A bibliography of topological games

A bibliography of topological games

Topology and its Applications 221 (2017) 656–694 Contents lists available at ScienceDirect Topology and its Applications www.elsevier.com/locate/top...

635KB Sizes 39 Downloads 308 Views

Topology and its Applications 221 (2017) 656–694

Contents lists available at ScienceDirect

Topology and its Applications www.elsevier.com/locate/topol

Virtual Special Issue – International Conference on Topology, Messina (ICTM2015)

A bibliography of topological games Dr. Rastislav Telgársky passed away on December 22, 2014, surrounded by his family. He was 71, and a resident of Albuquerque, New Mexico, very far from his homeland Slovakia, where his mathematical journey started nearly fifty years ago. His mathematical remains will be with us forever, and will not be forgotten; for Telgársky did fundamental work in a field of mathematics that will always be of interest. He is one of the very few giants in the field of mathematical games – specifically in topological games. His works have inspired generations, and will certainly continue to do so. Not only did he leave us with beautiful theorems, but also with a number of conjectures that will undoubtedly fuel mathematical imagination for years to come. But that is not all. Due to the circumstances of his life, his work in mathematics in later years transitioned to service to the profession. For at least his last ten years he meticulously followed developments around game theory, and catalogued the continually growing body of work. He maintained an online document AN UPDATED BIBLIOGRAPHY OF TOPOLOGICAL GAMES until the end of his life. Here is his last posted abstract: Last update: May 8, 2013 Abstract. This bibliography is an updated list of references from my 1987 paper Topological Games: On the 50th Anniversary of the Banach–Mazur Game. Since then over 25 years have passed, and many papers were published bringing new ideas and methods, proving fine results, solving old problems and specified new problems. The concept of “topological game” is explained in the English edition of Wikipedia, and the text is shared by many Internet resources. Strategies in topological games became standard tools for constructions of spaces with certain properties. There are several excellent survey papers on particular classes of topological games. However, the amazing variety of topological games is still waiting for a comprehensive review. Telgársky had a passion and a vision – and left us with this rich first step in organizing the scientific record for infinite mathematical games. In honor of his inspirational contributions, we offer this collection as a more permanent record of Telgársky’s service to mathematics. Telgársky’s bibliography was supplemented with a number of works we were aware of, and we made a few rearrangements of the materials according to genre. In the process of adding new items to the list, we admittedly left out whole classes of games which should rightfully be included in it – and which Telgársky himself would certainly have considered in his updates to come. It should be made clear that this does not mean a value judgement of any kind, but rather a matter of finishing this first stage within the scope of our knowledge. This must be seen as only a small step towards a more comprehensive database of works on topological games. The more we worked on this bibliography, the more we were convinced that performing an update http://dx.doi.org/10.1016/j.topol.2017.02.019 0166-8641/© 2017 Elsevier B.V. All rights reserved.

Editorial

657

on Telgársky’s bibliography that would do justice to his efforts, as well as maintaining this service, is a task that should be taken by a group of people – which would then be able to cover “the amazing variety of topological games”, as Telgársky himself once expressed. Keeping this valuable record is of great importance for helping establish this growing field of research as a far-reaching subject in mathematics. Articles and books [1] J. M. Aarts and D. J. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Mathematicae 66, Warszawa, 1974. [2] Uri Abraham and Rene Schipperus, Infinite games on finite sets, Israel Journal of Mathematics 159 (2007), no. 1, 205–219. [3] P. Aczel, Representability in some systems of second order arithmetic, Israel Journal of Mathematics 8 (1970), 309–328. [4] J. Addison and Y. Moschovakis, Some consequences of the axiom of definable determinateness, Proceedings of the National Academy of Sciences of the United States of America 59 (1968), 708–712. [5] Marco Aiello and Johann van Benthem, Logical patterns in space, in: D. Barker-Plummer, D. Beaver, J. van Benthem, and P. Scotto di Luzio, eds., Words, Proofs, and Diagrams. CSLI Lecture Notes, 141. CSLI Publications, Stanford, 2002. pp. 5–25. [6] Miklós Ajtai, László Csirmaz and Zsigmond Nagy, On a generalization of the game Go-moku. I, Studia Scientiarum Mathematicarum Hungarica 14 (1979), 209–226. [7] Ofelia T. Alas, Vladimir V. Tkachuk and Richard G. Wilson, Addition theorems, D-spaces and dually discrete spaces, Commentationes Mathematicae Universitatis Carolinae 50 (2009), no. 1, 113–124. [8] Kazimierz Alster, A note on the class of paracompact spaces whose product with every paracompact space is paracompact, Topology and its Applications 156 (2009), no. 7, 1345–1347. [9] Kazimierz Alster, Some remarks on a Telgarsky’s conjecture concerning products of paracompact spaces, Topology and its Applications 156 (2009), no. 8, 1545–1553. [10] Kazimierz Alster, Another note on the class of paracompact spaces whose product with every paracompact space is paracompact, Topology and its Applications 159 (2012), no. 6, 1640–1644. [11] Kazimierz Alster, On paracompactness in Cartesian products and Telgarsky’s game, Houston Journal of Mathematics 39 (2013), no. 4, 1401–1422. [12] Kazimierz Alster and Gary Gruenhage, Products of Lindelöf spaces and GO-spaces, Topology and its Applications 64 (1995), 23–36. [13] Kazimierz Alster and Piotr Szewczak, Productivity of paracompactness in the class of GO-spaces, Topology and its Applications 160 (2013), no. 17, 2183–2195. [14] C. Angosto, B. Cascales and I. Namioka, Distances to spaces of Baire one functions, Mathematische Zeitschrift 263 (2009), no. 1, 103–124. [15] Alexander V. Arhangel’skii, Mitrofan M. Choban, and Petar S. Kenderov, Topological games and topologies on groups, Mathematica Macedonica 8 (2010), 1–19. [16] Alexander V. Arhangel’skii, Mitrofan M. Choban, and Petar S. Kenderov, Topological games and continuity of group operations, Topology and its Applications 157 (2010), no. 16, 2542–2552. [17] Leandro F. Aurichi, D-spaces, topological games, and selection principles, Topology Proceedings 36 (2010), 107–122. [18] Leandro F. Aurichi, Selectively c.c.c. spaces, Topology and its Applications 160 (2013), no. 18, 2243–2250. [19] Leandro F. Aurichi and Angelo Bella, Topological games and productively countably tight spaces, Topology and its Applications 171 (2014), 7–14. [20] Leandro F. Aurichi and Angelo Bella, On a game theoretic cardinality bound, Topology and its Applications 192 (2015), 2–8.

658

Editorial

[21] Leandro F. Aurichi and Angelo Bella, When is a space Menger at infinity?, Applied General Topology 16 (2015), no. 1, 75–80. [22] Leandro F. Aurichi, Angelo Bella and Rodrigo R. Dias, Tightness games with bounded finite selections, Israel Journal of Mathematics, to appear. [23] Leandro F. Aurichi and Rodrigo R. Dias, Topological games and Alster spaces, Canadian Mathematical Bulletin 57 (2014), 683–696. [24] Leandro F. Aurichi, Rodrigo R. Dias and Lúcia R. Junqueira, On d- and D-separability, Topology and its Applications 159 (2012), no. 16, 3445–3452. [25] Leandro F. Aurichi and Dione A. Lara, Relations between a topological game and the Gδ -diagonal property, preprint, arXiv:1602.07002. [26] Leandro F. Aurichi, Santi Spadaro and Lyubomyr Zdomskyy, Selective versions of chain condition-type properties, Acta Mathematica Hungarica 148 (2016), no. 1, 1–16. [27] Antonio Avilés and David Guerrero Sánchez, Are Eberlein–Grothendieck scattered spaces σ-discrete?, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. RACSAM 108 (2014), no. 2, 849–859. [28] Liljana Babinkostova, Selective screenability game and covering dimension, Topology Proceedings 29 (2005), 13–17. [29] Liljana Babinkostova, Metrizable groups and strict o-boundedness, Matematički Vesnik 58 (2006), 131–138. [30] Liljana Babinkostova, Selective screenability in topological groups, Topology and its Applications 156 (2008), 2–9. [31] Liljana Babinkostova, Topological games and covering dimension, Topology Proceedings 38 (2011), 99–120. [32] Liljana Babinkostova, Topological groups and covering dimension, Topology and its Applications 158 (2011), no. 12, 1460–1470. [33] Liljana Babinkostova, Bruno A. Pansera and Marion Scheepers, Weak covering properties and infinite games, Topology and its Applications 159 (2012), no. 17, 3644–3657. [34] Liljana Babinkostova, Bruno A. Pansera and Marion Scheepers, Weak covering properties and selection principles, Topology and its Applications 160 (2013), no. 18, 2251–2271. [35] Liljana Babinkostova and Marion Scheepers, An infinite game on groups, Real Analysis Exchange 29 (2003/2004), no. 2, 739–753. [36] Liljana Babinkostova and Marion Scheepers, Selective strong screenability and a game, Topology Proceedings 47 (2016), 297–311. [37] Claude-Gaspard Bachet de Méziriac, Problèmes plaisants et délectables, qui se font par les nombres, Lyon, 1612; 2nd ed. Pierre Rigaud & Associés, Lyon, 1624. [38] L. Badger, An Ehrenfeucht game for the multivariate quantifiers of Malitz and some applications, Pacific Journal of Mathematics 72 (1977), 293–304. [39] René-Louis Baire, Sur les fonctions de variables réelles, Annali di Matematica Pura ed Applicata (3) 3 (1899), 1–123. [40] Matthew H. Baker, Uncountable sets and an infinite real number game, Mathematics Magazine 80 (2007), 377–380. [41] M. Balcerzak and B. Farkas, Covering properties of ideals, Archive for Mathematical Logic 52 (2013), no. 3, 279–294. [42] S. Baldwin, Possible point-open types of subsets of the reals, Topology and its Applications 38 (1991), 219–223. [43] Iryna Banakh, Taras Banakh and Kaori Yamazaki, Extenders for vector-valued functions, Studia Mathematica 191 (2009), no. 2, 123–150.

Editorial

659

[44] Taras Banakh, On index of total boundedness of (strictly) o-bounded groups, Topology and its Applications 120 (2002), 427–439. [45] Taras Banakh, Mitrofan Choban, Igor Guran and Igor Protasov, Some open problems in topological algebra, Visnyk L’vivs’kogo Universytetu. Seriya Mekhaniko-Matematychna 61 (2003), 13–20. [46] Taras Banakh, Peter Nickolas and Manuel Sanchis, Filter games and pathological subgroups of a countable product of lines, Journal of the Australian Mathematical Society 81 (2006), no. 3, 321–350. [47] T. O. Banakh and S. I. Pidkuyko, A game characterization of limit-detecting sequences in locally compact G-spaces, Matematychni Studii 21 (2004), 115–132. [48] Taras Banakh and Lyubomyr Zdomskyy, Selection principles and infinite games on multicovered spaces, in: Ljubiša D. R. Kočinac, ed., Selection principles and covering properties in topology. Quaderni di Matematica, 18. Dipartimento di Matematica, Seconda Università di Napoli, Caserta, 2006. pp. 1–51. [49] Paul Bankston and Wim Ruitenburg, Notions of relative ubiquity for invariant sets of relational structures, The Journal of Symbolic Logic 55 (1990), 948–986. [50] S. Baratella and S. Berardi, A parallel game semantics for linear logic, Archive for Mathematical Logic 36 (1997), no. 3, 189–217. [51] A. Bareche, The o-Malykhin property for spaces Ck (X), Topology and its Applications 160 (2013), no. 1, 143–148. [52] A. Bareche and A. Bouziad, Some results on separate and joint continuity, Topology and its Applications 157 (2010), no. 2, 327–335. [53] Doyel Barman and Alan Dow, Selective separability and SS + , Topology Proceedings 37 (2011), 181–204. [54] Doyel Barman and Alan Dow, Proper forcing axiom and selective separability, Topology and its Applications 159 (2012), no. 3, 806–813. [55] Michael Barr, John F. Kennison and R. Raphael, On productively Lindelöf spaces, Scientiae Mathematicae Japonicae 65 (2007), no. 3, 319–332. [56] Tomek Bartoszynski, Winfried Just and Marion Scheepers, Covering games and the Banach–Mazur game: k-tactics, Canadian Journal of Mathematics 45 (1993), no. 5, 897–929. [57] Tomek Bartoszynski and Marion Scheepers, Filters and games, Proceedings of the American Mathematical Society 123 (1995), 2529–2534. [58] James E. Baumgartner, Applications of the proper forcing axiom, in: Kenneth Kunen and Jerry E. Vaughan, eds., Handbook of set-theoretic topology. North-Holland, Amsterdam, 1984. pp. 913–959. [59] J. Baumgartner, F. Galvin, R. Laver and R. McKenzie, Game theoretic versions of partition relations, in: A. Hajnal, R. Rado and Vera T. Sós, eds., Infinite and finite sets. Vol. I. Colloquia Mathematica Societatis János Bolyai, 10. North-Holland, Amsterdam–London, 1975. pp. 131–135. [60] Veronica Becher and Serge Grigorieff, Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization, Mathematical Structures in Computer Science 25 (2015), no. 7, 1490–1519. [61] József Beck, Van der Waerden and Ramsey type games, Combinatorica 1 (1981), 103–116. [62] József Beck and László Csirmaz, Variations on a game, Journal of Combinatorial Theory, Series A 33 (1982), no. 3, 297–315. [63] H. Becker, AD and the supercompactness of ℵ1 , Journal of Symbolic Logic 46 (1981), no. 4, 822–842. [64] H. Becker, Determinacy implies that ℵ2 is supercompact, Israel Journal of Mathematics 40 (1981), no. 3, 229–234. [65] H. Becker, Determinacy of Banach games, Journal of Symbolic Logic 50 (1985), no. 1, 110–122. [66] Jocelyn R. Bell, An infinite game with topological consequences, Topology and its Applications 175 (2014), 1–14.

660

Editorial

[67] Angelo Bella, When is a Pixley–Roy hyperspace SS+ ?, Topology and its Applications 160 (2013), no. 1, 99–104. [68] Angelo Bella, Some observations on compact indestructible spaces, Topology and its Applications 160 (2013), no. 13, 1588–1591. [69] Angelo Bella, On two selection principles and the corresponding games, Topology and its Applications 160 (2013), no. 18, 2309–2313. [70] Angelo Bella, Mikhail Matveev and Santi Spadaro, Variations of selective separability II: Discrete sets and the influence of convergence and maximality, Topology and its Applications 159 (2012), no. 1, 253–271. [71] Angelo Bella and Santi Spadaro, Infinite games and cardinal properties of topological spaces, Houston Journal of Mathematics 41 (2015), no. 3, 1063–1077. [72] Angelo Bella, Seçil Tokgöz and Lyubomyr Zdomskyy, Menger remainders of topological groups, Archive for Mathematical Logic 55 (2016), no. 5, 767–784. [73] Ivar Bendixson, Quelques théorèmes de la théorie des ensembles de points, Acta Mathematica 2 (1883), 415–429. [74] Harold Bennett, Dennis Burke and David Lutzer, The Big Bush machine, Topology and its Applications 159 (2012), no. 6, 1514–1528. [75] Harold Bennett and David Lutzer, Strong completeness properties in topology, Questions and Answers in General Topology 27 (2009), no. 2, 107–124. [76] Harold Bennett and David Lutzer, Subcompactness and domain representability in GO-spaces on sets of real numbers, Topology and its Applications 156 (2009), 939–950. [77] Harold Bennett and David Lutzer, Domain representability of certain function spaces, Topology and its Applications 156 (2009), 1937–1942. [78] Harold Bennett, David Lutzer and G. M. Reed, Domain representability and the Choquet game in Moore and BCO-spaces, Topology and its Applications 155 (2008), no. 5, 445–458. [79] Harold Bennett, David Lutzer and Mary Ellen Rudin, Lines, trees, and branch spaces, Order 19 (2002), no. 4, 367–384. [80] Claude Berge, Topological games with perfect information, in: M. Dresher, A. W. Tucker and P. Wolfe, eds., Contributions to the theory of games. Vol. III. Annals of Mathematics Studies, 39. Princeton University Press, Princeton, 1957. pp. 165–178. [81] Claude Berge, Théorie générale des jeux à n personnes. Mémorial des Sciences Mathématiques, 138. Gauthier-Villars, Paris, 1957. 114 pp. [82] Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning ways for your mathematical plays. Vol. 1. Games in general. Academic Press, London–New York, 1982. xxxii+426+xi pp. [83] Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning ways for your mathematical plays. Vol. 2. Games in particular. Academic Press, London–New York, 1982. pp. i–xxxii and 427–850 and i–xix. [84] Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning ways for your mathematical plays. Vol. 1. 2nd ed. Academic Press, London–New York, 1982. xx+276 pp. [85] Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning ways for your mathematical plays. Vol. 2. 2nd ed. Academic Press, London–New York, 1982. pp. i–xviii and 277–473. [86] Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning ways for your mathematical plays. Vol. 3. 2nd ed. Academic Press, London–New York, 1982. pp. i–xxii and 461–801. [87] Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning ways for your mathematical plays. Vol. 4. 2nd ed. Academic Press, London–New York, 1982. pp. i–xvi and 801–1004. [88] Andrew J. Berner, Types of strategies in point-picking games, Topology Proceedings 9 (1984), 227–242.

