An IntemationalJoumal Available online at www.sciencedirect.com
.=.,=.=. ~)o,..cT.
computers &
mathematics
with application8
ELSEVIER Computers and Mathematics with Applications 40 (2004) 1199-1224 www.elsevier.com/locate/camwa
A Class of I m p l i c i t A d v a n c e d S t e p - P o i n t M e t h o d s w i t h a Parallel F e a t u r e for t h e S o l u t i o n of Stiff Initial V a l u e P r o b l e m s G. PSIHOYIOS Department of Mathematics and Technology Angila Polytechnic University, East Road, Cambridge CB1 1PT, U.K. g. psihoyios©nt lwor id. c o m
A b s t r a c t - - In this paper, a class of implicit advanced step-point methods that possesses a parallel feature is presented. Their accuracy and stability characteristics are examined in some detail and an experimental nonparallel code has been developed in order to give us a fair indication of their capabilities. Our aim is not to discuss a "parallel implementation" but, to demonstrate the worthiness of the new methods. The experimental code is compared with the powerful MEBDF code on the stiff DETEST problem set and the statistics displayed are obtained from the DETEST evaluation package. Some initial conclusions concerning the efficiency of the new methods are drawn from the analysis of the numerical results. @ 2005 Elsevier Ltd. All rights reserved. K e y w o r d s - - stiffness, Initial value problems, Advanced step-point methods stability, PIAS methods, Parallel methods, MEBDF. 1. I N T R O D U C T I O N Parallel methods for the efficient solution of initial value problems were suggested many years ago, e.g., [1,2]. The growing interest and technological developments in parallel computers in recent years is the single most important factor that has rekindled the considerable attention that, these methods enjoy. For example more recently, an interesting survey in 1993 on parallel methods for IVPs by Burrage [3] unified earlier suggestions and provided some new ideas for future developments. Since then, there have been further developments on the subject, but given that we are not discussing a "parallel implemention', any such references are not particularly relevant to this paper. Below, we will give a brief account of the modified extended backward differentiation formulae (MEBDF) since we refer to them frequently in the next sections. M E B D F form an important class of methods that belongs to the wider family of Implicit advanced step-point methods [4] (but, also [5]). M E B D F were proposed by Cash [6] in 1983. In 1988, Considine [7] further refined their implementation and in 1992 an M E B D F code for stiff IVPs was presented by Cash and Considine [8]. The M E B D F approach is as follows. STEP 1. Use a standard BDF to compute the first predictor ~n+k, assuming that approximate solutions yn+j have been computed at xn+j, for 0 < j < k - 1 k-1
~,~+k + ~ ~jy~+j = h~kf (zn+~, fJ,~+k),
(1)
j=0 0898-1221/05/$ - see front matter (~) 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2005.01.014
Typeset by .AAdS-TEX
1200
Cl. PsIHoYIOS
where dj and bk are the known BDF coefficients. STEP 2. Use a standard BDF to compute the second predictor tdn+k+l k-2
9n+k+l + ak-19~+k + ~
gjYr~+j+l = ht)kf (x~+k+l, O~+k+l) .
(2)
j=O
STEP 3. Assuming that, the Newton iteration converges (see [8] for details), evaluate fn+k = f (X~+k, 9~+k) ,
f~+k+l = f (X~+k+l, 9~+k+1) •
(3)
STEP 4. Compute a corrected solution of order (k + 1) at x~+k using k-1
Yn+k + Z ajy~+j = h [bk+lf~+k+l q- ~)kfn+k q- (bk -- [)k)fn+k] , j=O
(4)
where, (for reasons of computational efficiency) Dk = bk - bk and as, bk+l, bk are given in [9]. The purpose of this paper is to present in some detail a powerful new class of methods for the solution of stiff IVPs and to gain a fair understanding of their capabilities through an experimental code that has been specially developed for these methods. These new methods possess a parallel feature, which we fully document, but it is beyond the scope of this paper to discuss a "parallel implementation". The paper is constructed as follows. In Section 2, we present the general approach, we explain the paralM feature of the methods and we show how the coefficients of the second predictor have been obtained. In Section 3, we discuss in some detail the accuracy and stability of the methods. In Section 4, we briefly explain the key features of the nonparallel evaluation code. In Section 5, we make an important point about the numerical comparisons between our experimental code and the MEBDF code. In Section 6, we briefly discuss the stiff DETEST package and we present a full account and comments of the numerical results obtained from the stiff DETEST problem set. Finally, in Section 7 we summarize our conclusions. In the Appendix, we give the coefficients of the second predictor in detail.
2. T H E
GENERAL
APPROACH
The new methods follow a basic approach, which we may briefly name as "two steps forward (first and second predictor) and one step back (corrector)". The "two steps forward" feature of advanced step-point methods is a "key point" since it may grant them the possibility of being used efficiently on a parallel computer, if appropriate modifications are made. The idea is straightforward. Since, we are using more than one predictor, it is possible that advanced step-point methods in general can be computed in parallel if the formula for the second predictor does not contain the first predictor (as for example the MEBDF do). The proposed algorithm has the following form. (a) Use a standard BDF to compute the first predictor Y~+k of order k. (b) Use an implicit multistep formula to independently compute the second predictor yn+k+l of order k. (Now, clearly Parts (a) and (b) could be computed in parallel if we so wished.) (c) Compute a corrected solution of order k + 1 at x~+k using the MEBDF corrector. An appropriate name for the new methods seems to be "parallel implicit advanced step-point" methods, or H A S methods for short. The crucial choice for the entire PIAS scheme is the formula for the second predictor. From now on, we could call the two predictors: "first parallel predictor" and "second parallel predictor".
