0,
c =rn2,
(6)
w e have s(p) = - ~
+
,
(7)
e . g . , a f e r m i o n d o u b l e t with m a s s rn. T h i s kind of s i t u a t i o n i s r e a l i s e d f o r the photon p r o p a g a t o r in two d i m e n s i o n a l e l e c t r o d y n a m i e s w h e r e the s p e c t r a l f u n c t i o n of the p r o p e r s e l f e n e r g y p a r t i s s i m p l y (e2/rr)6(a). It i s not e a s y to find a r e a l i s t i c d y n a m i c a l m e c h a n i s m which g i v e s a of the f o r m (4) f o r f e r m i o n s . H e n c e t h e s e c o n s i d e r a t i o n s m a y be of a c a d e m i c i n t e r e s t only. Howe v e r , they show at l e a s t w h e r e t h e r e i s a hole in the u s u a l a r g u m e n t s .