Editorial

661

[89] Andrew J. Berner and István Juhász, Point-picking games and HFD’s, in: G. H. Müller and M. M. Richter, eds., Models and Sets. Lecture Notes in Mathematics, 1103. Springer-Verlag, Berlin– New York, 1984. pp. 53–66. [90] David Blackwell, Infinite games and analytic sets, Proceedings of the National Academy of Sciences of the United States of America 58 (1967), 1836–1837. [91] David Blackwell, Borel-programmable functions, Annals of Probability 6 (1978), no. 2, 321–324. [92] David Blackwell, Borel sets via games, Annals of Probability 9 (1981), no. 2, 321–322. [93] Andreas Blass, Complexity of winning strategies, Discrete Mathematics 3 (1972), 295–300. [94] Andreas Blass, Degrees of indeterminacy of games, Fundamenta Mathematicae 77 (1972), 151–166. [95] Andreas Blass, Determinateness and continuity, Proceedings of the American Mathematical Society 37 (1973), 572–574. [96] Andreas Blass, The equivalence of two strong forms of determinacy, Proceedings of the American Mathematical Society 52 (1975), 373–376. [97] Émile Borel, La théorie du jeu et les équations intégrales à noyau symétrique, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris 173 (1921), 1304–1308; English transl.: The theory of play and integral equations with skew symmetric kernels, Econometrica 21 (1953), 97–100. [98] Émile Borel, Sur les jeux où interviennent l’hasard et l’habileté des joueurs, in: É. Borel, Éléments de la théorie des probabilités. 3e éd. Hermann, Paris, 1924. pp. 204–221; English transl.: On games that involve chance and the skill of the players, Econometrica 21 (1953), 101–115. [99] Émile Borel, Sur les systèmes de formes linéaires à déterminant symétrique gauche et la théorie générale du jeu, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris 184 (1927), 52–54; English transl.: On systems of linear forms of skew symmetric determinant and the general theory of play, Econometrica 21 (1953), 116–117. [100] Piotr Borodulin-Nadzieja and Grzegorz Plebanek, On compactness of measures on Polish spaces, Illinois Journal of Mathematics 49 (2005), no. 2, 531–545. [101] C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of Mathematics 3 (1901), 35–39. [102] Ahmed Bouziad, The Ellis theorem and continuity in groups, Topology and its Applications 50 (1993), 73–80. [103] Ahmed Bouziad, Every Čech-analytic Baire semitopological group is a topological group, Proceedings of the American Mathematical Society 124 (1996), no. 3, 953–959. [104] Ahmed Bouziad, Cliquishness and quasicontinuity of two-variable maps, Canadian Mathematical Bulletin 56 (2013), 55–64. [105] Ahmed Bouziad, L’ubica Holá, and László Zsilinszky, On hereditary Baireness of the Vietoris topology, Topology and its Applications 115 (2001), 247–258. [106] William R. Brian, Preservation and destruction in simple refinements, Topology and its Applications 178 (2014), 236–247. [107] J. Richard Büchi, Algorithmisches Konstruieren von Automaten und die Herstellung von Gewinnstrategien nach Cantor–Bendixson, in: J. Dörr and G. Hotz, eds., Automatentheorie und formale Sprachen. Berichte aus dem Mathematischen Forschungsinstitut Oberwolfach, 3. Bibliographisches Institut, Hochschultaschenbücher-Verlag, Mannheim–Wien–Zürich, 1970. pp. 385–398. [108] J. Richard Büchi, Using determinacy of games to eliminate quantifiers, in: M. Karpiński, ed., Fundamentals of computation theory. Proceedings of the 1977 International FCT-Conference, Poznań– Kórnik, Poland, September 19–23, 1977. Lecture Notes in Computer Science, 56. Springer-Verlag, Berlin–Heidelberg–New York, 1977. pp. 367–378. [109] J. Richard Büchi, State-strategies for games in Fσδ ∩ Gδσ , Journal of Symbolic Logic 48 (1983), 1171–1198.

662

Editorial

[110] Lev Bukovský, The structure of the real line. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne, 71. Birkhäuser, Basel, 2011. xvi+536 pp. [111] Barry Burd and Gaisi Takeuti, Weaves, Annals of the Japan Association for Philosophy of Science 5 (1977), no. 2, 47–56. [112] John P. Burgess, Classical hierarchies from a modern standpoint. Part I. C-sets, Fundamenta Mathematicae 115 (1983), no. 2, 81–95. [113] John P. Burgess, Classical hierarchies from a modern standpoint. Part II. R-sets, Fundamenta Mathematicae 115 (1983), no. 2, 97–105. [114] John P. Burgess and Richard A. Lockhart, Classical hierarchies from a modern standpoint. Part III. BP-sets, Fundamenta Mathematicae 115 (1983), no. 2, 107–118. [115] John Burgess and Douglas Miller, Remarks on invariant descriptive set theory, Fundamenta Mathematicae 90 (1975), no. 1, 53–75. [116] Peter Burton and Franklin D. Tall, Productive Lindelöfness and a class of spaces considered by Z. Frolík, Topology and its Applications 159 (2012), no. 13, 3002–3011. [117] Georg Cantor, Über unendliche, lineare Punktmannigfaltigkeiten, Mathematische Annalen 21 (1883), 545–586. [118] Jiling Cao, Infinite games associated with asymmetric topology and applications, 2000, 17 pp. http://researchspace.auckland.ac.nz/bitstream/handle/2292/4987/442.pdf [119] Jiling Cao, Generalized metric properties and kernels of set-valued maps, Topology and its Applications 146–147 (2005), 603–609. [120] Jiling Cao, The Baire property in hit-and-miss hypertopologies, Topology and its Applications 157 (2010), no. 8, 1325–1334. [121] Jiling Cao, David Gauld, Sina Greenwood and Abdul Mohamad, Games and metrisability of manifolds, New Zealand Journal of Mathematics 37 (2008), 1–8. [122] Jiling Cao and Warren B. Moors, Separate and joint continuity of homomorphisms defined on topological groups, New Zealand Journal of Mathematics 33 (2004), 41–45. [123] Jiling Cao and Warren B. Moors, A survey on topological games and their applications in analysis, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. RACSAM 100 (2006), no. 1–2, 39–49. [124] Jiling Cao, Warren B. Moors and Ivan L. Reilly, Topological properties defined by games and their applications, Topology and its Applications 123 (2002), 47–55. [125] Jiling Cao and Zbigniew Piotrowski, Two variations of the Choquet game, Kyungpook Mathematical Journal 44 (2004), no. 4, 495–504. [126] Jiling Cao and Artur H. Tomita, Baire spaces, Tychonoff powers and the Vietoris topology, Proceedings of the American Mathematical Society 135 (2007), 1565–1573. [127] Jiling Cao and Artur H. Tomita, The Wijsman hyperspace of a metric hereditarily Baire space is Baire, Topology and its Applications 157 (2010), no. 1, 145–151. [128] Jiling Cao and Artur H. Tomita, Bornologies, topological games and function spaces, Topology and its Applications 184 (2015), 16–28. [129] Agata Caserta and Giuseppe Di Maio, Variations on selective separability in non-regular spaces, Topology and its Applications 160 (2013), no. 18, 2379–2385. [130] A. Caserta, G. Di Maio and Lj. D. R. Kočinac, Versions of properties (a) and (pp), Topology and its Applications 158 (2011), no. 12, 1360–1368. [131] Douglas Cenzer and Jeffrey Remmel, Recursively presented games and strategies, Mathematical Social Sciences 24 (1992), 117–139. [132] Eduard Čech, On bicompact spaces, Annals of Mathematics 38 (1937), 823–844. [133] J. Chaber, M. M. Čoban and K. Nagami, On monotonic generalizations of Moore spaces, Čechcomplete spaces and p-spaces, Fundamenta Mathematicae 84 (1974), no. 2, 107–119.

Editorial

663

[134] Debraj Chandra and Pratulananda Das, Some further investigations of open covers and selection principles using ideals, Topology Proceedings 39 (2012), 281–291. [135] M. M. Choban and N. K. Dodon, Theory of P-scattered spaces (in Russian). Shtiintsa, Kishinev, 1979. 100 pp. [136] M. M. Choban, P. S. Kenderov and J. P. Revalski, Topological spaces related to the Banach–Mazur game and the generic well-posedness of optimization problems, Set-Valued Analysis 3 (1995), 263–279. [137] Mitrofan M. Choban, Petar S. Kenderov and Julian P. Revalski, Variational principles and topological games, Topology and its Applications 159 (2012), no. 17, 3550–3562. [138] Mitrofan M. Choban, Petar S. Kenderov and Warren B. Moors, Pseudo-compact semi-topological groups, Mathematics and Education in Mathematics. Proceedings of the Forty-First Spring Conference of the Union of Bulgarian Mathematicians, Borovetz, April 9–12, 2012 (2012), 53–59. [139] Mitrofan M. Choban, Petar S. Kenderov and Warren B. Moors, Eberlein theorem and norm continuity of pointwise continuous mappings into function spaces, Topology and its Applications 169 (2014), 108–119. [140] Gustave Choquet, Difficultés d’une théorie de la catégorie dans les espaces topologiques quelconques, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris 232 (1951), 2281–2283. [141] Gustave Choquet, Une classe régulière d’espaces de Baire, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris 246 (1958), 218–220. [142] Gustave Choquet, Lectures on analysis. Vol. I: Integration and topological vector spaces. Edited by J. Marsden, T. Lance and S. Gelbart. Mathematics Lecture Note Series. W. A. Benjamin, Inc., New York–Amsterdam, 1969. xx+360+xxi pp. [143] Gustave Choquet, Lectures on analysis. Vol. II: Representation theory. Edited by J. Marsden, T. Lance and S. Gelbart. Mathematics Lecture Note Series. W. A. Benjamin, Inc., New York–Amsterdam, 1969. xx+315+xxi pp. [144] Gustave Choquet, Lectures on analysis. Vol. III: Infinite dimensional measures and problem solutions. Edited by J. Marsden, T. Lance and S. Gelbart. Mathematics Lecture Note Series. W. A. Benjamin, Inc., New York–Amsterdam, 1969. xix+321+xxi pp. [145] J. P. R. Christensen, Joint continuity of separately continuous functions, Proceedings of the American Mathematical Society 82 (1981), 455–461. [146] J. P. R. Christensen, Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set-valued mappings, Proceedings of the American Mathematical Society 86 (1982), 649–655. [147] J. P. R. Christensen, Remarks on Namioka spaces and R. E. Johnson’s theorem on the norm separability of the range of certain mappings, Mathematica Scandinavica 52 (1983), no. 1, 112–116. [148] Steven Clontz and Gary Gruenhage, Proximal compact spaces are Corson compact, Topology and its Applications 173 (2014), 1–8. [149] Peter Clote, A generalization of the limit lemma and clopen games, Journal of Symbolic Logic 51 (1986), no. 2, 273–291. [150] Paul E. Cohen, Products of Baire spaces, Proceedings of the American Mathematical Society 55 (1976), 119–124. [151] W. Wistar Comfort, Deciding some undecidable topological statements, Annals of the New York Academy of Sciences. Papers in Mathematics 321 (1979), 9–26. [152] Samuel Coskey and Philipp Schlicht, Generalized Choquet spaces, Fundamenta Mathematicae 232 (2016), 227–248. [153] M. Cox and R. Kaye, Amphi-ZF: axioms for Conway games, Archive for Mathematical Logic 51 (2012), no. 3, 353–371.

664

Editorial

[154] Ákos Császár, General topology. Akadémiai Kiadó, Budapest, and Adam Hilger Ltd., Bristol, 1978. 488 pp. [155] László Csirmaz and Zsigmond Nagy, On a generalization of the game Go-moku. II, Studia Scientiarum Mathematicarum Hungarica 14 (1979), no. 4, 461–469. [156] D. W. Cunningham, Strong partition cardinals and determinacy in K(R), Archive for Mathematical Logic 54 (2015), no. 1, 173–192. [157] Peg Daniels, Kenneth Kunen and Haoxuan Zhou, On the open–open game, Fundamenta Mathematicae 145 (1994), 205–220. [158] Peg Daniels and Gary Gruenhage, The point-open type of subsets of reals, Topology and its Applications 37 (1990), 53–64. [159] Pratulananda Das, Ljubiša D. R. Kočinac and Debraj Chandra, Some remarks on open covers and selection principles using ideals, Topology and its Applications 202 (2016), 183–193. [160] Brian L. Davis, Compact families and continuity of the inverse, Matematički Vesnik 66 (2014), no. 4, 430–436. [161] Morton Davis, Infinite games of perfect information, in: M. Dresher, L. S. Shapley and A. W. Tucker, eds., Advances in game theory. Annals of Mathematics Studies, 52. Princeton University Press, Princeton, 1964. pp. 85–101. [162] Gabriel Debs, Quelques propriétés des espaces α-favorables et applications aux convexes compacts, Annales de l’Institut Fourier 30 (1980), no. 2, 29–43. [163] Gabriel Debs, An example of an α-favourable topological space with no α-winning tactic, in: G. Choquet, M. Rogalski and J. Saint-Raymond, eds., Séminaire d’initiation à l’analyse. Publications Mathématiques de l’Université Pierre et Marie Curie, Paris, 1984. [164] Gabriel Debs, Strategies gagnantes dans certains jeux topologiques, Fundamenta Mathematicae 126 (1985), 93–105. [165] Gabriel Debs, Points de continuité d’une fonction séparément continue, Proceedings of the American Mathematical Society 97 (1986), 167–176. [166] Gabriel Debs and Jean Saint-Raymond, Topological games and optimization problems, Mathematika 41 (1994), no. 1, 117–132. [167] Gabriel Debs and Jean Saint-Raymond, Compact covering and game determinacy, Topology and its Applications 68 (1996), no. 2, 153–185. [168] M. Dečo, Strongly unbounded and strongly dominating sets of reals generalized, Archive for Mathematical Logic 54 (2015), no. 7, 825–838. [169] M. Dečo and M. Repický, Strongly dominating sets of reals, Archive for Mathematical Logic 52 (2013), no. 7, 827–846. [170] Claude Dellacherie, Ensembles aléatoires, II, in: Séminaire de Probabilités, III. Université de Strasbourg, 1967/68. Lecture Notes in Mathematics, 88. Springer-Verlag, Heidelberg–Berlin, 1969. pp. 115–136. [171] Claude Dellacherie, Ensembles minces associés à une capacité, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Paris 269 (1969), 766–769. [172] Claude Dellacherie, Quelques résultats sur les capacités, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Paris 269 (1969), 576–579. [173] Claude Dellacherie, Espaces pavés et rabotages, in: Séminaire de Probabilités, V. Université de Strasbourg, 1969/70. Lecture Notes in Mathematics, 191. Springer-Verlag, Berlin–Heidelberg–New York, 1971. pp. 103–126. [174] Claude Dellacherie, Capacités et processus stochastiques. Ergebnisse der Mathematik und ihrer Grenzgebiete, 67. Springer-Verlag, Berlin–Heidelberg–New York, 1972. ix+155 pp. [175] Claude Dellacherie, Ensembles analytiques, capacités, mesures de Hausdorff. Lecture Notes in Mathematics, 295. Springer-Verlag, Berlin–Heidelberg–New York, 1972. xii+123 pp.

Editorial

665

[176] Claude Dellacherie, Quelques résultats sur les maisons de jeux analytiques, in: Séminaire de Probabilités, XIX. Université de Strasbourg, 1983/84. Lecture Notes in Mathematics, 1123. Springer-Verlag, Heidelberg–Berlin, 1985. pp. 222–229. [177] Marc DeWilde, Théorème du graphe fermé et espaces à réseaux absorbants, Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie 11 (1967), 224–238. [178] Giuseppe Di Maio and Ljubiša D. R. Kočinac, Boundedness in topological spaces, Matematički Vesnik 60 (2008), no. 2, 137–148. [179] Giuseppe Di Maio and Ljubiša D. R. Kočinac, A note on quasi-Menger and similar spaces, Topology and its Applications 179 (2015), 148–155. [180] Rodrigo R. Dias and Marion Scheepers, Selective games on binary relations, Topology and its Applications 192 (2015), 58–83. [181] Rodrigo R. Dias and Franklin D. Tall, Indestructibility of compact spaces, Topology and its Applications 160 (2013), no. 18, 2411–2426. [182] D. Djurčić, Lj. D. R. Kočinac and M. R. Žižović, Some properties of rapidly varying sequences, Journal of Mathematical Analysis and Applications 327 (2007), no. 2, 1297–1306. [183] D. Djurčić, Lj. D. R. Kočinac and M. R. Žižović, Classes of sequences of real numbers, games and selection properties, Topology and its Applications 156 (2008), no. 1, 46–55. [184] Martin Doležal, Characterization of σ-porosity via an infinite game, Fundamenta Mathematicae 216 (2012), 109–118. [185] François G. Dorais and Carl Mummert, Stationary and convergent strategies in Choquet games, Fundamenta Mathematicae 209 (2010), 59–79. [186] A. Dorantes-Aldama, R. Rojas-Hernández and Á. Tamariz-Mascarúa, Weak pseudocompactness on spaces of continuous functions, Topology and its Applications 196 (2015), part A, 72–91. [187] Alan Dow and Gary Gruenhage, A point-picking game and semi-selective filters, Topology Proceedings 14 (1989), no. 2, 221–238. [188] A. Dow and T. Peters, Game strategies yield remote points, Topology and its Applications 27 (1987), no. 3, 245–256. [189] Alexander Dranishnikov and Michael Zarichnyi, Asymptotic dimension, decomposition complexity, and Haver’s property C, Topology and its Applications 169 (2014), 99–107. [190] Melvin Dresher, Games of strategy. Theory and applications. Prentice Hall Applied Mathematics Series. Prentice Hall, Inc., Englewood Cliffs, 1961. xii+186 pp. [191] Haosui Duanmu, Franklin D. Tall and Lyubomyr Zdomskyy, Productively Lindelöf and indestructibly Lindelöf spaces, Topology and its Applications 160 (2013), no. 18, 2443–2453. [192] Jakub Duda and Boaz Tsaban, Null sets and games in Banach spaces, Topology and its Applications 156 (2008), no. 1, 56–60. [193] Andrzej Ehrenfeucht, Applications of games to some problems of mathematical logic, Bulletin de l’Académie Polonaise des Sciences 5 (1957), 35–37. [194] Andrzej Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fundamenta Mathematicae 49 (1961), 129–141. [195] Andrzej Ehrenfeucht and Gadi Moran, Size direction games over the real line. I, Israel Journal of Mathematics 14 (1973), 163–168. [196] T. Eisworth, Near coherence and filter games, Archive for Mathematical Logic 40 (2001), no. 3, 235–242. [197] E. Ellentuck, A new proof that analytic sets are Ramsey, Journal of Symbolic Logic 39 (1974), 163–165. [198] Ryszard Engelking, General topology. Monografie Matematyczne, 60. PWN—Polish Scientific Publishers, Warszawa, 1977. 626 pp. [199] Ryszard Engelking, General topology. 2nd ed. Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989. viii+529 pp.