Implicit Advanced Step-Point Methods The PIAS
General
1201
Form
Before arriving at a final choice for the second (parallel) predictor, several alternative formulae were investigated. Thus, after a thorough investigation a class of parallel implicit advanced step-point methods was developed that has the following general form. STEP 1. Use a standard BDF to compute the first predictor 9~+k, assuming that approximate solutions y~+j have been computed at xn+j, for 0 _< j _< k - 1 k-1 (]n-[-k "JY E
ajyn+j =
(6)
hbkf (x~+k, 9~+k) ,
j=o where ~j and/~k are the known BDF coefficients. STEP 2. Use an implicit multistep formula to compute the second predictor Y~+k+l
k-1 Yn+k+, -- EajYn-t-j : h [bk+lf (Xn-l-k-t-l,~]n-Fk+l) -t-bk-,fn-t-k-1 ] , j=O
(7)
where 5j, bk+l are coefficients that will be given in Section 3 and bk-1 is the free coefficient in terms of which the other coefficients are expressed. STEP 3. Assuming that, the Newtonian iteration converges, evaluate
k-1 ]~+k+l
~1
-
hbk+l
~+k+l - ~
j=o
] ~jy,~+j - hbk-lfn+k-1
(8) f~+k= ~
~n+k + E a S Y ~ - j j=O
"
STEP 4. Compute a corrected solution of order (k + 1) at x~+k using k-,
Yn+k + E ajy~+j = h [bk+l]~+k+l ÷ bk]~+k + (bk-/~k)fn+k] , j=O
(9)
where/~k = bk - bk and aj, bk+l, bk are given in [9]. 2.1. T h e Coefficients of t h e S e c o n d P a r a l l e l P r e d i c t o r Let us give an example, for k = 2, as to how we obtain the coefficients of (7). Making the usual localizing assumption the right-hand side of (7) (k = 2, in this case), if expanded in Taylor series, becomes
~
h2 h3 ) y~ + hy~l + -~y~I I + -d-y,~i l l + 5og~
+h [b3 (y" + 3hy~'# + 9h2y~# 2 )+
51 (ytn -~-hy~
h2 H, + O(h4), +TY~)]
(io)
and if we rearrange (10) we get
+
~al + 3/~3 -k bl
Yn + -~al + -~ 3 -~- -~bl h3y Ill (xn) + 0 (h4).
(11)
1202
O. PsIHOYiOS
Expanding y(Xn+3) using Taylor series and equating Taylor series coefficients of the like powers with (11) we have
4 4~
a o : - g + g ~,
I = 51 +50,
9
3 = 51 + b3 + / h , 9 1
= ~
::~
(ZI= 5 6 b3 5
~,
+ 3~,~ +
4g
(12)
g 1, 1~ ~bl,
and the LTE of the second parallel predictor is y(Xn+S)--Yn+3 =
--
6a1+~
(Xn)+O(h4).
3+~bl
If we substitute (12) into the above equation the LTE of the second parallel predictor for k = 2 becomes
LTE ~_ y(Xn-}-3)--Yn+3 -~- (--~ + 8D1) h3yttt(xn) +0 (h4).
(13)
As we see from the above analysis, there is one free coefficient, bl, and all the other coefficients are expressed in terms of bl. The coefficients of (7) are given in the Appendix.
3. A C C U R A C Y
A N D S T A B I L I T Y OF P I A S M E T H O D S
The evaluation of the LTE is a rather tedious task and therefore it will be shown how it is obtained for a particular order, and then conclusions will be drawn for the remaining orders. Let us consider the case for k = 2. FIRST PARALLEL PREDICTOR.
4
2h~ ,
1
(order 2),
and y (z~+2) - G+2
2h3ytH(Xn)+O(h4).
. . . .
9
SECOND PARALLEL PREDICTOR. =
-
Y~+I+
+-~
1
y,~+h
Yn+3 + blYn+l ~ ,
-
(order 2),
and from (13),
CORRECTOR.
28
5
[-4,
20_,
2 , 1
y~+2 = ~ y ~ + l - ~-~y~ + h "~-~)n+a + ~Y~+2 + ~Yn+2 ,
(order 3),
(14)
and
~+3 ~ f (x,~+3,y(x,~+a))+ (6 - 8 bl) h3~yy'" (xn) , 2h30f
(15) it,
Implicit Advanced Step-Point Methods
1203
If we make the usual localizing assumption and expand the right-hand side of (14), we get
1)
--23 Yn + hytn + h2y~ + h3y~' +
20 (
,,
..-2
h4Y(4) _ '~Y'~5
,,,
(16)
4_h3~,(4)+ 2h3~f ,,'~
Rearranging (16) we get
y,~+2hy~ + 2h2 "yn+ -~h43 "'yn+ 25h% ( 4 ) + 4~6
+-3-~1J h4
-
Y~'+O(hS)"
(17)
Expanding y(Xn+2) using Taylor series and equating the coefficients of the like powers with (17) we finally get
LT E = ~-~sh 4y (4) (x n ) + ( ~--~5
+ o
•
(18)
If we do a similar analysis for the other orders we will obtain analogous results. Thus, we may conclude, considering (18), that the LTE of the scheme has the form LTE = Ahk+2y (k+2) (x~) + Bhk+2 ~-~y (k+l) (x,~) + O (hk+3),
(19)
where .~ is a constant that depends on the known M E B D F coefficients a n d / ~ is also a constant that depends on the M E B D F coefficients and on the coefficients of (7). The PIAS algorithm given in Section 2 displays good stability characteristics, if we appropriately choose the free coefficient, bk-1 from (7). Thus, we choose bk-1 so as to achieve the best possible absolute stability. In Table 1, we give the A(a)-stability of PIAS methods compared to the M E B D F where the coefficients are chosen so that bk = bk - bkStability analysis of these methods shows that low order PIAS methods are A-stable and not L-stable as is the case with MEBDF. T a b l e 1. A ( a ) - s t a b i l i t y o f P I A S m e t h o d s . K
1
2
3
4
5
6
7
Order
2
3
4
5
6
7
8
PIAS
90 °
90 °
90 °
90 °
80 °
62 °
47 °
90 °
90 °
90 °
88.4 °
82.5 °
74.5 °
62 °
MEBDF
bk = bk - bk 4. A S S E S S I N G
THE
POTENTIAL
OF
THE
PIAS
METHODS
In order, to find out whether the "parallel feature" and the good stability characteristics of the new methods are reflected in practice, we developed an experimental code purely for the purpose of getting a glimpse of the potential of the PIAS scheme. This experimental code is based on the M E B D F code on which appropriate modifications were performed. The M E B D F code has been presented in great detail in [7,8] and the reader is referred to these publications for further
1204
G. PSIHOYIOS T a b l e 2. Second p a r a l l e l p r e d i c t o r coefficients u s i n g b a c k w a r d differences. ~6
W5
W4
W3
W2
Wl
W0
1
4(1-~k_1)
1
9--4bk_1 13
2(7--6bk-1) 13
1
288--42%k_1 462
324--259bk_ 1 308
188--175bk_1 154
1
600--107bk_ I 1044
264--61bk_ 1 261
222--77bk_ I 174
I14--85bk_ 1 87
1
6(100--13bk_i) 1115
7800--1237bk_ I 8028
2568--539bk_ 1 2007
1914--619bk_ I 1338
918--659bk_ I 669
1
4500--529bk_ 1 4810
3650--529bk_ 1 2886
4(41--8bk_1)
743--228bk_ 1 481
2(341--238bk_1) 481
1
5
2940--293bk_ 1 5772
IIi