666

Editorial

[200] Paul Erdős and Richard Radó, Combinatorial theorems on classifications of subsets of a given set, Proceedings of the London Mathematical Society 3 (1952), 417–493. [201] I. Farah and J. Zapletal, Four and more, Annals of Pure and Applied Logic 140 (2006), no. 1–3, pp. 3–39. [202] V. V. Fedorchuk and E. V. Osipov, Certain classes of weakly infinite-dimensional spaces and topological games, Topology and its Applications 156 (2008), no. 1, 61–69. [203] J. E. Fenstad, The axiom of determinateness, in: J. E. Fenstad, ed., Proceedings of the Second Scandinavian Logic Symposium (University of Oslo, Oslo, 1970). Studies in Logic and the Foundations of Mathematics, 63. North-Holland, Amsterdam–London, 1971. pp. 41–61. [204] Olivier Finkel, Topological properties of omega context-free languages, Theoretical Computer Science 262 (2001), no. 1–2, 669–697. [205] William G. Fleissner, Left separated spaces with point-countable bases, Transactions of the American Mathematical Society 294 (1986), no. 2, 665–677. [206] William G. Fleissner and Kenneth Kunen, Barely Baire spaces, Fundamenta Mathematicae 101 (1978), 229–240. [207] William G. Fleissner and Lynne Yengulalp, From subcompact to domain representable, Topology and its Applications 195 (2015), 174–195. [208] Matthew Foreman, Games played on Boolean algebras, Journal of Symbolic Logic 48 (1983), 714–723. [209] Aviezri S. Fraenkel, Selected bibliography on combinatorial games and some related material, in: R. K. Guy, ed., Combinatorial games. Proceedings of Symposia in Applied Mathematics, 43. American Mathematical Society, Providence, 1991. pp. 191–226. [210] Aviezri S. Fraenkel, Combinatorial games: Selected bibliography with a succinct gourmet introduction, in: R. J. Nowakowski, ed., Games of no chance. Mathematical Sciences Research Institute Publications, 29. Cambridge University Press, Cambridge, 1996. pp. 493–537. [211] Aviezri S. Fraenkel, Combinatorial games: Selected bibliography with a succinct gourmet introduction, in: R. J. Nowakowski, ed., More games of no chance. Mathematical Sciences Research Institute Publications, 42. Cambridge University Press, Cambridge, 2002. pp. 475–535. [212] Aviezri S. Fraenkel, Combinatorial games: Selected bibliography with a succinct gourmet introduction, in: M. H. Albert and R. J. Nowakowski, eds., Games of no chance 3. Mathematical Sciences Research Institute Publications, 56. Cambridge University Press, Cambridge, 2009. pp. 491–575. [213] Aviezri S. Fraenkel, Combinatorial games: Selected bibliography with a succinct gourmet introduction, The Electronic Journal of Combinatorics, #DS2. http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS2 [214] Aviezri S. Fraenkel and Richard J. Nowakowski, Combinatorial games: Selected bibliography with a succinct gourmet introduction, in: R. J. Nowakowski, ed., Games of no chance 4. Mathematical Sciences Research Institute Publications, 63. Cambridge University Press, Cambridge, 2015. pp. 309–339. [215] Ryszard Frankiewicz and Sławomir Szczepaniak, On partitions of Ellentuck-large sets, Topology and its Applications 167 (2014), 80–86. [216] Chris Freiling, An answer to a question of Schmidt on (α, β) games, Journal of Number Theory 15 (1982), no. 2, 226–228. [217] Chris Freiling, Some new games and badly approximable numbers, Journal of Number Theory 19 (1984), no. 2, 195–202. [218] Chris Freiling, Banach games, Journal of Symbolic Logic 49 (1984), no. 2, 343–375. [219] David H. Fremlin, Weakly α-favourable measure spaces, Fundamenta Mathematicae 165 (2000), no. 1, 67–94. [220] David H. Fremlin, Topological spaces after forcing, preprint, 2005. http://www.essex.ac.uk/maths/people/fremlin/preprints.htm http://www.essex.ac.uk/maths/people/fremlin/n05622.pdf

Editorial

667

[221] Avner Friedman, Differential games. Pure and Applied Mathematics, 25. Wiley Interscience, New York–London, 1971. xii+350 pp. [222] Harvey M. Friedman, Determinateness in the low projective hierarchy, Fundamenta Mathematicae 72 (1971), 79–95. [223] Zdeněk Frolík, Baire spaces and some generalizations of complete metric spaces, Czechoslovak Mathematical Journal 11 (1961), 237–248. [224] David Gale, Topological games at Princeton, A mathematical memoir, Games and Economic Behavior 66 (2009), no. 2, 647–656. [225] David Gale and F. M. Stewart, Jr., Infinite games with perfect information, in: H. W. Kuhn and A. W. Tucker, eds., Contribution to the theory of games. Vol. II. Annals of Mathematics Studies, 28. Princeton University Press, Princeton, 1953. pp. 245–266. [226] Fred Galvin, Indeterminacy of point-open games, Bulletin de l’Académie Polonaise des Sciences 26 (1978), 445–449. [227] Fred Galvin, Thomas Jech and Menachem Magidor, An ideal game, Journal of Symbolic Logic 43 (1978), 284–292. [228] Fred Galvin and Arnold W. Miller, γ-sets and other singular sets of real numbers, Topology and its Applications 17 (1984), 145–155. [229] Fred Galvin, Jan Mycielski and Robert M. Solovay, Strong measure zero and infinite games, preprint. http://www.math.wisc.edu/~miller/old/m873-14/GalvinMycielskiSolovay.pdf [230] Fred Galvin and Karel Prikry, Borel sets and Ramsey’s theorem, Journal of Symbolic Logic 38 (1973), 193–198. [231] Fred Galvin and Marion Scheepers, A Ramseyan theorem and an infinite game, Journal of Combinatorial Theory, Series A 59 (1992), 125–129. [232] Fred Galvin and Marion Scheepers, Baire spaces and infinite games, Archive for Mathematical Logic 55 (2016), no. 1, 85–104. [233] Fred Galvin and Rastislav Telgársky, Stationary strategies in topological games, Topology and its Applications 22 (1986), 51–69. [234] S. García-Ferreira and R. A. González-Silva, Topological games defined by ultrafilters, Topology and its Applications 137 (2004), 159–166. [235] S. García-Ferreira, R. A. González-Silva and A. H. Tomita, Topological games and product spaces, Commentationes Mathematicae Universitatis Carolinae 43 (2002), no. 4, 675–685. [236] R. J. Gardner, On concentrated sets, Fundamenta Mathematicae 102 (1979), 45–53. [237] David Gauld, Covering properties and metrisation of manifolds, Topology Proceedings 23 (1998), Summer, 127–140. [238] David Gauld, Selections, games and metrisability of manifolds, preprint, arXiv:1212.0589. [239] Jelle Gerbrandy, Communication strategies in games, Journal of Applied Non-Classical Logics 17 (2007), no. 2, 197–211. [240] J. Gerlits, Some properties of C(X), II, Topology and its Applications 15 (1983), 155–162. [241] János Gerlits, István Juhász, Lajos Soukup and Zoltán Szentmiklóssy, Characterizing continuity by preserving compactness and connectedness, Topology and its Applications 138 (2004), 21–44. [242] J. Gerlits and Zs. Nagy, On α-left orderings, in: Á. Császár, ed., Topology. Vol. I. Colloquia Mathematica Societatis János Bolyai, 23. North-Holland, Amsterdam–Oxford–New York, 1980. pp. 501–520. [243] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology and its Applications 14 (1982), 151–161. [244] J. R. Giles and W. B. Moors, Generic continuity of restricted weak upper semi-continuous set-valued mappings, Set-Valued Analysis 4 (1996), 25–39. [245] J. R. Giles and W. B. Moors, Generic continuity of minimal set-valued mappings, Journal of the Australian Mathematical Society. Series A 63 (1997), no. 2, 238–262.

668

Editorial

[246] R. A. González-Silva and M. Hrušák, More on ultrafilters and topological games, Applied General Topology 10 (2009), no. 2, 207–219. [247] Erich Grädel, Banach–Mazur games on graphs, in: R. Hariharan, M. Mukund and V. Vinay, eds., Foundations of software technology and theoretical computer science (Bangalore) 2008. Leibniz International Proceedings in Informatics, 2. Schloss Dagstuhl, Leibniz-Zentrum für Informatik, Saarbrücken– Wadern, 2008. pp. 364–382. [248] Erich Grädel and Simon Leßenich, Banach–Mazur games with simple winning strategies, in: P. Cégielski and A. Durand, eds., Computer science logic 2012. Leibniz International Proceedings in Informatics, 16. Schloss Dagstuhl, Leibniz-Zentrum für Informatik, Saarbrücken–Wadern, 2012. pp. 305–319. [249] Erich Grädel and Igor Walukiewicz, Positional determinacy of games with infinitely many priorities, Logical Methods in Computer Science 2 (2006), no. 4, #6. [250] S. Grigorieff, Combinatorics on ideals and forcing, Annals of Mathematical Logic 3 (1971), no. 4, 363–394. [251] Gary Gruenhage, Continuously perfectly normal spaces and some generalizations, Transactions of the American Mathematical Society 224 (1976), no. 2, 323–338. [252] Gary Gruenhage, Infinite games and generalizations of first-countable spaces, General Topology and its Applications 6 (1976), 339–352. [253] Gary Gruenhage, Covering properties on X 2 \Δ, W-sets, and compact subsets of Σ-products, Topology and its Applications 17 (1984), no. 3, 287–304. [254] Gary Gruenhage, Applications of a set-theoretic lemma, Proceedings of the American Mathematical Society 92 (1984), 133–140. [255] Gary Gruenhage, Games, covering properties and Eberlein compacts, Topology and its Applications 23 (1986), 291–297. [256] Gary Gruenhage, Products of Fréchet spaces, Topology Proceedings 30 (2006), 475–499. [257] Gary Gruenhage, The story of a topological game, Rocky Mountain Journal of Mathematics 36 (2006), 1885–1914. [258] Gary Gruenhage, A survey of D-spaces, in: L. Babinkostova, A. E. Caicedo, S. Geschke and M. Scheepers, eds., Set theory and its applications. Contemporary Mathematics, 533. American Mathematical Society, Providence, 2011. pp. 13–28. [259] Gary Gruenhage, Monotonically monolithic spaces, Corson compacts, and D-spaces, Topology and its Applications 159 (2012), no. 6, 1559–1564. [260] Gary Gruenhage and Glenn Hughes, Completeness properties in the compact-open topology on fans, Houston Journal of Mathematics 41 (2015), no. 1, 321–337. [261] Gary Gruenhage and Paul J. Szeptycki, Fréchet–Urysohn for finite sets, Topology and its Applications 151 (2005), no. 1–3, 238–259. [262] Gary Gruenhage and Paul J. Szeptycki, Fréchet–Urysohn for finite sets, II, Topology and its Applications, 154 (2007), no. 15, 2856–2872. [263] Gary Gruenhage and Paul Szeptycki, A game and its relation to netweight and D-spaces, Commentationes Mathematicae Universitatis Carolinae, 52 (2011), no. 4, 561–568. [264] Gary Gruenhage and Yukinobu Yajima, A filter property of submetacompactness and its application to products, Topology and its Applications 36 (1990), 43–55. [265] P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6–8; reprinted: Eureka 27 (1964), 9–11. [266] David Guerrero-Sánchez, Closure-preserving covers in function spaces, Commentationes Mathematicae Universitatis Carolinae 51 (2010), no. 4, 693–703. [267] David Guerrero Sánchez, Decompositions of function spaces, Topology Proceedings 47 (2016), 147–161. [268] Yuri Gurevich, Games people play, preprint, 1988. http://research.microsoft.com/en-us/um/people/gurevich/opera/86.pdf

Editorial

669

[269] Otomar Hájek, Pursuit games. An introduction to the theory and applications of differential games of pursuit and evasion. Mathematics in Science and Engineering, 120. Academic Press, New York– London, 1975. xii+266 pp. [270] L. Halbeisen, Symmetries between two Ramsey properties, Archive for Mathematical Logic 37 (1998), no. 4, 241–260. [271] Lorenz Halbeisen and Benedikt Löwe, Techniques for approaching the dual Ramsey property in the projective hierarchy, Pacific Journal of Mathematics 200 (2001), no. 1, 119–145. [272] Lorenz Halbeisen and Pierre Matet, A generalization of the Dual Ellentuck Theorem, Archive for Mathematical Logic 42 (2003), no. 2, 103–128. [273] Masahiro Hamano and Mitsuhiro Okada, A direct independence proof of Buchholz’s Hydra Game on finite labeled trees, Archive for Mathematical Logic 37 (1998), no. 2, 67–89. [274] Masahiro Hamano and Mitsuhiro Okada, A relationship among Gentzen’s proof-reduction, Kirby– Paris’ Hydra Game and Buchholz’s Hydra Game, Mathematical Logic Quarterly 43 (1997), 103–120. [275] Haim Hanani, A generalization of the Banach and Mazur game, Transactions of the American Mathematical Society 94 (1960), 86–102. [276] Haim Hanani and Marian Reichbach, Some characterization of a class of unavoidable compact sets in the game of Banach and Mazur, Pacific Journal of Mathematics 11 (1961), 945–959. [277] Jun Hanaoka and Hidenori Tanaka, Σ-products of paracompact DC-like spaces, Topology Proceedings 26 (2001–2002), no. 1, 199–212. [278] Don L. Hancock, Using the Banach–Mazur game to introduce different sizes of infinite sets, Mathematics and Computer Education 32 (1998), no. 1, 44–50. [279] Christopher S. Hardin and Alan D. Taylor, Limit-like predictability for discontinuous functions, Proceedings of the American Mathematical Society 137 (2009), no. 9, 3123–3128. [280] Christopher S. Hardin and Alan D. Taylor, The mathematics of coordinated inference. Developments in Mathematics, 33. Springer, Cham, 2013. xii+109 pp., 2012, 116s. [281] Leo Harrington, Analytic determinacy and 0# , Journal of Symbolic Logic 43 (1978), 685–693. [282] Leo A. Harrington and Alexander S. Kechris, On the determinacy of games on ordinals, Annals of Mathematical Logic 20 (1981), no. 2, 109–154. [283] Leo A. Harrington and Alexander S. Kechris, Ordinal games and their applications, in: L. J. Cohen, J. Łoś, H. Pfeiffer and K.-P. Podewski, eds., Logic, methodology and philosophy of science, VI. Studies in Logic and the Foundations of Mathematics, 104. North-Holland, Amsterdam–New York; PWN—Polish Scientific Publishers, Warszawa, 1982. pp. 273–277. [284] K. P. Hart, J. Nagata and J. E. Vaughan, eds., Encyclopedia of general topology. Elsevier, Amsterdam, 2004. x+526 pp. [285] Stanislaw Hartman, Quelques remarques sur le jeu de Banach et Mazur, Colloquium Mathematicum 4 (1957), 261. [286] Yasunao Hattori, A note on topological games and total paracompactness, Kobe University. Mathematics Seminar Notes 8 (1980), no. 3, 597–601. [287] Yasunao Hattori, On a question of R. Telgársky, Questions and Answers in General Topology 1 (1983), no. 1, 66–68. [288] Yasunao Hattori, A note on infinite-dimensional spaces defined by topological games, Proceedings of the American Mathematical Society 94 (1985), no. 2, 360–362. [289] Felix Hausdorff, Grundzüge der Mengenlehre. Veit, Leipzig, 1914. viii+476 pp. [290] R. C. Haworth and Robert A. McCoy, Baire spaces, Dissertationes Mathematicae 141, Warszawa, 1977. [291] Jialiang He and Shuguo Zhang, P-Filters and the perfect set property, Topology and its Applications 162 (2014), 12–19.

670

Editorial

[292] S. H. Hechler, On a game for which both players have a winning strategy, Bulletin de l’Académie Polonaise des Sciences 22 (1974), 751–753. [293] L. Hella and J. Nurmonen, Vectorization hierarchies of some graph quantifiers, Archive for Mathematical Logic 39 (2000), no. 3, 183–207. [294] Leon Henkin, Some remarks on infinitely long formulas, in: Infinitistic Methods. Pergamon, Oxford– London–New York–Paris; PWN—Polish Scientific Publishers, Warszawa, 1961. pp. 167–183. [295] Leon Henkin, The axiom of determinateness and canonical measures, Fundamenta Mathematicae 114 (1981), 183–194. [296] C. W. Henson, Strong counterexamples to Borel Hyperdeterminacy, Archive for Mathematical Logic 31 (1992), no. 3, 215–220. [297] Rodrigo Hernández-Gutiérrez, Michael Hrušák and Ángel Tamariz-Mascarúa, Spaces of remote points, Topology and its Applications 159 (2012), no. 13, 3002–3011. [298] Rodrigo Hernández-Gutiérrez and Paul Szeptycki, Uniform powers of compacta and the proximal game, preprint, arXiv:1409.4844. [299] F. Heydari and D. Behmardi, A note on non-fragmentable subspace of c∞ (Γ), Italian Journal of Pure and Applied Mathematics 33 (2014), 133–138. [300] P. G. Hinman, Hierarchies of effective descriptive set theory, Transactions of the American Mathematical Society 142 (1969), 111–140. [301] Yasushi Hirata and Yukinobu Yajima, On the D-property of certain products, Topology and its Applications 195 (2015), 297–311. [302] Yasushi Hirata, Nobuyuki Kemoto and Yukinobu Yajima, Products of monotonically normal spaces with various special factors, Topology and its Applications 164 (2014), 45–86. [303] Pascal Hitzler, Eine Variation des Satzes von Ellis, seminar Geometrie, Topologie und Gruppentheorie, Universität Tübingen, Tübingen, 1996. www.wv.inf.tu-dresden.de/~pascal/sem962.ps.gz [304] Wilfrid Hodges and Saharon Shelah, Infinite games and reduced products, Annals of Mathematical Logic 20 (1981), 77–108. [305] Aarno Hohti, On uniform hyperspaces, Topology Proceedings 9 (1984), 61–83. [306] Aarno Hohti, On supercomplete uniform spaces V: Tamano’s product problem, Fundamenta Mathematicae 136 (1990), no. 2, 121–125. [307] A. Hohti, M. Hušek and J. Pelant, The locally fine coreflection and normal covers in the products of partition-complete spaces, Topology and its Applications, 126 (2002), 187–205. [308] Aarno Hohti and Jan Pelant, On supercomplete uniform spaces IV: Countable products, Fundamenta Mathematicae 136 (1990), no. 2, 115–120. [309] Aarno Hohti and Yun Ziqiu, Countable products of Čech-scattered supercomplete spaces, Czechoslovak Mathematical Journal 49 (1999), no. 3, 569–583. [310] L’ubica Holá, Alireza Kamel Mirmostafaee and Zbigniew Piotrowski, Points of openness and closedness of some mappings, Banach Journal of Mathematical Analysis 9 (2015), no. 1, 243–252. [311] L’ubica Holá and László Zsilinszky, Completeness properties of the generalized compact-open topology on partial functions with closed domains, Topology and its Applications 110 (2001), no. 3, 303–321. [312] L’ubica Holá and László Zsilinszky, Čech-completeness and related properties of the generalized compact-open topology, Journal of Applied Analysis, 16 (2010), 151–169. [313] L’ubica Holá and László Zsilinszky, Vietoris topology on partial maps with compact domains, Topology and its Applications 157 (2010), no. 8, 1439–1447. [314] L’ubica Holá and László Zsilinszky, Completeness and related properties of the graph topology, Topology Proceedings 46 (2015), 1–14. [315] Michael Hrušák, Selectivity of almost disjoint families, Acta Universitatis Carolinae. Mathematica et Physica 41 (2000), no. 2, 13–21.

Editorial

671

[316] Michael Hrušák and R. A. González Silva, More on ultrafilters and topological games, Applied General Topology 10 (2009), no. 2, 207–219. [317] Michael Hrušák and David Meza-Alcántara, Comparison game on Borel ideals, Commentationes Mathematicae Universitatis Carolinae 52 (2011), no. 2, 191–204. [318] Glenn Hughes, The Baire property in the compact-open topology of Lašnev spaces, Topology and its Applications 202 (2016), 318–324. [319] Jiang Huiyou, Several results related to games (in Chinese), Journal of Fuzhou University 27 (1999), no. 2, 1–4. [320] Witold Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Mathematische Zeitschrift 24 (1926), no. 1, 401–421. [321] T. Huuskonen, T. Hyttinen and M. Rautila, On the κ-cub game on λ and I[λ], Arcive for Mathematical Logic 38 (1999), no. 8, 549–557. [322] T. Huuskonen, T. Hyttinen and M. Rautila, On potential isomorphism and non-structure, Archive for Mathematical Logic 43 (2004), no. 1, 85–120. [323] T. Hyttinen, On κ-complete reduced products, Archive for Mathematical Logic 31 (1992), no. 3, 193–199. [324] D. Ikegami, D. de Kloet and B. Löwe, The axiom of real Blackwell determinacy, Archive for Mathematical Logic 51 (2012), no. 7, 671–685. [325] Rufus Isaacs, Differential games. John Wiley & Sons, New York–London–Sydney, 1965. xxii+384 pp. [326] J. R. Isbell, Supercomplete spaces, Pacific Journal of Mathematics 12 (1962), 287–290. [327] Arcos D. Jardón and Vladimir V. Tkachuk, One more variation of the point-open game, Glasnik Matematički 43 (2008), no. 1, 205–217. [328] Thomas J. Jech, The axiom of choice. Studies in Logic and the Foundation of Mathematics, 75. NorthHolland, Amsterdam–London; American Elsevier Publishing Company, New York, 1973. xi+202 pp. [329] Thomas J. Jech, A game theoretic property of Boolean algebras, in: A. Macintyre, L. Pacholski and J. Paris, eds., Logic Colloquium ’77. Studies in Logic and the Foundations of Mathematics, 96. NorthHolland, Amsterdam–New York, 1978. pp. 135–144. [330] Thomas J. Jech, The Brave New World of Determinacy (book review of [507]), Bulletin of the American Mathematical Society 5 (1981), no. 3, 339–349. [331] Thomas J. Jech, More game-theoretic properties of Boolean algebras, Annals of Pure and Applied Logic 26 (1984), no. 1, 11–29. [332] Thomas J. Jech, Some properties of κ-complete ideals defined in terms of infinite games, Annals of Pure and Applied Logic 26 (1984), no. 1, 31–45. [333] Sunil Jacob John, Fuzzy topological games I, Far East Journal of Mathematical Sciences, Special Volume, Part III (1999), 361–371. [334] Sunil Jacob John, Fuzzy topological games, α-metacompactness and α-perfect maps, Glasnik Matematički, 35 (2000), no. 2, 261–270. [335] Sunil Jacob John, Fuzzy topological games II, Far East Journal of Mathematical Sciences 10 (2003), no. 2, 209–221. [336] Sunil Jacob John, Fuzzy P-spaces games and metacompactness, Glasnik Matematički 38 (2003), no. 1, 157–165. [337] Sunil Jacob John, Countable α-compactness, α-metacompactness and the fuzzy topological game G (DK, X), Bulletin pour les Sous Ensembles Flous et leurs Applications 90 (2005), #5. http://www.polytech.univ-savoie.fr/fileadmin/polytech_autres_sites/sites/listic/busefal/ Papers/90.zip/90_05.pdf [338] James P. Jones, Recursive undecidability – An exposition, American Mathematical Monthly 81 (1974), no. 7, 724–738.

672

Editorial

[339] J. P. Jones, Some undecidable determined games, International Journal of Game Theory 11 (1982), no. 2, 63–70. [340] Francis Jordan, Productive local properties of function spaces, Topology and its Applications 154 (2007), no. 4, 870–883. [341] István Juhász, On point-picking games, Topology Proceedings 10 (1985), no. 1, 103–110. [342] István Juhász and Saharon Shelah, π(X) = δ(X) for compact X, Topology and its Applications 32 (1989), 289–294. [343] H. J. K. Junnila, T. Nogura, and R. Telgársky, A singular space related to the point-open game, Proceedings of the American Mathematical Society 99 (1987), no. 3, 568–570. [344] Winfried Just, Marion Scheepers, Juris Stepr¯ ans and Paul J. Szeptycki, Gδ -sets in topological spaces and games, Fundamenta Mathematicae 153 (1997) no. 1, 41–58. [345] L. Kalmár, Zur Theorie der abstrakten Spiele, Acta Litterarum ac Scientiarum. Regiae Universitatis Hungaricae Francisco-Josephinae. Sectio Scientiarum Mathematicarum 4 (1928), 65–85. [346] V. G. Kanovei, Aksioma vybora i aksioma determinirovannosti. Nauka, Moskva, 1984. 65 pp. [347] I. G. Kastanas, On the Ramsey property for sets of reals, Journal of Symbolic Logic 48 (1983), 1035–1045. [348] Alexander S. Kechris, Measure and category in effective descriptive set theory, Annals of Mathematical Logic 5 (1973), 337–384. [349] Alexander S. Kechris, The theory of countable analytical sets, Transactions of the American Mathematical Society 202 (1975), 259–297. [350] Alexander S. Kechris, On a notion of smallness for subsets of the Baire space, Transactions of the American Mathematical Society 229 (1977), 191–207. [351] Alexander S. Kechris, Forcing in analysis, in: G. H. Müller and D. S. Scott, eds., Higher Set Theory. Lecture Notes in Mathematics, 669. Springer-Verlag, Berlin–Heidelberg–New York, 1978. pp. 277–302. [352] Alexander S. Kechris, An overview of descriptive set theory, in: G. Choquet, M. Rogalski, J. SaintRaymond, eds., Séminaire d’initiation à l’analyse. 18e année: 1978/79. Publications Mathématiques de l’Université Pierre et Marie Curie, 29. Université de Paris VI, Paris, 1979. Exp. no. 4, 35 pp. [353] Alexander S. Kechris, Forcing with Δ perfect trees and minimal Δ-degrees, Journal of Symbolic Logic 46 (1981), 803–816. [354] Alexander S. Kechris, The axiom of determinacy implies dependent choices in L(R), Journal of Symbolic Logic 49 (1984), 161–173. [355] Alexander S. Kechris, Classical descriptive set theory. Graduate Texts in Mathematics, 156. SpringerVerlag, Berlin–New York, 1995. xx+402 pp. [356] Alexander S. Kechris, Eugene M. Kleinberg, Yiannis N. Moschovakis and W. Hugh Woodin, The axiom of determinacy, strong partition properties and nonsingular measures, in: A. S. Kechris, D. A. Martin and Y. N. Moschovakis, eds., Cabal Seminar 77–79. Lecture Notes in Mathematics, 839. SpringerVerlag, Berlin–Heidelberg–New York, 1981. pp. 75–99. [357] A. S. Kechris, D. A. Martin and Y. N. Moschovakis, eds., Cabal Seminar 76–77. Lecture Notes in Mathematics, 689. Springer-Verlag, Berlin–Heidelberg–New York, 1978. iii+282 pp. [358] A. S. Kechris, D. A. Martin and Y. N. Moschovakis, eds., Cabal Seminar 77–79. Lecture Notes in Mathematics, 839. Springer-Verlag, Berlin–Heidelberg–New York, 1981. v+274 pp. [359] A. S. Kechris, D. A. Martin and Y. N. Moschovakis, eds., Cabal Seminar 79–81. Lecture Notes in Mathematics, 1019. Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983. ii+284 pp. [360] H. Jerome Keisler, Finite approximations of infinitely long formulas, in: J. W. Addison, L. Henkin, A. Tarski, eds., The theory of models. North-Holland, Amsterdam, 1965. pp. 158–169. [361] H. Jerome Keisler, Infinite quantifiers and continuous games, in: W. A. J. Luxemburg, ed., Applications of model theory to algebra, analysis and probability. Holt, Rinehart and Winston, New York, 1969. pp. 228–264.

Editorial

673

[362] Jakob Kellner, Matti Pauna and Saharon Shelah, Winning the pressing down game but not Banach– Mazur, Journal of Symbolic Logic 72 (2007), no. 4, 1323–1335. [363] J. Kellner and S. Shelah, More on the pressing down game, Archive for Mathematical Logic 50 (2011), no. 3, 477–501. [364] Petar S. Kenderov, Ivaylo S. Kortezov and Warren B. Moors, Topological games and topological groups, Topology and its Applications 109 (2001), 157–165. [365] Petar S. Kenderov, Ivaylo S. Kortezov and Warren B. Moors, Continuity points of quasi-continuous mappings, Topology and its Applications 109 (2001), 321–346. [366] Petar S. Kenderov, Ivaylo S. Kortezov and Warren B. Moors, Norm continuity of weakly continuous mappings into Banach spaces, Topology and its Applications 153 (2006), 2745–2759. [367] P. S. Kenderov and A. K. Mirmostafaee, Nonfragmentability of Banach spaces, Comptes rendus de l’ Academie Bulgare des Sciences 50 (1998), no. 8, 9–12. [368] Petar S. Kenderov and Warren B. Moors, Game characterisation of fragmentability of topological spaces, Mathematics and Education in Mathematics. Proceedings of the Twenty-Fifth Spring Conference of the Union of Bulgarian Mathematicians, Kazanlak, Bulgaria, 1996 (1996), 8–18. [369] Petar S. Kenderov and Warren B. Moors, Fragmentability and sigma-fragmentability of Banach spaces, Journal of the London Mathematical Society 60 (1999), no. 1, 203–223. [370] Petar S. Kenderov and Warren B. Moors, Separate continuity, joint continuity and the Lindelöf property, Proceedings of the American Mathematical Society 134 (2006), 1503–1512. [371] Petar S. Kenderov and Warren B. Moors, Fragmentability of groups and metric-valued function spaces, Topology and its Applications 159 (2012), no. 1, 183–193. [372] Petar S. Kenderov, Warren B. Moors and Scott Sciffer, A weak Asplund space whose dual in not weak∗ fragmentable, Proceedings of the American Mathematical Society 129 (2001), no. 12, 3741–3747. [373] P. S. Kenderov and J. Orihuela, A generic factorization theorem, Mathematika 42 (1995), no. 1, 56–66. [374] Petar S. Kenderov and Julian P. Revalski, The Banach–Mazur game and generic existence of solutions to optimization problems, Proceedings of the American Mathematical Society 118 (1993), 911–917. [375] Petar S. Kenderov and Julian P. Revalski, Dense existence of solutions of perturbed optimization problems and topological games, Comptes Rendus de l’Academie Bulgare des Sciences 63 (2010), no. 7, 937–942. [376] Petar S. Kenderov and Julian P. Revalski, Generic existence of solutions and generic well-posedness of optimization problems, in: D. H. Bailey, H. H. Bauschke, P. Borwein, F. Garvan, M. Théra, J. D. Vanderwerff and H. Wolkowicz, eds., Computational and analytical mathematics. Springer Proceedings in Mathematics & Statistics, 50. Springer, New York, 2013. pp. 445–453. [377] Y. Khomskii, Projective Hausdorff gaps, Archive for Mathematical Logic 53 (2014), no. 1, 57–64. [378] L. Kirby and J. Paris, Accessible independence results for Peano arithmetic, Bulletin of the London Mathematical Society 14 (1982), no. 4, 285–293. [379] E. M. Kleinberg, A characterization of determinacy for Turing degree games, Fundamenta Mathematicae 80 (1973), 287–291. [380] E. M. Kleinberg, Infinitary combinatorics and the axiom of determinateness. Lecture Notes in Mathematics, 612. Springer-Verlag, Berlin–Heidelberg–New York, 1977. iii+150 pp. [381] D. Kocev, Selection principles in relator spaces, Acta Mathematica Hungarica 126 (2010), no. 1, 78–93. [382] D. Kocev, Menger-type covering properties of topological spaces, Filomat 29 (2015), no. 1, 99–106. [383] Ljubiša D. R. Kočinac, Selected results on selection principles, in: Sh. Rezapour, F. Shakouri, E. Bagheri-Tanouraghaji and N. Abbasi-Avval, eds., Proceedings of the 3rd Seminar on Geometry & Topology. Azarbaijan University of Tarbiat Moallem, Tabriz, 2004. pp. 71–104. [384] Ljubiša D. R. Kočinac, αi -selection principles and games, Contemporary Mathematics, 533. American Mathematical Society, Providence, 2011. pp. 107–124. [385] Ljubiša D. R. Kočinac, Selection properties in fuzzy metric spaces, Filomat 26 (2012), no. 2, 305–312.

674

Editorial

[386] Ljubiša D. R. Kočinac and Selma Özçağ, Versions of separability in bitopological spaces, Topology and its Applications 158 (2011), no. 12, 1471–1477. [387] Ljubiša D. R. Kočinac and Selma Özçağ, Selection properties of texture structures, Topology and its Applications 192 (2015), 158–168. [388] Andrey N. Kolmogorov, Ob operaciah nad mnozhestvami, Matematicheski˘ı Sbornik 35 (1928), 415–422. [389] P. Komjáth, A simple strategy for the Ramsey-game, Studia Scientiarum Mathematicarum Hungarica 19 (1984), no. 2–4, 231–232. [390] D. König, Über eine Schlussweise aus dem Endlichen ins Unendliche, Acta Litterarum ac Scientiarum. Regiae Universitatis Hungaricae Francisco-Josephinae. Sectio Scientiarum Mathematicarum 3 (1927), 121–130. [391] B. König, Generic compactness reformulated, Archive for Mathematical Logic 43 (2004), no. 3, 311–326. [392] Eryk Kopczyński, Half-positional determinacy of infinite games, in: M. Bugliesi, B. Preneel, V. Sassone and I. Wegener, eds., Automata, languages and programming. Lecture Notes in Computer Science, 4052. Springer, Berlin–Heidelberg–New York, 2006. pp. 336–347. [393] Ewa Korczak-Kubiak, Anna Loranty and Ryszard J. Pawlak, Baire generalized topological spaces, generalized metric spaces and infinite games, Acta Mathematica Hungarica 140 (2013), no. 3, 203–231. [394] I. Kortezov, The function space over the Helly compact is sigma-fragmentable, Topology and its Applications 106 (2000), 69–75. [395] Adam Krawczyk and Henryk Michalewski, An example of a topological group, Topology and its Applications 127 (2003), 325–330. [396] Adrian Królak, A remark on variational principles of Choban, Kenderov and Revalski, Bulletin of the Polish Academy of Sciences, Mathematics 61 (2013), no. 3–4, 257–261. [397] Melven R. Krom, Cartesian product of metric Baire spaces, Proceedings of the American Mathematical Society 42 (1974), 588–594. [398] Melven R. Krom, Infinite games and special Baire extensions, Pacific Journal of Mathematics 55 (1974), 483–487. [399] Grzegorz Kubicki, On a modified game of Sierpiński, Colloquium Mathematicum 53 (1987), 81–91. [400] Grzegorz Kubicki, On a game of Sierpiński, Colloquium Mathematicum 54 (1987), 179–192. [401] Andrzej Kucharski, On open–open games of uncountable length, International Journal of Mathematics and Mathematical Sciences, 2012, art. ID 208693, 11 pp. [402] Andrzej Kucharski, Universally Kuratowski–Ulam space and open–open games, preprint, arXiv: 1202.2056. [403] Andrzej Kucharski and Szymon Plewik, Game approach to universally Kuratowski–Ulam spaces, Topology and its Applications 154 (2007), no. 2, 421–427. [404] Andrzej Kucharski and Szymon Plewik, Inverse systems and I-favorable spaces, Topology and its Applications 156 (2008), no. 1, 110–116. [405] Andrzej Kucharski and Szymon Plewik, Skeletal maps and I-favorable spaces, Acta Universitatis Carolinae. Mathematica et Physica 51 (2010), suppl., 67–72. [406] Andrzej Kucharski, Szymon Plewik and Vesko Valov, Very I-favorable spaces, Topology and its Applications 158 (2011), no. 12, 1453–1459. [407] Andrzej Kucharski, Szymon Plewik and Vesko Valov, Skeletally Dugundji spaces, Central European Journal of Mathematics 11 (2013), no. 11, 1949–1959. [408] H. W. Kuhn, Extensive games, Proceedings of the National Academy of Sciences of the United States of America 36 (1950), 570–576.