details. It is outside the scope of the present paper to discuss code implementation, especially since our experimental code has been created mainly for evaluation purposes. The only feature of the M E B D F code that we need to mention is that it treats the two BDF Steps 1 and 2 as being entirely separate from each other and holds estimates for the convergence rates for the Newton-Raphson iteration for the first step and second step. The experimental code was developed in order to aid us in estimating the parallel feature of the PIAS methods and it is not a code written for parallel processors. The experimental PIAS code maintains all the main features of the M E B D F code but has also certain distinct characteristics that are summarized below (for the sake of illustrating that, the comparisons that follow are meaningful). • The feature of the M E B D F code that treats the two predicted steps as entirely separate from each other is particularly useful, since such a feature is necessary for the experimental PIAS code. On a parallel machine, the two predictors would be computed separately and simultaneously. In this case, the two predictors are computed serially but maintain their independence from each other. In addition, the M E B D F code has been reprogrammed to accommodate two separate iteration matrices, one for the first parallel predictor and another one for the second parallel predictor. This leads, of course, to a substantially larger number of aacobian evaluations as we will see in Section 6. The corrector uses the same iteration matrix as the first predictor. • The M E B D F code had also to be reprogrammed in order to accommodate the new coemcients for the predictors and the corrector, which needed to be given in backward difference form. Thus, the coefficients of (7), Table 1, had to be rewritten in terms of backward differences according to the formula k-1
Yn+k+l - E ffJiViY'~+k-1 = h[bk+lf(x,~+k+l, Y~+k+l) + bk-lf~+k-1].
(20)
i=O
The M E B D F code uses backward differences and so does the experimental PIAS code. Hence, the coefficients used in the experimental code are taken from (20). The coefficients on the left-hand side of (20) are given in Table 2. It should be stressed that the experimental PIAS code used here is only for the purpose of assessing the capabilities of these new methods and does not show their full potential. It is within our plans though to write a parallel code for the PIAS methods in the future. 5.
A
NOTE
ABOUT
THE
NUMERICAL
COMPARISONS
Since the experimental PIAS code is not a parallel code, it does not take advantage of the methods' property for parallel computation of the second predictor. In practice, this means that,
Implicit Advanced Step-Point Methods
1205
the amount of time displayed, for the solution of any particular problem, is more than it would be if parallel processors were used. It would be thus unfair to present any "nonparallel" numerical results as if they obtained from a genuinely parallel computation. Therefore, in order to take into consideration this property of the PIAS methods we have to reduce the "Time" and "Ovhd." (overhead) columns in the numerical results by an appropriate ratio as we explain below. It seems reasonable to expect that, if the experimental PIAS code was using the parallel property of the methods, the amount of time would be reduced by 1/3, if we accept that the code spends approximately a third of its time for computing each of the three stages, the first predictor, the second and the corrector. Although this may seem like an arbitrary decision, the truth is that we are probably being unfair to the PIAS algorithm since there is some experimental evidence which suggests that the code spends a lot more than 2/3 of its time on the first two stages. In any case and in the interest of fairness, we decided to multiply the time required for the integration, that the D E T E S T package computes in each problem, by 2/3,
• The columns "Time" and "Ovhd." (overhead) in the experimental PIAS code numerical results have been multiplied by 2/3 in order to approximate the parallel property of the methods. 6.
STIFF
DETEST
AND
NUMERICAL
RESULTS
Different codes are based on different discretization methods and thus they commit different errors. Codes for IVPs control an estimate of the local error and not in general an estimate of the global error, the magnitude of which we do not know. Generally, it is hoped that, the global error will be in the range of the error tolerance specified by the user. T h a t is if we keep local truncation error suitably banded then, the global error will also be banded. In practice, though it is normally the case that, the global error is larger than, the specified local error tolerance. When two different codes are applied to the same problem with the same local tolerance they may, at the same time, have a quite different global error. This difference in the global error makes the comparison of different codes a rather difficult issue and that is why it is not sufficient to make a comparison by counting only the number of function evaluations, the number of steps taken to complete the integration and the time required for the integration. The D E T E S T program [10,11] provides us with a reliable estimate of the maximum global error over the whole range of integration. This facility allows DETEST to compute maximum global error = max Ily(x,O - Yn II,
n = 1, 2 , . . . ,
where Yn is the numerical solution generated by the user's code and y(xn) is the true solution at the point xn. D E T E S T is able to compute an accurate approximation to both the maximum global error and the global error at the endpoint by implementing a very accurate IVP integration method that runs at a stricter tolerance than, the one prescribed by the user. D E T E S T has also the ability to display information about the amount of work needed to achieve a specified accuracy, i.e., to keep the maximum global error less or equal to a given bound. Consequently, the comparison between different codes is much fairer because the numerical results correspond to solutions with the same maximum global error. D E T E S T refers to such results as normalized efficiency results. Below, we obtain numerical results for the experimental PIAS and the M E B D F codes on the 30 stiff D E T E S T problems [10,11]. The M E B D F code was chosen for the comparisons not only because it has been used as a basis for the experimental PIAS code but also because it is one of the most powerful stiff IVP solvers available. The stiff D E T E S T program includes 30 stiff problems which belong to 6 different categories. A detailed description of the problems in Groups (A) to (E) can be found in [10] and Group (F) is described in [11]. (A) This is a set of four linear systems (A1)-(A4) with constant coefficients and the eigenvalues of the Jacobian matrix are real.