Editorial

675

[409] H. W. Kuhn, Extensive games and the problem of information, in: H. W. Kuhn and A. W. Tucker, eds., Contributions to the theory of games. Vol. II. Annals of Mathematics Studies, 28. Princeton University Press, Princeton, 1953. pp. 193–216. [410] S. Kundu and Pratibha Garg, Completeness properties of the pseudocompact-open topology on C(X), Mathematica Slovaca 58 (2008), no. 3, 325–338. [411] Kenneth Kunen and Arnold W. Miller, Borel and projective sets from the point of view of compact sets, Mathematical Proceedings of The Cambridge Philosophical Society 94 (1983), 399–409. [412] Kazimierz Kuratowski, Topology. Vol. I. Academic Press, New York–London; PWN—Polish Scientific Publishers, Warszawa, 1966. xx+560 pp. [413] Iwo Labuda, Boundaries of upper semicontinuous set valued maps, Commentationes Mathematicae (Prace Matematyczne) 45 (2005), no. 2, 225–235. [414] Alistair L. Lachlan, On some games which are relevant to the theory of recursively enumerable sets, Annals of Mathematics 91 (1970), 291–310. [415] Grégory Lafitte and Michaël Weiss, A topological study of tilings, in: M. Agrawal, D. Du, Z. Duan and A. Li, eds., Theory and applications of models of computation. Lecture Notes in Computer Science, 4978. Springer, Berlin–Heidelberg–New York, 2008. pp. 375–387. [416] Paul B. Larson, The canonical function game, Archive for Mathematical Logic 44 (2005), no. 7, 817–827. [417] Richard Laver, On the consistency of Borel’s conjecture, Acta Mathematica 137 (1976), no. 3–4, 151–169. [418] J. P. Lee and Z. Piotrowski, A note on spaces related to Namioka spaces, Bulletin of the Australian Mathematical Society 31 (1985), no. 2, 285–292. [419] Andrzej Lelek, Some cover properties of spaces, Fundamenta Mathematicae 64 (1969), 209–218. [420] Peijie Lin and Warren B. Moors, Rich families, W-spaces and the product of Baire spaces, Mathematica Balkanica 22 (2008), no. 1–2, 175–187. [421] L. R. Lisagor, The Banach–Mazur game, Matematicheski˘ı Sbornik 110 (1979), no. 2, 218–234; English transl.: Mathematics of the USSR, Sbornik 38 (1981), 201–216. [422] Christof Löding, P. Madhusudan and Olivier Serre, Visibly pushdown games, in: K. Lodaya and M. Mahajan, eds., FSTTCS 2004: Foundations of software technology and theoretical computer science. Lecture Notes in Computer Science, 3328. Springer, Berlin–Heidelberg–New York, 2004. pp. 408–420. [423] B. Löwe, Uniform unfolding and analytic measurability, Archive for Mathematical Logic 37 (1998), no. 8, 505–520. [424] B. Löwe, Turing cones and set theory of the reals, Archive for Mathematical Logic 40 (2001), no. 8, 651–664. [425] Benedikt Löwe and Philipp Rohde, Games of length ω · 2, Proceedings of the American Mathematical Society 130 (2002), no. 4, 1247–1248. [426] Francisco Gallego Lupiáñez, α-paracompact subsets and well-situated subsets, Questions and Answers in General Topology 5 (1987), no. 2, 293–302. [427] Francisco Gallego Lupiáñez, α-paracompact subsets and well-situated subsets, Czechoslovak Mathematical Journal 38 (1988), 191–197. [428] F. G. Lupiáñez, C-scattered fuzzy topological spaces, Applied Mathematics Letters 14 (2001), no. 2, 201–204. [429] D. J. Lutzer and R. A. McCoy, Category in function spaces, I, Pacific Journal of Mathematics 90 (1980), no. 1, 145–168. [430] Penelope Maddy, Believing the axioms. II, The Journal of Symbolic Logic, 53 (1988), no. 3, 736–764. [431] Ashok Maitra, On game-theoretic methods in the theory of Souslin sets, Fundamenta Mathematicae 70 (1971), 179–185. [432] Ashok Maitra, Ordinal solution of open games and analytic sets, Sankhy¯a 72 (2010), no. 1, 19–36.

676

Editorial

[433] V. I. Malyhin, D. V. Rančin, V. M. Ul’janov and B. E. Šapirovskij, On topological games (in Russian), Vestnik Moskovskogo Universiteta. Seriya I. Matematika, Mekhanika 32 (1977), no. 6, 41–48; English transl.: Moscow University Mathematics Bulletin 32 (1977), no. 6, 34–40. [434] R. Mansfield, A footnote to a theorem of Solovay, in: A. Macintyre, L. Pacholski and J. Paris, eds., Logic Colloquium ’77. Studies in Logic and the Foundations of Mathematics, 96. North-Holland, Amsterdam–New York, 1978. pp. 195–198. [435] Donald A. Martin, The axiom of determinateness and reduction principles in the analytic hierarchy, Bulletin of the American Mathematical Society 74 (1968), 687–689. [436] Donald A. Martin, Measurable cardinals and analytic games, Fundamenta Mathematicae 66 (1970), 287–291. [437] Donald A. Martin, Borel determinacy, Annals of Mathematics 102 (1975), 363–371. [438] Donald A. Martin, Descriptive set theory: Projective sets, in: J. Barwise, ed., Handbook of mathematical logic. Studies in Logic and the Foundations of Mathematics, 90. North-Holland, Amsterdam–New York–Oxford, 1977. pp. 783–815. [439] Donald A. Martin, Infinite games, in: O. Lehto, ed., Proceedings of the International Congress of Mathematicians. Vol. I. Academia Scientiarum Fennica, Helsinki, 1980. pp. 269–273. [440] Donald A. Martin, A purely inductive proof of Borel determinacy, in: A. Nerode, R. A. Shore, Recursion theory. Proceedings of Symposia in Pure Mathematics, 42. American Mathematical Society, Providence, 1985. pp. 303–308. [441] Donald A. Martin, Projective sets and cardinal numbers: Some questions related to the continuum problem, in: A. S. Kechris, B. Löwe and J. R. Steel, eds., Wadge degrees and projective ordinals. The Cabal Seminar. Vol. II. Lecture Notes in Logic, 37. Cambridge University Press, Cambridge; Association for Symbolic Logic, La Jolla–Ithaca, 2012. pp. 484–508. [442] Donald A. Martin, Borel and projective games, manuscript in preparation. [443] Donald A. Martin and Alexander S. Kechris, Infinite games and effective descriptive set theory, in: C. A. Rogers, J. E. Jayne, C. Dellacherie, F. Topsøe, J. Hoffmann-Jørgensen, D. A. Martin, A. S. Kechris and A. H. Stone, Analytic sets. Academic Press, London, 1980. pp. 403–470. [444] Keye Martin, Topological games in domain theory, Topology and its Applications 129 (2003), 177–186. [445] Juan Carlos Martínez, Accessible sets and (Lω1 ω )t -equivalence for T3 spaces, Journal of Symbolic Logic 49 (1984), no. 3, 961–967. [446] Juan Carlos Martínez, On a class of topological spaces with a Scott sentence, Fundamenta Mathematicae 129 (1988), 69–81. [447] Juan Carlos Martínez and Lajos Soukup, The D-property in unions of scattered spaces, Topology and its Applications 156 (2009), no. 18, 3086–3090. [448] P. Matet, Two-cardinal diamond and games of uncountable length, Archive for Mathematical Logic 54 (2015), no. 3, 395–412. [449] P. Matet, Ideals on Pκ (λ) associated with games of uncountable length, Archive for Mathematical Logic 54 (2015), no. 3, 291–328. [450] P. Matet, Happy families and completely Ramsey sets, Archive for Mathematical Logic 32 (1993), no. 3, 151–171. [451] P. Matet, Non-saturation of the nonstationary ideal on Pκ (λ) in case κ ≤ cf(λ) < λ, Archive for Mathematical Logic 51 (2012), no. 3, 425–432. [452] Etienne Matheron and Miroslav Zeleny, Descriptive set theory of families of small sets, Bulletin of Symbolic Logic 13 (2007), 482–537. [453] R. D. Mauldin, ed., The Scottish Book: Mathematics from the Scottish Café. Birkhäuser, Boston– Basel–Stuttgart, 1981. xiii+268 pp. [454] Robert A. McCoy and Ibula Ntantu, Countability properties of function spaces with set-open topologies, Topology Proceedings 10 (1985), 329–345.

Editorial

677

[455] Robert A. McCoy and Ibula Ntantu, Completeness properties of function spaces, Topology and its Applications 22 (1986), 191–206. [456] J. C. C. McKinsey, Introduction to the theory of games. McGraw-Hill, New York–Toronto–London, 1952. x+371 pp. [457] Curtis T. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geometric and Functional Analysis 20 (2010), no. 3, 726–740. [458] Andrea Medini and David Milovich, The topology of ultrafilters as subspaces of 2ω , Topology and its Applications 159 (2012), no. 5, 1318–1333. [459] C. G. Méndez, On the Sierpiński–Erdős and the Oxtoby–Ulam theorems for some new sigma-ideals of sets, Proceedings of the American Mathematical Society 72 (1978), 182–188. [460] C. G. Méndez, On the law of large numbers, infinite games and category, American Mathematical Monthly 88 (1981), 40–42. [461] Ernest Michael, Complete spaces and tri-quotient maps, Illinois Journal of Mathematics 21 (1977), 716–733. [462] Ernest Michael, A note on completely metrizable spaces, Proceedings of the American Mathematical Society 96 (1986), 513–522. [463] Ernest Michael, Partition-complete spaces and their preservation by tri-quotient and related maps, Topology and its Applications 73 (1996), 121–131. [464] Henryk Michalewski, Game-theoretic approach to the hereditary Baire property of Cp (NF ), Bulletin of the Polish Academy of Sciences, Mathematics 46 (1998), no. 2, 135–140. [465] R. J. Mignone, Ultrafilters resulting from the axiom of determinateness, Proceedings of the London Mathematical Society 43 (1981), no. 3, 582–605. [466] R. J. Mignone, The axiom of determinateness implies ω2 has precisely two countably complete, uniform, weakly normal ultrafilters, Fundamenta Mathematicae 117 (1983), 91–93. [467] H. Mildenberger, Finding generic filters by playing games, Archive for Mathematical Logic 49 (2010), no. 1, 91–118. game [468] Andres Millán, A crowded Q-point under CPAprism , Topology Proceedings 29 (2005), no. 1, 229–236. [469] Arnold W. Miller, On λ -sets, Topology Proceedings 28 (2004), no. 1, 179–187. [470] Arnold W. Miller, Some interesting problems, in: H. Judah, ed., Set theory of the reals. Israel Mathematical Conference Proceedings, 6. Bar-Ilan University, Ramat-Gan; American Mathematical Society (distrib.), Providence, 1993. viii+654 pp. Updated version: http://www.math.wisc.edu/~miller/res/problems.pdf [471] Arnold W. Miller, Boaz Tsaban and Lyubomyr Zdomskyy, Selective covering properties of product spaces, II: γ spaces, Transactions of the American Mathematical Society 368 (2016), 2865–2889. [472] Alireza Kamel Mirmostafaee, A note on nonfragmentability of Banach spaces, International Journal of Mathematics and Mathematical Sciences 27 (2001), no. 1, 39–44. [473] A. K. Mirmostafaee, A note on convex renorming and fragmentability, Proceedings of the Indian Academy of Sciences. Mathematical Sciences 115 (2005), no. 2, 201–207. [474] Alireza Kamel Mirmostafaee, On a Banach space with no weakly fragmented metric, Italian Journal of Pure and Applied Mathematics 18 (2005), 157–166. [475] A. Kamel Mirmostafaee, Weak-Kadec renormable Banach spaces, in: The 18th Seminar on Mathematical Analysis and its Applications, 26–27 Farvardin, 1388 (15–16 April, 2009). Tarbiat Moallem University, Tehran, 2009. pp. 138–141. [476] Alireza Kamel Mirmostafaee, Points of joint continuity of separately continuous mappings, Methods of Functional Analysis and Topology 15 (2009), no. 4, 356–360. [477] Alireza Kamel Mirmostafaee, Oscillations, quasi-oscillations and joint continuity, Annals of Functional Analysis 1 (2010), no. 2, 133–138.

678

Editorial

[478] Alireza Kamel Mirmostafaee, Topological games and continuity of quasi-continuous mappings, Kochi Journal of Mathematics 5 (2010), 15–23. [479] Alireza Kamel Mirmostafaee, Norm continuity of quasi-continuous mappings into Cp (X) and product spaces, Topology and its Applications 157 (2010), no. 3, 530–535. [480] Alireza Kamel Mirmostafaee, Topological games and strong quasi-continuity, Banach Journal of Mathematical Analysis 5 (2011), no. 2, 131–137. [481] Alireza Kamel Mirmostafaee, Norm continuity of weakly quasi-continuous mappings, Colloquium Mathematicum 122 (2011), no. 1, 83–91. [482] Alireza Kamel Mirmostafaee, Strong quasi-continuity of set-valued functions, Topology and its Applications 164 (2014), 190–196. [483] Alireza Kamel Mirmostafaee, Continuity of separately continuous mappings, Mathematica Slovaca 64 (2014), no. 4, 1019–1026. [484] Alireza Kamel Mirmostafaee and Madjid Mirzavaziri, Characterizations of fragmentability and sfragmentability, in: 16th Seminar on Mathematical Analysis and its Applications, 4–5 February, 2007. Ferdowsi University, Mashhad, 2007. pp. 88–91. [485] Madjid Mirzavaziri, σ-normality of topological spaces, Bulletin of the Iranian Mathematical Society 34 (2008), no. 1, 37–44. [486] Warren B. Moors, A selection theorem for weak upper semi-continuous set-valued mappings, Bulletin of the Australian Mathematical Society 53 (1996), no. 2, 213–227. [487] Warren B. Moors, Closed graph theorems and Baire spaces, New Zealand Journal of Mathematics 31 (2002), no. 1, 55–62. [488] Warren B. Moors, The product of a Baire space with a hereditarily Baire metric space is Baire, Proceedings of the American Mathematical Society 134 (2006), no. 7, 2161–2163. [489] Warren B. Moors, Separate continuity, joint continuity, the Lindelöf property and p-spaces, Topology and its Applications 154 (2007), 428–433. [490] Warren B. Moors, A note on Fort’s theorem, Topology and its Applications 160 (2013), no. 2, 305–308. [491] Warren B. Moors, Any semitopological group that is homeomorphic to a product of Čech-complete spaces is a topological group, Set-Valued and Variational Analysis 21 (2013), no. 4, 627–633. [492] Warren B. Moors, Semitopological groups, Bouziad spaces and topological groups, Topology and its Applications 160 (2013), no. 15, 2038–2048. [493] Warren B. Moors, Fragmentability by the discrete metric, Bulletin of the Australian Mathematical Society 91 (2015), no. 2, 303–310. [494] Warren B. Moors and Sivajah Somasundaram, Some recent results concerning weak Asplund spaces, Acta Universitatis Carolinae. Mathematica et Physica 43 (2002), no. 2, 67–86. [495] Warren B. Moors and Sivajah Somasundaram, A weakly Stegall space that is not a Stegall space, Proceedings of the American Mathematical Society 131 (2003), no. 2, 647–654. [496] Warren B. Moors and Sivajah Somasundaram, A Gâteaux differentiability space that is not weak Asplund, Proceedings of the American Mathematical Society 134 (2006), no. 9, 2745–2754. [497] Gadi Moran, Existence of nondetermined sets for some two person games over reals, Israel Journal of Mathematics 9 (1971), 316–329. [498] Gadi Moran, Size-direction games over the real line. II, Israel Journal of Mathematics 14 (1973), 418–441. [499] Gadi Moran and Saharon Shelah, Size-direction games over the real line. III, Israel Journal of Mathematics 14 (1973), 442–449. [500] John C. Morgan, II, Infinite games and singular sets, Colloquium Mathematicum 29 (1974), 7–17. [501] Kiiti Morita, On the product of a normal space with a metric space, Proceedings of the Japan Academy 39 (1963), 148–150.

Editorial

679

[502] Kiiti Morita, Products of normal spaces with metric spaces, Mathematische Annalen 154 (1964), 365–382. [503] Thomas Mormann, Topological games, supertasks, and (un)determined experiments, preprint, 2010. http://philpapers.org/archive/MORTGS-2.pdf [504] Yiannis N. Moschovakis, Determinacy and prewellorderings of the continuum, in: Y. Bar-Hillel, ed., Mathematical logic and foundations of set theory. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam–London, 1970. pp. 24–62. [505] Yiannis N. Moschovakis, The game quantifier, Proceedings of the American Mathematical Society 31 (1972), 245–250. [506] Yiannis N. Moschovakis, Elementary induction on abstract structures. Studies in Logic and the Foundations of Mathematics, 77. North-Holland, Amsterdam–London; American Elsevier, New York, 1974. x+218 pp. [507] Yiannis N. Moschovakis, Descriptive set theory. Studies in Logic and the Foundations of Mathematics, 100. North-Holland, Amsterdam–New York–Oxford, 1980. xii+637 pp. [508] Yiannis N. Moschovakis, Ordinal games and playful models, in: A. S. Kechris, D. A. Martin and Y. N. Moschovakis, eds., Cabal Seminar 77–79. Lecture Notes in Mathematics, 839. Springer-Verlag, Berlin–Heidelberg–New York, 1981. pp. 169–201. [509] Yiannis N. Moschovakis, Descriptive set theory. 2nd ed. Mathematical Surveys and Monographs, 155. American Mathematical Society, Providence, 2009. xiv+502 pp. [510] Carl Mummert, Reverse mathematics of MF spaces, Journal of Mathematical Logic 6 (2006), no. 2, 203–232. [511] Carl Mummert and Frank Stephan, Topological aspects of poset spaces, Michigan Mathematical Journal 59 (2010), no. 1, 3–24. [512] Jan Mycielski, On the axiom of determinateness, Fundamenta Mathematicae 53 (1964), 205–224. [513] Jan Mycielski, Continuous games with perfect information, in: M. Dresher, L. S. Shapley and A. W. Tucker, eds., Advances in game theory. Annals of Mathematics Studies, 52. Princeton University Press, Princeton, 1964. pp. 85–101. [514] Jan Mycielski, On the axiom of determinateness. II, Fundamenta Mathematicae 59 (1966), 203–212. [515] Jan Mycielski, Some new ideals of sets on the real line, Colloquium Mathematicum 20 (1969), 71–76. [516] Jan Mycielski, On some consequences of the axiom of determinateness, in: D. S. Scott, ed., Axiomatic set theory. Proceedings of Symposia in Pure Mathematics, 13. Part I. American Mathematical Society, Providence, 1971. pp. 265–266. [517] Jan Mycielski, Theories of pursuit and evasion, Journal of Optimization Theory and Applications 56 (1988), 271–284. [518] Jan Mycielski, Games with perfect information, in: R. J. Aumann and S. Hart, eds., Handbook of game theory with economic applications. Vol. I. Handbooks in Economics, 11. North-Holland, Amsterdam, 1992. pp. 41–70. [519] Jan Mycielski and Hugo Steinhaus, A mathematical axiom contradicting the axiom of choice, Bulletin de l’Académie Polonaise des Sciences 10 (1962), 1–3. [520] Jan Mycielski and Stanislaw Świerczkowski, On the Lebesgue measurability and the axiom of determinateness, Fundamenta Mathematicae 54 (1964), 67–71. [521] Jan Mycielski, Stanislaw Świerczkowski, and Andrzej Zięba, On infinite positional games, Bulletin de l’Académie Polonaise des Sciences 4 (1956), 485–488. [522] Jan Mycielski and Andrzej Zięba, On infinite games, Bulletin de l’Académie Polonaise des Sciences 3 (1955), 133–136. [523] V. V. Mykhaylyuk, Namioka spaces and topological games, Bulletin of the Australian Mathematical Society 73 (2006), no. 2, 263–272.

680

Editorial

[524] Gregory L. Naber, Set-theoretic topology. University Microfilms International, Ann Arbor, 1977. xv+706 pp. [525] Isaac Namioka, Separate and joint continuity, Pacific Journal of Mathematics 51 (1974), 515–531. [526] C. St. J. A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proceedings of the Cambridge Philosophical Society 61 (1965), 33–39. [527] Itay Neeman, Determinacy and large cardinals, in: M. Sanz-Solé, J. Soria, J. L. Varona and J. Verdera, eds., International Congress of Mathematicians. Vol. II. European Mathematical Society (EMS), Zürich, 2006. pp. 27–43. [528] John von Neumann, Zur Theorie der Gesellschaftsspiele, Mathematische Annalen 100 (1928), 295–320. [529] John von Neumann and Oskar Morgenstern, Theory of games and economic behavior. Princeton University Press, Princeton, 1944. xviii+625 pp. [530] John von Neumann and Oskar Morgenstern, Theory of games and economic behavior. 2nd ed. Princeton University Press, Princeton, 1947. xviii+641 pp. [531] John von Neumann and Oskar Morgenstern, Theory of games and economic behavior. 3rd ed. Princeton University Press, Princeton, 1953. xx+644 pp. [532] L. Newelski and A. Rosłanowski, The ideal determined by the unsymmetric game, Proceedings of the American Mathematical Society 117 (1993), 823–831. [533] Tsugunori Nogura, A compact-like space which does not have a countable cover by C-scattered closed, Proceedings of the Japan Academy 59 (1983), 83–84. [534] Andrzej Nowik, On Borel version of uniformly completely Ramsey sets, Bulletin of the Polish Academy of Sciences, Mathematics 50 (2002), no. 1, 59–68. [535] Peter J. Nyikos and László Zsilinszky, Strong α-favorability of the (generalized) compact-open topology, Atti del Seminario Matematico e Fisico dell’Università di Modena 51 (2003), no. 1, 1–8. [536] A. J. Ostaszewski, Analytically heavy spaces: Analytic Cantor and Analytic Baire Theorems, Topology and its Applications 158 (2011), no. 3, 253–275. [537] Adam J. Ostaszewski and Rastislav Telgársky, Topological games and analytic sets, II, Topology Proceedings 5 (1980), 147–154. [538] John C. Oxtoby, The Banach–Mazur game and Banach Category Theorem, in: M. Dresher, A. W. Tucker and P. Wolfe, eds., Contributions to the theory of games. Vol. III. Annals of Mathematics Studies, 39. Princeton University Press, Princeton, 1957. pp. 159–163. [539] John C. Oxtoby, Cartesian product of Baire spaces, Fundamenta Mathematicae 49 (1961), 157–166. [540] John C. Oxtoby, Measure and category. Graduate Texts in Mathematics, 2. Springer-Verlag, New York–Heidelberg–Berlin, 1971. viii+95 pp. [541] John C. Oxtoby, Measure and category. 2nd ed. Graduate Texts in Mathematics, 2. Springer-Verlag, New York–Heidelberg–Berlin, 1980. x+106 pp. [542] Selma Özçağ, Selective bitopological versions of separability, Topology and its Applications 201 (2016), 403–413. [543] Jan Pachl, Cauchy filters from Pelant’s games, preprint, arXiv:1310.1808. [544] Aristotelis Panagiotopoulos, Extendability of automorphisms of generic substructures, Israel Journal of Mathematics 208 (2015), no. 1, 483–508. [545] J. B. Paris, ZF  Σ04 determinateness, Journal of Symbolic Logic 37 (1972), 661–667. [546] T. Parthasarathy and T. E. S. Raghavan, Some topics in two-person games. Modern Analytic and Computational Methods in Science and Mathematics, 22. American Elsevier Publishing Company, New York, 1971. xii+259 pp. [547] Oleg Ivanovich Pavlov, On a topological game (in Russian), Vestnik Moskovskogo Universiteta. Seriya I. Matematika, Mekhanika (1993), no. 5, 11–14; English translation: Moscow University Mathematics Bulletin 48 (1993) no. 5, 8–10.

Editorial

681

[548] Vladimir Pavlović, A selective version of the property of Reznichenko in function spaces, Acta Mathematica Hungarica 113 (2006), no. 1, 101–117. [549] Janusz Pawlikowski, Undetermined sets of point-open games, Fundamenta Mathematicae 144 (1994), 279–285. [550] A. R. Pears, On topological games, Proceedings of the Cambridge Philosophical Society 61 (1965), 165–171. [551] Liang-Xue Peng, On some sufficiencies of D-spaces (in Chinese), Journal of Beijing Institute of Technology 16 (1996), no. 3, 229–233. [552] Liang-Xue Peng, Countable product of 1-like spaces is a D-space (in Chinese), Journal of Beijing University of Technology 29 (2003), no. 1, 79–82. [553] Liang-Xue Peng, About DK-like spaces and some applications, Topology and its Applications 135 (2004), no. 1–3, 73–85. [554] Liang-Xue Peng, Spaces whose products are D-spaces (in Chinese), Acta Mathematica Scientia. Series A. Chinese Edition, 26 (2006), no. 5, 653–658. [555] Liang-Xue Peng, About Lindelöf DK-like spaces and related conclusions, Topology Proceedings 30 (2006), no. 2, 577–584. [556] Liang-Xue Peng, On products of certain D-spaces, Houston Journal of Mathematics 34 (2008), no. 1, 165–179. [557] Liang-Xue Peng, On finite unions of certain D-spaces, Topology and its Applications 155 (2008), 522–526. [558] Liang-Xue Peng, On spaces which are D, linearly D and transitively D, Topology and its Applications 157 (2010), 378–384. [559] Liang-Xue Peng and Zhanchao Shen, A note on the Menger (Rothberger) property and topological games, Topology and its Applications 199 (2016), 132–144. [560] Liang-Xue Peng and Shangzhi Wang, Lindelöf property of countable products of Lindelöf DC-like spaces, Topology Proceedings 24 (1999), Spring, 277–283. [561] Y. Pequignot, A Wadge hierarchy for second countable spaces, Archive for mathematical Logic 54 (2015), no. 5, 659–683. [562] Leon A. Petrosjan, Topological games and their applications to pursuit problems. I (in Russian), Vestnik Leningradskogo Universiteta 24 (1969), no. 19, 55–63. [563] Leon A. Petrosjan, Topological games and their applications to pursuit problems. I, SIAM Journal on Control 10 (1972), 194–202. [564] Nathan Pflueger, Topological games on self-dual and more general graphs, Midterm report, University of Washington, Seattle, 2006. http://www.math.washington.edu/~reu/papers/2006/nathan/nathan.doc [565] Leszek Piątkiewicz and László Zsilinszky, On (strong) α-favorability of the Wijsman hyperspace, Topology and its Applications 157 (2010), no. 16, 2555–2561. [566] Leszek Piątkiewicz and László Zsilinszky, On (strong) α-favorability of the Vietoris hyperspace, Mathematica Slovaca 63 (2013), no. 2, 321–330. [567] Zbigniew Piotrowski, Separate and joint continuity, Real Analysis Exchange 11 (1985–86), no. 2, 293–322. [568] Till Plewe, Localic products of spaces, Proceedings of the London Mathematical Society 73 (1996), no. 3, 642–678. [569] E. Porada, Jeu de Choquet, Colloquium Mathematicum 42 (1979), 345–353. [570] Henry B. Potoczny, Closure-preserving families of compact sets, General Topology and its Applications 3 (1973), 243–248. [571] Henry B. Potoczny, Closure-preserving families of finite sets, Fundamenta Mathematicae 89 (1975), 173–176.

682

Editorial

[572] David Preiss and Shingo Saito, Knot points of typical continuous functions, Transactions of the American Mathematical Society 366 (2014), no. 2, 833–856. [573] Karel Prikry, Determinateness and partitions, Proceedings of the American Mathematical Society 54 (1976), 303–306. [574] Michael O. Rabin, Effective computability of winning strategies, in: M. Dresher, A. W. Tucker and P. Wolfe, eds., Contributions to the theory of games. Vol. III. Annals of Mathematics Studies, 39. Princeton University Press, Princeton, 1957. pp. 147–157. [575] F. P. Ramsey, On a problem of formal logic, Proceedings of the London Mathematical Society 30 (1929), 264–286. [576] B. V. Rao, Remarks on generalized analytic sets and the axiom of determinateness, Fundamenta Mathematicae 69 (1970), 125–129. [577] Ireneusz Recław, Every Lusin set is undetermined in the point-open game, Fundamenta Mathematicae 144 (1994), 43–54. [578] Marian Reichbach, Ein Spiel von Banach und Mazur, Colloquium Mathematicum 5 (1957), 16–23. [579] Dušan Repovš and Lyubomyr Zdomskyy, On the Menger covering property and D-spaces, Proceedings of the American Mathematical Society 140 (2012), 1069–1074. [580] Julian P. Revalski, Densely defined selections of set-valued mappings and applications to the geometry of Banach spaces and optimization, Humboldt-Universität zu Berlin, Preprints aus dem Institut für Mathematik, 1996 – Nr. 33. http://edoc.hu-berlin.de/series/mathematik-preprints/1996-33/PDF/33.pdf [581] Julian P. Revalski, The Banach–Mazur game: History and recent developments, preprint, 2004. http://www1.univ-ag.fr/aoc/activite/revalski/Banach-Mazur_Game.pdf [582] Søren Riis, A fractal which violates the axiom of determinacy, Basic Research in Computer Science Report Series, RS-94-24. University of Aarhus, Aarhus, 1994. 3 pp. [583] Julia Robinson, An iterative method of solving a game, Annals of Mathematics 54 (1951), 296–301. [584] C. A. Rogers and J. E. Jayne, K-analytic sets, in: C. A. Rogers, J. E. Jayne, C. Dellacherie, F. Topsøe, J. Hoffmann-Jørgensen, D. A. Martin, A. S. Kechris and A. H. Stone, Analytic sets. Academic Press, London, 1980. pp. 1–181. [585] Judith Roitman and Scott Williams, Paracompactness, normality, and related properties of topologies on infinite products, Topology and its Applications 195 (2015), 79–92. [586] Luca Motto Ros, Game representations of classes of piecewise definable functions, Mathematical Logic Quarterly 57 (2011), no. 1, 95–112. [587] A. Rosłanowski, On game ideals, Colloquium Mathematicum 59 (1990), 159–168. [588] A. Rosłanowski and S. Shelah, More about λ-support iterations of (< λ)-complete forcing notions, Archive for Mathematical Logic 52 (2013), no. 5, 603–629. [589] William H. Ruckle, Geometric games and their applications. Research Notes in Mathematics, 82. Pitman Advanced Publishing Program, Boston–London–Melbourne, 1983. vii+187 pp. [590] V. I. Rybakov, Yet another class of Namioka spaces (in Russian), Rossi˘ıskaya Akademiya Nauk. Matematicheskie Zametki 73 (2003), no. 2, 263–268; English transl.: Mathematical Notes 73 (2003), no. 2, 244–248. [591] Czesław Ryll-Nardzewski, A theory of pursuit and evasion, in: M. Dresher, L. S. Shapley and A. W. Tucker, eds., Advances in game theory. Annals of Mathematics Studies, 52. Princeton University Press, Princeton, 1964. pp. 113–126. [592] Jean Saint-Raymond, Jeux topologiques et espaces de Namioka, Proceedings of the American Mathematical Society 87 (1983), 499–504. [593] Shingo Saito, Residuality of families of Fσ sets, Real Analysis Exchange 31 (2005–2006), no. 2, 477–487. [594] Shingo Saito, A variant of the Banach–Mazur game and knot points of typical continuous functions, 1619 (2008), 91–96.

Editorial

683

[595] Masami Sakai and Marion Scheepers, The combinatorics of open covers, in: K. P. Hart, J. van Mill and P. Simon, eds., Recent progress in general topology. III. Atlantis Press, Paris, 2014. pp. 751–799. [596] Nadav Samet, Marion Scheepers and Boaz Tsaban, Partition relations for Hurewicz-type selection hypotheses, Topology and its Applications 156 (2009), 616–623. [597] R. L. Sami, Turing determinacy and the continuum hypothesis, Archive for Mathematical Logic 28 (1989), no. 3, 149–154. [598] M. S. Sarsak and H. Z. Hdeib, On the product of two Lindelöf spaces, International Mathematical Forum 3 (2008), no. 41–44, 2011–2016. [599] Marion Scheepers, Concerning n-tactics in the countable-finite game, Journal of Symbolic Logic 56 (1991), 786–794. [600] Marion Scheepers, Meager-nowhere dense games (II): Coding strategies, Proceedings of the American Mathematical Society 112 (1991), no. 4, 1107–1115. [601] Marion Scheepers, Meager-nowhere dense games (I): n-tactics, Rocky Mountain Journal of Mathematics 22 (1992), no. 3, 1011–1055. [602] Marion Scheepers, Meager-nowhere dense games (III): Remainder strategies, Topology Proceedings 17 (1992), 215–231. [603] Marion Scheepers, Additive properties of sets of real numbers and an infinite game, Quaestiones Mathematicae 16 (1993), 177–191. [604] Marion Scheepers, Variations on a game of Gale (I): Coding strategies, Journal of Symbolic Logic 58 (1993), no. 3, 1035–1043. [605] Marion Scheepers, Variations on a game of Gale (II): Markov strategies, Theoretical Computer Science 129 (1994), no. 2, 385–396. [606] Marion Scheepers, Meager-nowhere dense games (IV): n-tactics, Journal of Symbolic Logic 59 (1994), 603–605. [607] Marion Scheepers, Meager-nowhere dense games (V): Coding strategies again, Quaestiones Mathematicae 17 (1994), no. 4, 419–435. [608] Marion Scheepers, Topological games, in: K. P. Hart, J. Nagata, J. E. Vaughan, eds., Encyclopedia of general topology. Elsevier, Amsterdam, 2004. pp. 439–442. [609] Marion Scheepers, A direct proof of a theorem of Telgársky, Proceedings of the American Mathematical Society 123 (1995), 3483–3485. [610] Marion Scheepers, Games that involve set theory or topology, Vietnamese Journal of Mathematics 23 (1995), no. 2, 169–220. [611] Marion Scheepers, A topological space could have infinite successor point-open type, Topology and its Applications 61 (1995), 95–99. [612] Marion Scheepers, Meager-nowhere dense games (VI): Markov k-tactics, Illinois Journal of Mathematics 40 (1996), 182–193. [613] Marion Scheepers, Meager sets and infinite games, in: T. Bartoszyński and M. Scheepers, eds., Set theory. Contemporary Mathematics, 192. American Mathematical Society, Providence, 1996. pp. 77–90. [614] Marion Scheepers, Lebesgue measure zero subsets of the real line and an infinite game, Journal of Symbolic Logic 61 (1996), no. 1, 246–249. [615] Marion Scheepers, Combinatorics of open covers (III): Games, Cp(X), Fundamenta Mathematicae 152 (1997), 231–254. [616] Marion Scheepers, Rothberger’s property and partition relations, Journal of Symbolic Logic 62 (1997), 976–980. [617] Marion Scheepers, Strong measure zero subsets of the real line and an infinite game, in: Lj. D. Kočinac, ed., Proceedings of the II Mathematical Conference in Priština. University of Priština, Priština, 1997. pp. 61–65.

684

Editorial

[618] Marion Scheepers, The length of some diagonalization games, Archive for Mathematical Logic 38 (1999), 103–122. [619] Marion Scheepers, Finite powers of strong measure zero sets, Journal of Symbolic Logic 64 (1999), no. 3, 1295–1306. [620] Marion Scheepers, Selection principles in topology: New directions, Filomat 15 (2001), 111–126. [621] Marion Scheepers, Selection principles and covering properties in topology, Note di Matematica 22 (2003), 3–41. [622] Marion Scheepers, Topological games, in: K. P. Hart, J. Nagata and J. E. Vaughan, eds., Encyclopedia of general topology. Elsevier, Amsterdam, 2004. pp. 439–442. [623] Marion Scheepers, Topological games and Ramsey theory, in: E. Pearl, ed., Open problems in topology. II. Elsevier, Amsterdam, 2007. pp. 61–89. [624] Marion Scheepers, Selection principles and Baire spaces, Matematički Vesnik 61 (2009), no. 3, 195–202. [625] Marion Scheepers, Rothberger’s property in all finite powers, Topology and its Applications 156 (2008), 93–103. [626] Marion Scheepers, Measurable cardinals and the cardinality of Lindelöf spaces, Topology and its Applications 157 (2010), no. 9, 1651–1657. [627] Marion Scheepers, Rothberger bounded groups and Ramsey theory, Topology and its Applications 158 (2011), no. 13, 1575–1583. [628] Marion Scheepers, Remarks on countable tightness, Topology and its Applications 161 (2014), 95–106. [629] Marion Scheepers and Paul J. Szeptycki, Some games related to perfect spaces, East-West Journal of Mathematics 2 (2000), 85–107. [630] Marion Scheepers and Franklin D. Tall, Lindelöf indestructibility, topological games and selection principles, Fundamenta Mathematicae 210 (2010), no. 1, 1–46. [631] Marion Scheepers and Franklin D. Tall, Errata to “Lindelöf indestructibility, topological games and selection principles” (Fund. Math. 210 (2010), 1–46), Fundamenta Mathematicae 224 (2014), no. 2, 203–204. [632] Marion Scheepers and Boaz Tsaban, The combinatorics of Borel covers, Topology and its Applications 121 (2002), 357–382. [633] Marion Scheepers and William Weiss, Variations on a game of Gale (III): Remainder strategies, Journal of Symbolic Logic 62 (1997), no. 4, 1253–1264. [634] K. Schilling and R. Vaught, Borel games and the Baire property, Transactions of the American Mathematical Society 279 (1983), 411–428. [635] Wolfgang M. Schmidt, On badly approximable numbers and certain games, Transactions of the American Mathematical Society 123 (1966), 178–199. [636] Wolfgang M. Schmidt, Badly approximable systems of linear forms, Journal of Number Theory 1 (1969), 139–154. [637] Wolfgang M. Schmidt, Diophantine approximation. Lecture Notes in Mathematics, 785. SpringerVerlag, Berlin–Heidelberg–New York, 1980. x+299 pp. [638] Johann Schnauder, Topologische Spiele, Lehrer-Journal 51 (1983), no. 7–8, 321–324. [639] J. Schreier, Eine Eigenschaft abstrakter Mengen, Studia Mathematica 7 (1938), 155–156. [640] E. A. Selivanovski˘ı, On a class of effective sets (in Russian), Matematicheski˘ı Sbornik 35 (1928), 379–413. [641] P. L. Sharma, Some characterizations of W-spaces and w-spaces, General Topology and its Applications 9 (1978), 289–293. [642] S. Shelah, Large normal ideals concentrating on a fixed small cardinality, Archive for Mathematical Logic 35 (1996), no. 5, 341–347. [643] Steven E. Shreve, Borel-approachable functions, Fundamenta Mathematicae 112 (1981), 17–24.