1206
G. PSlHOYIOS
(B) This group includes five linear systems (B1)-(B5) with constant coefficients and nonreal Jacobian eigenvalues. These problems according to Enright [10] have been designed to cause a substantial number of stepsize changes. (C) This is a set of five nonlinear triangular systems (C1)-(C5) with real Jacobian eigenvalues. (D) This is a set of six nonlinear systems (D1)-(D6) with real Jacobian eigenvalues. These problems are mainly drawn from chemical kinetics. (E) This set includes five nonlinear systems (E1)-(E5) with nonreal Jacobian eigenvalues. These problems are mainly drawn from physics, control theory, and chemistry. (F) This is a set of five nonlinear systems (F1)-(F5) from chemical kinetics. The DETEST package gives two types of result tables: the 'regular' nonnormalized results and the "normalized efficiency results". As explained above, the second type of results is extremely useful for fairly comparing the performance of different codes. Thus, in the interest of space, only the "normalized efficiency results" will be presented (with the exception of problem (F5)) together with the summary results for each group, which are nonnormalized. The tables below include information of the time which is required for the solver to achieve a maximum global error less than or equal to the "Expected Accuracy", the respective overhead (Ovhd.) in seconds (this is equal to the time taken for solving a problem minus the time taken for the function evaluations), the number of function evaluations (Fcn. Calls), the number of Jacobian evaluations (Jac. Calls), the number of matrix factorisations (Mat. Fact), and the number of integration steps taken (No. of Steps). The logarithm of the estimate of the local tolerance that, the solver should be supplied with in order to keep the maximum global error less than or equal to the "Expected Accuracy", is given by the column "Equiv. Logl0 Tol.". If the DETEST's intrinsic solver fails to complete successfully the integration for a given tolerance then, the amount of output displayed for the normalized efficiency tables may vary. 6.1. R e s u l t s for t h e Stiff D E T E S T G r o u p A P r o b l e m s
The nonnormalized summary results from Table 7 show that, the experimental PIAS code is faster (this is also true for each individual problem). If we look at the normalized efficiency Table 3. Stiff D E T E S T normalized efficiency results for problem (A1).
PIAS
MEBDF
Expected Accuracy
Equiv. Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
I0"* --3
--2.12
0.020
0.017
100
2
15
No. of Steps 44
10"* --4
--3.18
0.032
0.029
141
1
24
69
10"* --5
--4.23
0,051
0.046
194
5
33
101
10"* --6
--5.28
0.071
0.065
233
4
39
136
10"* --7
--6.33
0.086
0.080
274
3
45
164
10"* --8
--7.38
0,104
0.097
324
3
51
200
10"* --9
--8.44
0,132
0.123
395
3
60
251
10"* --10
--9.49
0.172
0.161
502
2
70
325
10"* --4
--2.75
0.036
0.033
92
1
13
59
10"* --5
--3.71
0,052
0.048
128
2
15
82
10"* --6
--4.67
0.069
0.065
160
1
16
105
10"* --7
--5.64
0.092
0.086
196
2
18
132
10"* --8
--6.60
0.113
0.107
236
2
22
162
10"* --9
--7.56
0.138
0.130
284
2
26
199
10"* --10
--8.52
0.167
0.158
341
2
30
245
10"* --11
--9.49
0.207
0.197
415
2
33
302
1207
Implicit Advanced Step-Point Methods Table 4. Stiff DETEST normalized efficiency results for problem (A2).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 4
-2.99
0.085
0.061
153
1
28
80
10"* - 5
-4.20
0.141
0.106
227
2
40
125
10"* - 6
-5.41
0,214
0.169
302
2
52
181
10"* - 7
-6.63
0.290
0.235
380
3
62
238
10"* - 8
-7.84
0.392
0.319
507
6
84
319
10"* - 9
-9.05
0.487
0.404
589
2
94
398
10"* - 4
-2.48
0.084
0.062
99
1
16
64
10"* - 5
-3.53
0.136
0.109
143
1
19
98
10"* - 6
-4.58
0.203
0.169
200
1
23
137
10"* - 7
-5.63
0.284
0.242
261
2
27
182
10"* - 8
-6.68
0.375
0.327
321
1
31
229
10"* - 9
-7.72
0.466
0.406
405
1
37
287
10"* - 1 0
-8.77
0.566
0.497
487
2
43
353
Table 5. Stiff DETEST normalized efficiency results for problem (A3).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 3
-2.19
0.027
0.020
120
1
22
10"* - 4
-3.23
0.044
0.034
176
1
34
95
10"* - 5
-4.27
0.069
0.055
246
3
44
139
10"* - 6
-5.30
0,103
0.085
327
5
55
197
10"* - 7
-6.34
0.120
0.100
371
4
60
229
10"* - 8
-7.38
0.149
0.125
454
3
70
281
10"* - 4
-2.64
0.044
0.035
118
1
16
76
10"* - 5
-3.64
0.066
0,053
163
1
20
107
10"* - 6
-4.63
0.092
0.076
209
1
22
141
10"* - 7
-5.62
0.121
0.102
262
1
26
180
10"* - 8
-6.62
0.158
0.134
322
1
30
225
10"* - 9
-7.61
0.199
0.170
391
1
35
276
61
Table 6. Stiff DETEST normalized efficiency results for problem (A4).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 3
-2.12
0.077
0.054
136
1
22
71
10"* - 4
-3.13
0.132
0.089
199
2
43
111
10"* --5
-4.13
0.202
0.154
264
1
47
159
10"* --6
-5.14
0.279
0.220
338
4
60
211
10"* - 7
-6.15
0.363
0.295
410
3
65
263
10"* - 8
-7.15
0.444
0.365
489
3
75
324
10"* - 4
-2.71
0.142
0.110
137
1
19
93
10"* - 5
-3.62
0.210
0.171
190
1
23
130
10"* - 6
-4.53
0.292
0.247
248
1
26
171
10"* - 7
--5.44
0.384
0.331
307
2
29
215
10"* --8
-6.35
0.482
0.423
368
1
33
262
1208
G. PSIHOYIOS Table 7. Summary results for Group A problems (nonnormalized).
PIAS
MEBDF
Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
-2.00
0.166
0.122
441
6
72
No. of Steps 216
End Pnt. Glb. Err.
Maximum Glb. Err.
0.02
0.03
-3.00
0.280
0.202
641
6
127
340
0.02
0.14
-4.00
0.428
0.331
880
12
158
483
0.17
0.28
-5.00
0.617
0.492
1133
16
199
681
0.12
0.52
-6.00
0.806
0.661
1365
1
226
839
0.00
0.58
-7.00
0.967
0.806
1591
12
248
1009
0.01
1.07
-8.00
1.240
1.027
1985
20
320
1270
0.01
1.28
-9.00
1.520
1.275
2337
8
370
1570
0.01
0.30
-I0.00
1.932
1.637
2981
16
430
2001
0.05
0.06
-2.00
0.223
0.167
340
7
58
218
0.13
0.13
-3.00
0,354
0.282
506
4
71
334
0.02
0.04
-4.00
0.537
0.447
699
7
84
471
0.02
0.03
-5.00
0.745
0.638
901
6
93
614
0.03
0.04
-6.00
0.991
0.863
1122
I0
ii0
783
0.01
0.14
-7.00
1.254
1.106
1353
5
125
958
0.01
0.04
-8.00
1.532
1.351
1675
7
150
1192
0.Ol
0.23
-9.00
1.858
1.642
2021
7
174
1469
0.00
0.04
-i0.00
2.391
2.130
2574
7
201
1869
0.05
0.03
results, i.e., Tables 1-6 we see that MEBDF is more accurate and is also faster only in problem (A2). The experimental PIAS code maintains a good accuracy (meaning that, the "Equiv. Logl0 Tol." is less than, the "Expected Accuracy") and is clearly faster on problem (A4), slightly faster on problem (A1) and as far as problem (A3) is concerned, both codes are approximately equally fast. Table 8. Stiff DETEST normalized efficiency results for problem (B1).
PIAS
MEBDF
Expected Accuracy
Equiv. Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
i0"* --2
--1.98
0.060
i0"* --3
-2.89
0.084
0.050
273
1
27
0.072
317
1
36
I0"* --4
-3.80
0.130
181
0.114
404
1
47
260
10"* --5
-4.71
0.178
0.159
10"* --6
--5.62
0.237
0.213
516
1
54
350
662
2
62
10"* --7
-6.53
0.312
0.282
465
850
2
70
10"* --8
--7.44
0.410
612
0.373
1089
1
80
800
10"* --9
--8.34
0.528
0.482
1389
1
90
1037
i0"* -3
--2.40
0.091
0.080
226
1
17
150
i0"* --4
--3.33
0.139
0.122
314
1
23
217
10"* --5
-4.26
0.202
0.181
417
1
27
301
10"* --6
-5.19
0.282
0.255
547
1
31
408
10"* - 7
--6.12
0.360
0.327
694
1
33
524 678
128
i0"* --8
--7.05
0.467
0.425
892
i
35
I0"* --9
--7.97
0.626
0.572
1153
1
48
879
i0"* --I0
--8.90
0.791
0.726
1464
1
39
1135
i0"* --ii
--9.83
1.033
0.948
1896
2
50
1471
Implicit Advanced Step-Point Methods 6.2. R e s u l t s
for the Stiff DETEST
Group
1209
B Problems
In t h e n o n n o r m a l i z e d s u m m a r y results from Tab l e 13 t h e e x p e r i m e n t a l H A S
code is faster
(this is also t r u e for each i n d i v i d u a l p r o b l e m ) . T h e n o r m a l i z e d efficiency results, i.e., Tables 8-12,
Table 9. Stiff DETEST normalized efficiency results for problem (B2).
HAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
10"* - 3
-2.14
0.026
0.021
89
10"* - 4
-3.19
0.043
0.034
10"* - 5
-4.24
0.064
0.054
10"* - 6
-5.29
0.088
0.077
10"* - 7
-6.34
0.112
0.098
10"* - 8
-7.40
0.138
10"* - 9 10"* - 1 0
-8.45 -9.50
10"* - 4
No. of Steps
2
13
39
126
1
24
62
173
4
28
87
200
3
33
115
240
4
38
143
0.122
284
3
43
174
0.174 0.222
0.155 0.199
352 436
3 3
52 61
221 283
-2.62
0.044
0.037
74
2
11
49
10"* - 5
-3.60
0.066
0.058
107
2
13
69
10'* - 6
-4.59
0.090
0.081
138
1
15
90
10'* - 7
-5.58
0.118
0.107
167
2
16
113
10"* - 8
-6.56
0.148
0.135
201
2
19
139
10"* - 9
-7.55
0.180
0.165
244
2
23
172
10"* - 1 0
-8.53
0.222
0.204
302
2
27
215
10"* - 1 1
-9.52
0.284
0.263
377
2
31
271
Table 10. Stiff DETEST normalized efficiency results for problem (B3).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 3
-2.43
0.034
0.027
102
1
18
51
10"* - 4
-3.42
0.053
0.043
140
2
25
73
10"* - 5
-4.41
0.074
0.062
174
2
29
97
10"* --6
-5.39
0.094
0.082
208
2
34
123
10"* - 7
-6.38
0.120
0.105
255
2
41
155
10"* - 8
-7.37
0.149
0.131
307
1
48
194
10"* - 9
-8.36
0.185
0.165
370
1
55
241
i0"* - i 0
-9.35
0.233
0.210
455
I
61
302
I0"* -4
--2.60
0.042
0.036
79
I
Ii
52
i0"* -5
--3.58
0.066
0.057
112
i
14
74
i0"* --6
--4.56
0.091
0.082
146
1
16
98
i0"* --7
--5.54
0.123
0.112
177
1
17
122
I0"* --8
-6.51
0.157
0.144
214
2
20
150
10"* - 9
-7.49
0.193
0.177
269
2
24
188
i0"* --i0
--8.47
0.239
0.220
329
2
28
234
i0"* --ii
--9.45
0.301
0.278
401
2
32
294
1210
C. PSIHOYIOS
show that, the MEBDF code is more accurate and that, the experimental PIAS code is faster maintaining its good accuracy. In problem (B5) both codes are approximately equally fast at tolerances from 10 -6 and above. We would actually expect the MEBDF code for be faster on (B5) since this particular problem has eigenvalues very near the imaginary axis and MEBDF has better stability for k > 5. Table 11. Stiff D E T E S T normalized efficiency results for problem (B4).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
10'* - 3 10'* - 4
-2.77 -3.69
0.054 0.092
0.045 0.080
10"* 10"* 10'* 10'*
152 225
1 2
25 34
78 124
-4.61 -5.53 -6.46 -7.38
0.114 0.138 0.176 0.225
0.100 0.121 0.156 0.203
259 297 362 446
1 2 2 1
40 46 53 61
150 181 230 294
10'* - 9 10"* - 1 0
-8.30 -9.22
0.286 0.360
0.259 0.332
554 683
3 3
70 76
375 478
10"* - 4 10"* - 5
-2.77 -3.73
0.066 0.101
0.058 0.089
115 160
1 1
14 18
75 107
10"* - 6
-4.69
0.142
0.128
210
1
21
143
10"* - 7 10'* - 8 10"* - 9
-5.65 -6.61 -7.56
0.182 0.229 0.301
0.166 0.211 0.280
261 319 396
1 1 1
23 27 31
183 229 287
10"* - 1 0 10"* - 1 1
-8.52 -9.48
0.385 0.495
0.359 0.464
502 641
2 1
36 39
369 479
-5 -6 -7 -8
No. of Steps
Table 12. Stiff D E T E S T normalized efficiency results for problem (B5). Expected Accuracy
Equiv. Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 2
-2.14
0,094
0.082
263
1
30
134
10"* - 3
-3,09
0.130
0.113
334
4
42
194
10"* - 4
-4,05
0.221
0.200
526
3
49
312
10"* - 5
-5.00
0.281
0.258
580
3
59
376
10"* - 6
-5.95
0.368
0.340
702
3
65
494
t0"* - 7
-6.91
0.496
0.461
954
4
78
667
10"* - 8
-7.86
0.669
0.624
1285
3
95
914
10"* - 9
-8.82
0.857
0.807
1587
3
98
1157
10"* --3
--2.30
0.118
0.107
196
1
17
136
10"* --4
--3.24
0.195
0.179
293
1
24
208
10"* --5
--4.18
0.268
0.249
387
1
26
281
10"* --6
--5.12
0.371
0.347
504
1
30
376
10"* --7
--6.06
0.496
0.468
651
1
33
492
10"* --8
--7.01
0.668
0.633
854
1
39
644
10"* --9
--7.95
0.869
0.825
1122
1
45
855
I0"* --10
--8.89
1.127
1.075
1450
I
46
1114
PIAS
MEBDF
Implicit Advanced Step-Point Methods
1211
Table 13. S u m m a r y results for Group B problems (nonnormalized).
PIAS
Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
End Pnt. Glb. Err.
Maximum Glb. Err.
--2.00
0.237
0.201
818
8
i00
392
0,00
1.55
--3.00
0.350
0.295
1041
9
--4.00
0.588
0.517
1535
16
156
577
0.01
2.24
193
898
0.02
0.70
--5.00
0.759
0.676
1776
10
--6.00
1.005
0.904
2235
17
223
1133
0.01
0.76
258
1499
0.01
0.82
--7.00
1.327
1.206
2885
12
298
1979
0.01
1.08
--8.00
1.767
1.615
3781
12
358
2654
0.12
1.24
--9.00
2.257
2.080
4728
11
382
3406
0.19
0.76
--10.00
3.014
2.794
6176
14
451
4545
0.13
0.64
-2.00
0.274
0.236
566
7
63
368
0.01
0.57
-3.00
0.470
0.416
850
6
88
581
0.01
0.24
-4.00
0.692
0.624
1175
9
101
816
0.01
0.15
-5.00
0.981
0.898
1543
6
116
1112
0.00
0.09
-6.00
1.298
1.200
1961
8
126
1445
0.01
0.09
MEBDF
-7.00
1.711
1.588
2531
8
146
1879
0.05
0.09
-8.00
2.259
2.103
3306
9
181
2470
0.05
0.11
-9.00
2.905
2.718
4239
10
184
3221
0.05
0.10
-10.00
3.822
3.587
5545
10
220
4240
0.06
0.10