Editorial

685

[644] W. Sierpiński, Sur la puissance des ensembles mesurables (B), Fundamenta Mathematicae 5 (1924), 166–171. [645] J. Silver, Every analytic set is Ramsey, Journal of Symbolic Logic 35 (1970), 60–64. [646] F. Siwiec, Generalizations of the first axiom of countability, Rocky Mountain Journal of Mathematics 5 (1975), 1–60. [647] A. B. Slomson, Generalized quantifiers and well orderings, Archiv für mathematische Logik und Grundlagenforschung 15 (1972), no. 1, 57–73. [648] Robert M. Solovay, Measurable cardinals and the axiom of determinateness, preprint, UCLA Set Theory Conference, 1967. [649] Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Annals of Mathematics 92 (1970), 1–56. [650] Robert M. Solovay, The independence of DC from AD, in: A. S. Kechris, D. A. Martin and Y. N. Moschovakis, eds., Cabal Seminar 76–77. Lecture Notes in Mathematics, 689. Springer-Verlag, Berlin–Heidelberg–New York, 1978. pp. 171–183. [651] Aleksandr Šostak and Andrzej Szymanski, On a class of special Namioka spaces, Topology Proceedings 22 (1997), Summer, 485–499. [652] Santi Spadaro, Covering by discrete and closed discrete sets, Topology and its Applications 156 (2009), 721–727. [653] Santi Spadaro, Infinite games and chain conditions, Fundamenta Mathematicae 234 (2016), no. 3, 229–239. [654] R. P. Sprague, Über mathematische Kampfspiele, Tohoku Mathematical Journal 41 (1936), 438–444. [655] J. R. Steel, Analytic sets and Borel isomorphisms, Fundamenta Mathematicae 108 (1980), 83–88. [656] J. R. Steel and R. Van Wesep, Two consequences of determinacy consistent with choice, Transactions of the American Mathematical Society 272 (1982), 67–85. [657] P. R. Stein and Stanislaw Ulam, A study of certain combinatorial problems through experiments on computing machines, in: Proceedings of the High Speed Computer Conference, Louisiana State University, Baton Rouge, February 1955. [658] Hugo Steinhaus, Definicje potrzebne do teorii gier i pościgu, Złota Myśl Akademicka (Lwów) 1 (1925), no. 1, 13–14; English transl.: Definitions for a theory of games and pursuits, Naval Research Logistics Quarterly 7 (1960), 105–108. [659] È. D. Stockij, On descriptive theory of games (in Russian), Problemy Kibernetiki 8 (1962), 45–54. [660] Paul Szeptycki and Yukinobu Yajima, Covering properties, in: K. P. Hart, J. van Mill and P. Simon, eds., Recent progress in general topology. III. Atlantis Press, Amsterdam–Paris, 2014. pp. 801–824. [661] P. Szewczak, Some remarks on a game of Telgársky, Topology and its Applications 158 (2011), no. 2, 177–182. [662] P. Szewczak, Productivity of paracompactness in the class of the first-countable GO-spaces with certain dense subsets, Topology and its Applications 165 (2014), 39–49. [663] Michel Talagrand, Sur les convexes compacts dont l’ensemble des points extrémaux est K-analytique, Bulletin de la Société Mathématique de France 107 (1979), 49–53. [664] Michel Talagrand, Espace de Baire et espaces de Namioka, Mathematische Annalen 270 (1985), 159–164. [665] Franklin D. Tall, Set-theoretic problems concerning Lindelöf spaces, Questions and Answers in General Topology 29 (2011), 91–103. [666] Franklin D. Tall, Productively Lindelöf spaces may all be D, Canadian Mathematical Bulletin 56 (2013), no. 1, 203–212. [667] Jarno Talponen, Open-point topological games and productivity of dense-separable property, preprint, arXiv:1506.06080.

686

Editorial

[668] Ken-ichi Tamano and Yukinobu Yajima, On total paracompactness and total metacompactness, Fundamenta Mathematicae 105 (1979), 73–78. [669] Hidenori Tanaka, Submetacompactness and weak submetacompactness in countable products, Topology and its Applications (67) 1995, 29–41. [670] Hidenori Tanaka, Submetacompactness in countable products, Topology Proceedings 27 (2003), 307–316. [671] Rastislav Telgársky, On topological properties defined by games, in: Á. Császár, ed., Topics in topology. Colloquia Mathematica Societatis János Bolyai, 8. North-Holland, Amsterdam–London; János Bolyai Mathematical Society, Budapest; American Elsevier, New York, 1974. pp. 617–624. [672] Rastislav Telgársky, Spaces defined by topological games, Fundamenta Mathematicae 88 (1975), 193–223. [673] Rastislav Telgársky, A characterization of P-spaces, Proceedings of the Japan Academy 51 (1975), 802–807. [674] Rastislav Telgársky, Topological games and analytic sets, Houston Journal of Mathematics 3 (1977), 549–553. [675] Rastislav Telgársky, On some topological games, in: J. Novák, ed., General topology and its relations to modern analysis and algebra. IV. Proceedings of the Fourth Prague Topological Symposium, Prague, 1976. Part B: Contributed papers. Society of Czechoslovak Mathematicians and Physicists, Prague, 1977. pp. 461–472. [676] Rastislav Telgársky, Topological games and measures, in: J. Flachsmeyer, Z. Frolík and F. Terpe, eds., Proceedings of the Conference Topology and Measure. I. Part 2. Wissenschaftliche Beiträge. Ernst-Moritz-Arndt-Universität, Greifswald, 1978. pp. 333–342. [677] Rastislav Telgársky, On point-open games and their generalizations, in: Á. Császár, ed., Topology. Vol. I. Colloquia Mathematica Societatis János Bolyai, 23. North-Holland, Amsterdam–Oxford–New York, 1980. pp. 1167–1172. [678] Rastislav Telgársky, On a game of Choquet, in: J. Novák, ed., General topology and its relations to modern analysis and algebra. V. Sigma Series in Pure Mathematics, 3. Heldermann Verlag, Berlin, 1983. pp. 585–592. [679] Rastislav Telgársky, Spaces defined by topological games, II, Fundamenta Mathematicae 116 (1983), 189–207. [680] Rastislav Telgársky, On sieve-complete and compact-like spaces, Topology and its Applications 16 (1983), 61–68. [681] Rastislav Telgársky, On games of Topsøe, Mathematica Scandinavica 54 (1984), 170–176. [682] Rastislav Telgársky, Remarks on a game of Choquet, Colloquium Mathematicum 51 (1987), 365–372. [683] Rastislav Telgársky, Topological games: On the 50th anniversary of the Banach–Mazur game, Rocky Mountain Journal of Mathematics 17 (1987), 227–276. [684] Rastislav Telgársky, Stationary strategies in deterministic games, in: T. Ichiishi, A. Neyman and Y. Tauman, eds., Game theory and applications. Economic Theory, Econometrics, and Mathematical Economics. Academic Press, San Diego–New York, 1990. p. 409. [685] Rastislav Telgársky, Updated bibliography of topological games, online version, 2013. http://www.telgarsky.com/Telgarsky,%20Rastislav%20-%20Bibliography%20of%20Topological %20Games,%202013-05-08.pdf [686] Rastislav Telgársky and Howard H. Wicke, Complete exhaustive sieves and games, Proceedings of the American Mathematical Society 102 (1988), 737–744. [687] Rastislav Telgársky and Yukinobu Yajima, On order locally finite and closure-preserving covers, Fundamenta Mathematicae 109 (1980), 211–216.

Editorial

687

[688] Mikhail Tkachenko, Paratopological and semitopological groups versus topological groups, in: K. P. Hart, J. van Mill and P. Simon, eds., Recent progress in general topology. III. Atlantis Press, Amsterdam– Paris, 2014. pp. 825–882. [689] Vladimir V. Tkachuk, Topological applications of game theory (in Russian). Moscow State University Publishing House, Moscow, 1992. [690] Vladimir V. Tkachuk, Some new versions of an old game, Commentationes Mathematicae Universitatis Carolinae 36 (1995), no. 1, 179–198. [691] Vladimir V. Tkachuk, Teoría de juegos en topología, Carta Informativa de la Sociedad Matemática Mexicana 44 (2005), 10–11. [692] Aaron R. Todd, Quasiregular, pseudocomplete, and Baire spaces, Pacific Journal of Mathematics 95 (1981), 233–250. [693] S. Todorčević, Aronszajn orderings, Ðuro Kurepa memorial volume, Publications de l’Institut Mathématique (Beograd). Nouvelle Série 57(71) (1995), 29–46. [694] Artur H. Tomita, Countable compactness and finite powers of topological groups without convergent sequences, Topology and its Applications 146–147 (2005), 527–538. [695] Flemming Topsøe, Topological games and Čech completeness, in: J. Novák, ed., General topology and its relations to modern analysis and algebra. V. Sigma Series in Pure Mathematics, 3. Heldermann Verlag, Berlin, 1983. pp. 613–630. [696] Boaz Tsaban, Strong γ-sets and other singular spaces, Topology and its Applications 153 (2005), no. 4, 620–639. [697] Boaz Tsaban, o-bounded groups and other topological groups with strong combinatorial properties, Proceedings of the American Mathematical Society 134 (2006), no. 3, 881–891. [698] Boaz Tsaban, Selection principles and special sets of reals, in: E. Pearl, ed., Open problems in topology. II. Elsevier, Amsterdam, 2007. pp. 91–108. [699] Boaz Tsaban, Algebra, selections, and additive Ramsey theory, preprint, arXiv:1407.7437. [700] Boaz Tsaban and Tomasz Weiss, Products of special sets of real numbers, Real Analysis Exchange 30 (2004/2005), no. 2, 819–835. [701] Boaz Tsaban and Lyubomyr Zdomskyy, Arhangel’ski˘ı sheaf amalgamations in topological groups, Fundamenta Mathematicae 232 (2016), 281–293. [702] Andrzej Turowicz, Sur une propriété des nombres irrationnels, Annales Polonici Mathematici 2 (1955), 103–105. [703] Stanislaw M. Ulam, A collection of mathematical problems. Interscience Tracts in Pure and Applied Mathematics, 8. Interscience Publishers, New York–London, 1960. xiii+150 pp. [704] Stanislaw M. Ulam, Combinatorial analysis in infinite sets and some physical theories, SIAM Review 6 (1964), 343–355. [705] Stanislaw M. Ulam, Adventures of a mathematician. Charles Scribner’s Sons, New York, 1976. xi+317 pp. [706] Stanislaw M. Ulam, ed., The Scottish Book. Los Alamos Scientific Laboratory Monograph, Los Alamos, 1977. [707] P. Urbaniec, Topological games and iterates of multifunctions, talk presented at the Ninth Symposium on General Topology and its Relations to Modern Analysis and Algebra, Prague, August 2001. [708] Toshimichi Usuba, Characters of countably tight spaces and inaccessible cardinals, Topology and its Applications 161 (2014), 95–106. [709] Jouko Väänänen, Models and games. Cambridge Studies in Advanced Mathematics, 132. Cambridge University Press, Cambridge, 2011. xii+367 pp. [710] J. Väänänen and B. Velivcković, Games played on partial isomorphisms, Archive for Mathematical Logic 43 (2004), no. 1, 19–30.

688

Editorial

[711] R. Van Wesep, Wadge degrees and descriptive set theory, in: A. S. Kechris, D. A. Martin and Y. N. Moschovakis, eds., Cabal Seminar 76–77. Lecture Notes in Mathematics, 689. Springer-Verlag, Berlin–Heidelberg–New York, 1978. pp. 151–170. [712] R. Van Wesep, Separation principles and the axiom of determinateness, Journal of Symbolic Logic 43 (1978), 77–81. [713] Robert Vaught, Invariant sets in topology and logic, Fundamenta Mathematicae 82 (1974), 269–294. [714] Robert L. Vaught and K. Schilling, Borel-game operations preserve the Baire property, Notices of the American Mathematical Society 26 (1979), A-247. [715] Boban Veličković, Playful Boolean algebras, Transactions of the American Mathematical Society 296 (1986), 727–740. [716] Dan Velleman, On a generalization of Jensen’s κ , and strategic closure of partial orders, Journal of Symbolic Logic 48 (1983), no. 4, 1046–1052. [717] S. Vinner, A generalization of Ehrenfeucht’s game and some applications, Israel Journal of Mathematics 12 (1972), 279–298. [718] Peter Vojtáš, A transfinite boolean game and a generalization of Kripke’s Embedding Theorem, in: J. Novák, ed., General topology and its relations to modern analysis and algebra. V. Sigma Series in Pure Mathematics, 3. Heldermann Verlag, Berlin, 1983. pp. 663–668. [719] Peter Vojtáš, Simultaneous strategies and Boolean games of uncountable length, Rendiconti del Circolo Matematico di Palermo. Second series (1982), suppl. no. 2, 293–297. [720] Peter Vojtáš, Game properties of Boolean algebras, Commentationes Mathematicae Universitatis Carolinae 24 (1983), no. 2, 349–369. [721] Peter Vojtáš, Boolean games – Classifying strategies and omitting cardinality assumptions, Rendiconti del Circolo Matematico di Palermo. Second series (1984), suppl. no. 3, 361–368. [722] B. Volkmann, Gewinnmengen, Archiv der Mathematik 10 (1959), 235–240. [723] Abraham Wald, Statistical decision functions. John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1950. ix+179 pp. [724] W. Walden, A study of simple games through experiments on computing machines, in: M. Dresher, A. W. Tucker and P. Wolfe, eds., Contributions to the theory of games. Vol. III. Annals of Mathematics Studies, 39. Princeton University Press, Princeton, 1957. pp. 201–212. [725] Jianjun Wang and Peiyong Zhu, Strongly screenableness and its Tychonoff products, International Journal of Computational and Mathematical Sciences 5 (2011), no. 3, 145–149. [726] Jianjun Wang and Peiyong Zhu, Mesocompactness in countable products (in Chinese), Pure and Applied Mathematics (Xi’an) 27 (2011), no. 2, 261–266. [727] M. Weese, Generalized Ehrenfeucht games, Fundamenta Mathematicae 109 (1980), 103–112. [728] H. E. White, Jr., Topological spaces that are α-favorable for a player with perfect information, in: R. A. Alò, R. W. Heath and J. Nagata, eds., TOPO 72 – General topology and its applications. Lecture Notes in Mathematics, 378. Springer-Verlag, Berlin–Heidelberg–New York, 1974. pp. 551–556. [729] H. E. White, Jr., An example involving Baire spaces, Proceedings of the American Mathematical Society 48 (1975), 228–230. [730] H. E. White, Jr., Topological spaces that are α-favorable for a player with perfect information, Proceedings of the American Mathematical Society 50 (1975), 477–482. [731] Howard H. Wicke and John M. Worrell, Jr., On the open continuous images of paracompact Čechcomplete spaces, Pacific Journal of Mathematics 37 (1971), 265–276. [732] Howard H. Wicke and John M. Worrell, Jr., Topological completeness of first countable Hausdorff spaces I, Fundamenta Mathematicae 75 (1972), no. 3, 209–222. [733] Howard H. Wicke and John M. Worrell, Jr., Completeness and topologically uniformizing structures, in: R. A. Alò, R. W. Heath and J. Nagata, eds., TOPO 72 – General topology and its applications. Lecture Notes in Mathematics, 378. Springer-Verlag, Berlin–Heidelberg–New York, 1974. pp. 557–585.

Editorial

689

[734] Howard H. Wicke and John M. Worrell, Jr., Topological completeness of first countable Hausdorff spaces, II, Fundamenta Mathematicae 91 (1976), no. 1, 11–27. [735] N. H. Williams, Combinatorial set theory. Studies in Logic and the Foundations of Mathematics, 91. North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977. xi+208 pp. [736] Philip Wolfe, The strict determinateness of certain infinite games, Pacific Journal of Mathematics 5 (1955), 841–847. [737] W. Hugh Woodin, Strong Axioms of Infinity and the search for V, in: R. Bhatia, A. Pal, G. Rangarajan, V. Srinivas and M. Vanninathan, eds., Proceedings of the International Congress of Mathematicians. Vol. I. Hindustan Book Agency, New Delhi; World Scientific Publishing Co. Pte. Ltd. (distrib.), Singapore, 2010. pp. 504–528. [738] N. N. Worobjow, Entwicklung der Spieltheorie. VEB Deutscher Verlag der Wissenschaften, Berlin, 1975. 143 pp. [739] Yukinobu Yajima, Solution of R. Telgársky’s problem, Proceedings of the Japan Academy 52 (1976), 348–350. [740] Yukinobu Yajima, On order star-finite and closure-preserving covers, Proceedings of the Japan Academy 55 (1979), 19–22. [741] Yukinobu Yajima, Topological games and products, Notices of the American Mathematical Society 26 (1979), No. 6, A-533. [742] Yukinobu Yajima, Topological games and products, I, Fundamenta Mathematicae 113 (1981), 141–153. [743] Yukinobu Yajima, Topological games and products, II, Fundamenta Mathematicae 117 (1983), 47–60. [744] Yukinobu Yajima, Topological games and products, III, Fundamenta Mathematicae 117 (1983), 223–238. [745] Yukinobu Yajima, Notes on topological games, Fundamenta Mathematicae 121 (1984), 31–40. [746] Yukinobu Yajima, Topological games and applications, in: K. Morita and J. Nagata, eds., Topics in general topology. North-Holland Mathematical Library, 41. North-Holland, Amsterdam, 1989. pp. 523–562. [747] Yukinobu Yajima, On the submetacompactness of products, Proceedings of the American Mathematical Society 107 (1989), 503–509. [748] Yukinobu Yajima, A base property in paracompact products and its applications, Topology and its Applications, 142 (2004), 19–30. [749] Yukinobu Yajima, Characterizations of normal covers on rectangular products and infinite products, Set Theoretic and Geometric Topology and its Applications 1419 (2005), 99–104. [750] Yukinobu Yajima, Characterizations of normal covers of rectangular products, Topology and its Applications 153 (2006), no. 17, 3220–3229. [751] Yukinobu Yajima, Products of monotonically normal spaces with factors defined by topological games, Topology and its Applications 159 (2012), no. 4, 1223–1235. [752] C. E. M. Yates, Prioric games and minimal degrees below 0(1) , Fundamenta Mathematicae 82 (1974), 217–237. [753] C. E. M. Yates, Banach–Mazur games, comeager sets and degrees of unsolvability, Mathematical Proceedings of The Cambridge Philosophical Society 79 (1976), 195–220. [754] Lynne Yengulalp, Coding strategies, the Choquet game, and domain representability, Topology and its Applications 202 (2016), 384–396. [755] Samy Zafrany, On the topological strength of Boolean set operations, preprint, 1989. http://aspbak.netanya.ac.il/~samy/papers/paper6.ps [756] Jindřich Zapletal, More on the cut and choose game, Annals of Pure and Applied Logic 76 (1995) 291–301. [757] Jindřich Zapletal, Transfinite open-point games, Topology and its Applications 111 (2001), 289–297. [758] Jindřich Zapletal, Forcing Idealized, Cambridge University Press, 2008, 320s.

690

Editorial

[759] Lyubomyr Zdomskyy, o-Boundedness of free objects over a Tychonoff space, Matematychni Studii 25 (2006), no. 1, 10–28. [760] Miroslav Zeleny, The Banach–Mazur game and σ-porosity, Fundamenta Mathematicae 150 (1996), 197–210. [761] Ernest Zermelo, Beweis, dass jede Menge wohlgeordnet werden kann, Mathematische Annalen 59 (1904), 514–516. [762] Ernest Zermelo, Über eine Anwendung der Mengenlehre auf die Theorie der Schachspiels, in: E. W. Hobson and A. E. H. Love, eds., Proceedings of the Fifth International Congress of Mathematicians (Cambridge, 22–28 August 1912). Vol. II. Cambridge University Press, Cambridge, 1913. pp. 501–504. [763] Andrzej Zięba, An example of the game of Banach and Mazur, Colloquium Mathematicum 4 (1957), 230–231. [764] László Zsilinszky, Polishness of the Wijsman topology revisited, Proceedings of the American Mathematical Society 126 (1998), 3763–3765. [765] László Zsilinszky, Topological games and hyperspace topologies, Set-Valued Analysis 6 (1998), 187–207. [766] László Zsilinszky, Baire spaces and weak topologies generated by gap and excess functionals, Mathematica Slovaca 49 (1999), 357–366. [767] László Zsilinszky, On β-favorability of the strong Choquet game, Colloquium Mathematicum 125 (2011), no. 2, 233–243. [768] László Zsilinszky, On Telgársky’s question concerning β-favorability of the strong Choquet game, Colloquium Mathematicum 130 (2013), no. 1, 61–65. [769] László Zsilinszky, On complete metrizability of the Hausdorff metric topology, preprint, arXiv: 1503.04383. [770] Stefan Zubrzycki, On the game of Banach and Mazur, Colloquium Mathematicum 4 (1957), 227–229. Theses [1] Ross Bryant, Borel determinacy and metamathematics, Master thesis, University of North Texas, Denton, 2001. http://www.cas.unt.edu/~rdb0003/thesis/thesis.pdf [2] Barry A. Burd, Some implications of the theory of weaves with applications in determinateness and logic, Ph.D. thesis, University of Illinois, Urbana–Champaign, 1976. [3] John P. Burgess, Infinitary languages and descriptive set theory, Ph.D. thesis, University of California, Berkeley, 1974. [4] Jiling Cao, Asymmetric topology and topological spaces defined by games, Ph.D. thesis, University of Auckland, Auckland, 1999. [5] Claude Dellacherie, Contribution à la théorie générale des processus stochastiques, Ph.D. thesis, Université Louis Pasteur, Strasbourg, 1970. [6] Charles William Gray, Iterated forcing from the strategic point of view, Ph.D. thesis, University of California, Berkeley, 1980. [7] David Guerrero Sánchez, Dos juegos topológicos clásicos, Master thesis, Universidad Autónoma Metropolitana, México, 2007. http://148.206.53.84/tesiuami/UAMI14127.pdf [8] Sunil Jacob John, Fuzzy topological games and related topics, Ph.D. thesis, Cochin University of Science and Technology, Cochin, 2000. http://dyuthi.cusat.ac.in/xmlui/bitstream/handle/purl/73/Dyuthi-T0102.pdf

Editorial

691

[9] Eryk Kopczyński, Half-positional determinacy of infinite games, Draft of Ph.D. Thesis, Warsaw University, 2008. http://www.mimuw.edu.pl/~erykk/papers/hpwc.ps [10] Grzegorz Kubicki, O grze Sierpińskiego, Ph.D. thesis, Politechnika Wrocławska, Wrocław, 1983. [11] Merlijn Kuin, Topological game theory, Master thesis, Universiteit van Amsterdam, 2007. [12] Simon Robert Leßenich, Banach–Mazur games with simple winning strategies, Diploma thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, 2011. http://logic.rwth-aachen.de/~lessenich/diplomarbeit.pdf [13] R. A. Lockhart, The programming operation on σ fields, Ph.D. thesis, University of California, Berkeley, 1979. [14] Oleksandr V. Maslyuchenko, Oscillations of separately continuous functions and topological games (in Ukrainian), Ph.D. thesis, Chernivtsi National University, Chernivtsi, 2002. [15] R. J. Mignone, Ultrafilters resulting from the axiom of determinateness, Ph.D. thesis, Pennsylvania State University, State College, 1979. [16] John Clifford Morgan, II, Infinite games and singular sets, Ph.D. thesis, University of California, Berkeley, 1971. [17] Carl Mummert, On the reverse mathematics of general topology, Ph.D. thesis, Pennsylvania State University, State College, 2005. http://etda.libraries.psu.edu/files/final_submissions/1090 [18] Oleg Ivanovich Pavlov, On properties of normality type and countable compactness in topological spaces and groups (in Russian), Ph.D. Thesis, Moscow University, Russia, 2012. [19] Krzysztof Płotka, Gry nieskończone, Master thesis, Uniwersytet Gdański, Gdańsk, 1997. http://www.scranton.edu/faculty/plotka/pdfs/9.pdf [20] Jan Reimann, Topologische Spiele und resourcenbeschränkte Baire-Kategorie, Diploma thesis, Universität Heidelberg, Heidelberg, 2005. http://www.personal.psu.edu/jsr25/Publications/arbeit.pdf [21] Nadav Samet, Ramsey theory of open covers, Master thesis, Weizmann Institute of Science, Rehovot, 2007. [22] Brian Thomas Semmes, A game for the Borel functions, Ph.D. thesis, Universiteit van Amsterdam, Amsterdam, 2009. http://www.illc.uva.nl/Research/Publications/Dissertations/DS-2009-03.text.pdf [23] William W. Wadge, Reducibility and determinateness on the Baire space, Ph.D. thesis, University of California, Berkeley, 1983. [24] Falko Weigt, Kategorien-Konzepte und ihre spieltheoretische Verallgemeinerung, Master thesis, Westfälische Wilhelms-Universität Münster, Münster, 2007, arXiv:1406.2039. [25] Yukinobu Yajima, Topological games and products (in Japanese), Ph.D. thesis, University of Tsukuba, Tsukuba, 1981. [26] Martin Zimmermann, Time-optimal winning strategies in infinite games, Diploma thesis, RheinischWestfälischen Technischen Hochschule Aachen, Aachen, 2009. http://www.automata.rwth-aachen.de/download/papers/zimmermann/Thesis.pdf Abstracts [1] Peter Clote, On the complexity of winning strategies for clopen games, Abstracts of Papers Presented to the American Mathematical Society 3 (1982), No. 7, 591; 82T-03-542. [2] Fred Galvin, A generalization of Ramsey’s theorem, Notices of the American Mathematical Society 15 (1968), 548. Abstract 68T-368.

692

Editorial

[3] Fred Galvin, Set-theoretic and topological games, Notices of the American Mathematical Society 25 (1978), no. 3, A-387, 755-E17. [4] Fred Galvin, On the Fréchet–Urysohn property in spaces of continuous functions, in: Abstracts of the 9th Winter School in Abstract Analysis, held at Srní, Czechoslovakia, in 1981. Mathematical Institute, Czechoslovak Academy of Sciences, Praha, 1981. pp. 29–31. [5] Fred Galvin, Jan Mycielski and Robert M. Solovay, Strong measure zero sets, Notices of the American Mathematical Society 26 (1979), A-280. [6] A. R. D. Mathias, On a generalization of Ramsey’s theorem, Notices of the American Mathematical Society 15 (1968), 931. Abstract 68TE19. [7] K. Schilling, Absolutely Δ12 operations and the Baire property, Abstracts of Papers Presented to the American Mathematical Society 1 (1980), 239. Abstract #80T-E22. [8] Rastislav Telgársky, On some infinite positional games, abstract, in: Leszek Pacholski, European meeting of the Association for Symbolic Logic, Wroclaw 1977, Journal of Symbolic Logic 44 (1979), no. 3, 441–468. Talks [1] Piotr Borodulin-Nadzieja and Grzegorz Plebanek, Strategies and tactics in measure games, talk presented at the conference Coverings, Selections and Games in Topology, Lecce, December 2005. http://www.math.uni.wroc.pl/~pborod/slides/spm2005.pdf [2] P. Burton, R. Dias and F. D. Tall, Lindelöf indestructibility, topological games, and selection principles – New results, talk presented by F. D. Tall, Kobe, January 2012. http://kurt.scitec.kobe-u.ac.jp/~fuchino/misc/kobe-seminar2012/tall.Kobe2012.pdf [3] Jiling Cao and Sina Greenwood, Topological games and multifunctions, talk presented at the seminar of the Department of Mathematics of the University of Auckland, 1998. [4] Jiling Cao and Artur H. Tomita, Baire spaces and the Wijsman topology, talk presented by Jiling Cao at the International Conference on Topology and its Applications, Kyoto, December 2007. http://aut.researchgateway.ac.nz/handle/10292/3531 [5] Mitrofan M. Choban, Petar S. Kenderov and Julian P. Revalski, Topological games and perturbed optimization problems, talk presented by Julian P. Revalski at the IVth Workshop on Coverings, Selections, and Games in Topology, Caserta, June 2012. http://u.cs.biu.ac.il/~tsaban/spmc12/Section1/Revalski.pdf [6] Robert Deville and Etienne Matheron, A topological game in Banach spaces and solutions almost everywhere of the Eikonal equation, talk presented by Robert Deville at the conference Function Theory on Infinite Dimensional Spaces IX, Madrid, 2005. http://www.mat.ucm.es/~confexx/web_confe_05/talks/plenary_talks/deville_robert.pdf [7] Robert Deville, Topological games in Banach spaces, talk presented at the 40th Winter School in Abstract Analysis, Prague(?), 2012. http://www.karlin.mff.cuni.cz/~lhota/pres12/deville2.pdf [8] François G. Dorais and Carl Mummert, Convergent and stationary strategies in Choquet games, talk presented by Carl Mummert at the UCLA Logic Colloquium, Los Angeles, April 2009. http://m6c.org/tex/beamer-demo.pdf [9] David Gauld, Topological games and manifolds, talk presented at the 1999 New Zealand Mathematics Colloquium, Christchurch, July 1999. [10] Gary Gruenhage, Topological games, tutorial given at the conference BLAST – Boolean Algebra, Lattice Theory, Universal Algebra, Set Theory, and Set-theoretic Topology, Boulder, June 2010. http://at.yorku.ca/c/b/a/p/09.htm

Editorial

693

[11] David Guerrero-Sánchez, Topological games and Baire spaces, slides, UNCC, 2009. [12] David Guerrero-Sánchez, Are Eberlein–Grothendieck scattered spaces σ-discrete?, talk presented at the conference Trends in Set Theory, Warsaw, July 2012. http://www.impan.pl/~set_theory/Conference2012/schedule/slides/guerrero.pdf [13] Peter Hancock and Pierre Hyvernat, A category of games for topology, talk presented at the First APPSEM-II Workshop, Nottingham, March 2003. http://www.cs.nott.ac.uk/~pszgmh/appsem-slides/hyvernat.pdf [14] Rodrigo Hernández-Gutiérrez, Michael Hrušák and Ángel Tamariz-Mascarúa, Classifying spaces of remote points for some metrizable spaces, talk presented by Rodrigo Hernández-Gutiérrez at the Eleventh Prague Symposium on General Topology and Its Relations to Modern Analysis and Algebra, Prague, August 2011. http://www.matem.unam.mx/~rod/talks/toposym_2011.pdf [15] Andrzej Kucharski, Open–open game of uncountable length, talk presented at the Winter School in Abstract Analysis, Hejnice, January 2010. http://www.winterschool.eu/files/76-Open-Open_Game_of_Uncountable_Length.pdf [16] Grégory Lafitte and Michaël Weiss, A topological study of tilings, talk presented at the 5th International Conference – Theory and Applications of Models of Computation, Xi’an, April 2008. http://tcs.unige.ch/lib/exe/fetch.php/user/weisstamcpresentation.pdf [17] Warren B. Moors, Topological groups and topological games, talk presented at the 41st Spring Conference of the Union of Bulgarian Mathematicians, Borovetz, April 2012. http://www.math.auckland.ac.nz/~moors/Jonfest.pdf [18] Peter Nyikos, Three closely related topological games, talk presented at the 2012 Ibero-American Conference on Topology and its Applications, Guanajuato, April 2012. [19] Leszek Piątkiewicz and László Zsilinszky, Topological games and the Vietoris hyperspace, talk presented by Leszek Piątkiewicz at the Spring Topology and Dynamical Systems Conference, Starkville, March 2010. http://at.yorku.ca/c/b/a/j/03.htm [20] Strashimir G. Popvassilev, On some versions of the point-open game, talk presented at the Spring Topology and Dynamics Conference, Greensboro, March 2006. http://at.yorku.ca/c/a/s/t/17.htm [21] Alexander Rabinovich, Church’s synthesis problem and its extensions, course given at the 4th Indian School on Logic and its Applications, Manipal, January 2012. http://ali.cmi.ac.in/isla2012/slides/ar-talk1.pdf http://ali.cmi.ac.in/isla2012/slides/ar-talk2.pdf http://ali.cmi.ac.in/isla2012/slides/ar-talk3.pdf http://ali.cmi.ac.in/isla2012/slides/ar-talk4.pdf [22] Nadav Samet and Boaz Tsaban, Ramsey theory of open covers: From partition relations to games, talk presented by Nadav Samet at the III Workshop on Coverings, Selections and Games in Topology, Niš–Čačak, April 2007. http://u.cs.biu.ac.il/~tsaban/SPMC07/Samet.pdf [23] Marion Scheepers, On Hurewicz subsets of RN , talk presented at the Boise Extravaganza in Set Theory – BEST 17, Boise, March 2008. http://diamond.boisestate.edu/~best/best17/MarionBEST08.pdf [24] Philipp Schlicht, Perfect subsets of generalized Baire spaces and Banach–Mazur games, talk presented at the conference Descriptive Set Theory in Paris, Paris, December 2012. http://www.math.uni-bonn.de/people/schlicht/Talks/talkKilpisjaervi13.pdf

Editorial

694

[25] Aleksandr Šostak and Andrzej Szymanski, On a class of Namioka spaces determined by a topological game, talk presented at the IVth Workshop on Coverings, Selections and Games in Topology, Caserta, June 2012. http://u.cs.biu.ac.il/~tsaban/spmc12/Section1/Sostaks.pdf [26] Wolfgang Thomas, Facets of strategy synthesis in infinite games, talk presented at the conference Logic and Algorithms, Edinburgh, July 2008. http://icms.org.uk/downloads/LandA/Thomas.pdf [27] Aaron R. Todd, M. Henriksen, R. Kopperman, and L. Zsilinszky, Baire relations and winning the Banach–Mazur game on (X, τ ), talk presented by Aaron R. Todd at the 1999 Summer Conference on Topology and its Applications, Brookville, August 1999. http://at.yorku.ca/c/a/c/l/76.htm [28] Daniele Varacca, H. Völzer, E. Kindler, M. Schmalz, E. Asarin, and R. Chane-Yack-Fa, Fairness and the Banach–Mazur game, talk presented at the Réunion Annuelle du Groupe de Travail “Jeux”, Chevaleret, October 2010. http://www.liafa.jussieu.fr/~serre/GTJeux/Slides/Varacca.pdf [29] Daniele Varacca, H. Völzer, E. Kindler, M. Schmalz, E. Asarin, and R. Chane-Yack-Fa, A Topological definition of fairness, talk presented at the Seminario degli ex-studenti di Matematica di Parma, 2a edizione, Parma, January 2012. http://www.dm.unipi.it/~angella/exstudenti/slide/daniele_v.pdf [30] W. Hugh Woodin, The search for Ultimate L, talk presented at the Ziwet Lectures, Ann Arbor, November 2010. http://www.math.lsa.umich.edu/video/ziwet1.pdf [31] László Zsilinszky, On β-favorability of the strong Choquet game, talk presented at the Eleventh Symposium on General Topology and its Relations to Modern Analysis and Algebra, Prague, August 2011.

Rodrigo R. Dias a Marion Scheepers b,∗ a Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, SP, 09210-580, Brazil b Department of Mathematics, Boise State University, Boise, ID 83725, United States E-mail addresses: [email protected] (R.R. Dias), [email protected] (M. Scheepers) 3 September 2016 Available online 22 February 2017 In honor of Rastislav Telgársky

* Corresponding author.