6.3. R e s u l t s for t h e S t i f f D E T E S T Group C P r o b l e m s The nonnormalized summary results from Table 19 show that, the experimental H A S code is faster on all five problems (this is also true for each individual problem). The normalized Table 14. Stiff D E T E S T normalized efficiency results for problem (C1).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
10"* - 3
-2.02
0.022
0.018
10"* - 4
-3.05
0.038
10"* - 5
-4.07
0.059
No. of Steps
101
17
17
0.030
147
28
28
79
0.047
210
38
38
113
51
10"* - 6
-5.10
0.080
0.064
256
42
42
150
10"* - 7
-6.13
0.103
0.090
302
50
50
192
10"* - 8
-7.15
0.129
0.112
364
56
56
235
10"* - 9
-8.18
0.164
0.141
454
74
74
300
10"* - 1 0
-9.21
0.205
0.178
560
86
86
376
10"* - 4
--2.75
0.044
0.036
103
16
16
70
10"* --5
--3.73
0.064
0.054
148
19
19
100
10"* --6
--4.71
0.090
0.077
192
20
20
132
10"* --7
--5.68
0.118
0.103
241
23
23
167
10"* --8
--6.66
0.148
0.130
288
26
26
204
10"* --9
--7.64
0.182
0.161
354
31
31
250
10"* --10
--8.61
0.225
0.200
434
38
38
312
i0"* - 1 1
-9.59
0.281
0.249
544
45
45
393
1212
G. PSIHOYIOS Table 15. Stiff D E T E S T normalized efficiency results for problem (C2). Expected Accuracy
PIAS
MEBDF
Equiv. Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 3
-1.97
0.020
0.014
91
14
14
45
10"* - 4
-3.09
0.035
0.027
144
26
26
75
10"* --5
-4.22
0.057
0.046
210
34
34
112
10"* - 6
-5.35
0.080
0.067
253
45
45
152
10"* - 7
-6.48
0.106
0.090
308
49
49
194
10"* - 8
-7.60
0.130
0.115
381
61
61
246
10"* - 9
-8.73
0.170
0.146
468
72
72
310
I0"* -4
-2.54
0.033
0.026
88
13
13
58
I0"* -5
-3.60
0.053
0.044
131
16
16
87
10"* - 6
--4.65
0.079
0.067
177
18
18
119
10"* - 7
-5.70
0.116
0.101
227
21
21
156
10"* - 8
-6.75
0.144
0.126
275
24
24
192
10"* - 9
-7.80
0.176
0.154
339
29
29
239
10"* - 1 0
-8.85
0.224
0.197
422
36
36
303
10"* - 1 1
-9.90
0.288
0.253
548
46
46
395
Table 16. Stiff D E T E S T normalized efficiency results for problem (C3).
PIAS
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
10"* - 3
--1.95
0.020
0.014
10"* - 4
--3.11
0.035
10"* --5
-4.27
10"* - 6
No. of Steps
89
13
13
43
0.027
146
27
27
75
0,058
0.047
207
36
36
113
-5.43
0.080
0.066
261
44
44
153
10"* - 7
--6.59
0.106
0.090
313
49
49
195
10"* --8
--7.75
0.140
0.120
390
63
63
254
10"* --9
--8.91
0.180
0.154
493
80
80
327
i0"* -4
-2.59
0.036
0.029
91
13
13
59
i0"* -5
-3.58
0.053
0.044
130
16
16
86
10"* --6
--4.57
0.075
0.063
172
19
19
116
10"* --7
--5.56
0.106
0.091
215
21
21
149
10"* --8
-6.55
0.135
0.118
261
24
24
183
10"* --9
--7.54
0.164
0.143
321
28
28
226
10"* --10
-8.53
0.203
0.178
396
34
34
282
10"* --11
-9.52
0.259
0.228
491
40
40
355
MEBDF
eificiency results, i.e., Tables 14-18, show that, the experimental PIAS code is clearly faster on problem (CI), slightly faster on problem (C2) and approximately equally fast on problem (C3). On the other hand, the MEBDF code is again more accurate and is also faster on problem (C5) and slightly faster on problem
(C4).
1213
Implicit Advanced Step-Point Methods Table 17. Stiff DETEST normalized efficiency results for problem (C4).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
10"* - 3
-2.52
0.020
0.015
10"* - 4
-3.60
0.034
10"* - 5
-4.68
10"* - 6 10'* - 7 10"* - 8
No. of Steps
93
13
13
43
0.026
153
21
21
71
0.053
0.042
212
30
30
107
-5.75
0.072
0.058
280
40
40
140
-6.83
0.101
0.085
340
46
46
193
-7.91
0.131
0.110
406
66
66
249
10"* - 9
-8.99
0.164
0.140
485
69
69
310
10'* - 1 0
-10.06
0.211
0.180
597
89
89
385
10'* - 3
-2.18
0.021
0.016
58
9
9
35
10"* - 4
-3.10
0.033
0.027
84
13
13
56
10"* - 5
-4.01
0.047
0.039
122
13
13
81
10"* - 6
-4.92
0.069
0.058
163
17
17
106
10"* - 7
-5.83
0.090
0.077
200
19
19
131
10"* - 8
-6.75
0.113
0.098
239
22
22
162
10'* - 9
-7.66
0.141
0.123
285
25
25
199
I0'* -i0
-8.57
0.175
0.154
341
29
29
244
I0"* -II
-9.48
0.220
0.194
416
34
34
300
Table 18. Stiff DETEST normalized efficiency results for problem (C5).
PIAS
MEBDF
Expected Accuracy
Equiv. Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
10"* --3
--2.41
0.019
0.014
10"* --4
--3.50
0.035
10"* --5
--4.58
10"* --6
No. of Steps
99
14
14
43
0.026
164
25
25
71
0.052
0.041
213
35
35
104
--5.67
0.074
0.060
277
44
44
144
10"* --7
--6.75
0.102
0.084
369
55
55
194
10"* --8
--7.83
0.122
0.101
387
61
61
230
10"* --9
--8.92
0.152
0.130
451
65
65
285
10"* --10
--10.00
0.199
0.170
553
82
82
365
i0"* --3
--2.27
0.021
0.017
56
9
9
34
i0"* --4
--3.17
0.033
0.027
81
ii
ii
52
10"* --5
--4.07
0.048
0.040
119
14
14
75
i0"* --6
--4.97
0.066
0.055
153
18
17
i01
i0'* --7
-5.87
0.084
0.072
187
19
19
125
i0"* --8
--6.76
0.108
0.093
226
20
20
154
i0"* --9
-7.66
0.133
0.116
268
22
22
187
i0"* --i0
--8.56
0.170
0.149
324
26
26
230
i0"* --ii
--9.46
0.211
0.186
395
32
32
283
214
G. PSIHOYIOS Table 19. S u m m a r y results for Group C problems (nonnormalized).
PIAS
MEBDF
Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
E n d Pnt. Glb. Err.
Maximum Glb. Err.
-2.00
0.091
0.070
432
66
66
208
0.00
0.26
--3.00
0,154
0.118
675
119
118
333
0.00
0,46
-4.00
0.246
0.195
975
160
160
489
0.00
0.33
--5.00
0,339
0.276
1196
202
202
662
0.01
0.94
-6.00
0.445
0.370
1454
234
234
840
0.01
1.35
-7.00
0,572
0.483
1768
264
264
1063
0.01
1.92
-8.00
0,709
0.601
2054
338
338
1313
0.01
0.47
-9.00
0,877
0,752
2470
376
376
1618
0.00
1.40
-10.00
1,115
0.961
3061
456
456
2048
0.01
0.90
--2.00
0.114
0.088
314
55
55
199
0.00
0.27
-3.00
0,194
0.158
480
71
71
321
0.00
0.15
-4.00
0.285
0,237
697
82
82
462
0.00
0.23
-5.00
0,411
0.350
911
97
96
614
0.00
0.13
--6.00
0.556
0.482
1135
111
111
776
0.02
0.14
-7.00
0.689
0.602
1360
123
123
951
0.00
0.04
-8.00
0.850
0.744
1678
146
146
1181
0.01
0.10
-9.00
1.085
0.956
2062
176
176
1486
0.00
0.04
-10.00
1,373
1.211
2610
214
214
1886
0.00
0.22
Table 20. Stiff D E T E S T normalized efficiency results for problem (D1).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 3
-2.25
0.012
0.009
86
13
13
27
10"* --4
-3.45
0,020
0.016
135
23
23
50
10"* - 5
-4.65
0.032
0.026
194
32
32
81
10"* - 6
-5.84
0.053
0.044
299
42
42
131
t0"* - 7
-7.04
0.075
0.063
422
49
49
177
10"* - 8
--8.23
0.106
0.090
542
70
70
261
10"* - 9
-9,43
0.149
0.129
698
96
96
366
10"* - 2
-1.93
0.012
0.009
59
10
10
20
10"* --3
-2.93
0.018
0.013
98
10
10
31
10"* - 4
-3.92
0.027
0.022
118
13
13
46
10"* --5
-4.92
0.037
0.031
157
14
14
67
10'* - 6
-5.92
0.047
0.040
174
15
15
86
10"* --7
--6.91
0.065
0.057
214
19
19
113
10"* - 8
-7.91
0.090
0.078
280
21
21
155
10"* - 9
-8.91
0.133
0.116
401
37
37
234
10"* - 1 0
-9.90
0.174
0.155
473
42
41
287
Implicit Advanced Step-Point Methods
1215
Table 21. Stiff DETEST normalized efficiency results for problem (D2).
PIAS
MEBDF
Expected Accuracy
Equiv, Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 3
-2.76
0.024
0.018
135
24
24
66
10"* - 4
-3.82
0.038
0.028
207
38
38
96
10"* - 5
-4.88
0.055
0.042
290
46
46
138
10"* - 6
-5.94
0.084
0.067
395
59
59
209
10"* - 7
-7.00
0.105
0.085
439
77
77
254
10"* - 8
-8.06
0.129
0.106
532
84
84
311
10"* - 3
-2.27
0.025
0.019
88
15
15
52
10"* - 4
-3.34
0.037
0.029
128
18
18
77
10"* - 5
-4.41
0.052
0.042
173
21
21
107
10"* - 6
-5.48
0.079
0.065
245
24
24
155
10"* - 7
-6.55
0.108
0.091
309
29
29
202
10"* - 8
-7.62
0.139
0.119
376
32
32
253
Table 22. Stiff DETEST normalized efficiency results for problem (D3).
PIAS
MEBDF
Expected Accuracy
Equiv. Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
20
20
No. of Steps
10"* - 2
-1.93
0.026
0.020
130
10"* - 3
-2.89
0.044
0.034
194
36
36
95
10"* - 4
-3.85
0.061
0.050
244
45
45
130
10"* - 5
-4.82
0.089
0.073
327
59
59
185
10"* - 6
-5.78
0.121
0.102
391
69
69
236
10"* - 7
-6.75
0.157
0.135
482
80
80
300
10"* - 8
-7.71
0.196
0.170
585
92
92
366
10"* - 9
-8.67
0.243
0.212
680
108
108
448
10"* - 4
-2.80
0.052
0.044
128
20
20
87
10"* - 5
-3.82
0.081
0.069
191
24
24
129
10"* - 6
-4.85
0.117
0.102
253
28
28
174
10"* - 7
-5.87
0.162
0.144
342
30
30
232
10"* - 8
-6.89
0.209
0.187
416
38
38
289
10"* - 9
-7.92
0.261
0.233
514
45
45
364
63
Table 23. Stiff DETEST normalized efficiency results for problem (D4).
PIAS
MEBDF
Expected Accuracy
Equiv. Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
16
16
No. of Steps
10"* - 4
-3.05
0.018
0.016
91
10"* - 5
-4.23
0.029
0.026
148
24
24
75
10"* - 6
-5.41
0.048
0.044
210
39
39
117
10"* - 7
-6.59
0.061
0.055
269
45
45
146
10"* - 8
--7.77
0.072
0.066
303
47
47
173
10"* - 4
-2.61
0.022
0.020
68
11
11
45
I0"* - 5
-3.64
0.031
0.029
97
13
13
61
10"* - 6
-4.66
0,043
0.039
127
14
14
82
10"* - 7
-5.68
0,063
0.059
176
19
19
115
10"* - 8
-6.70
0.077
0.072
201
21
21
136
10"* - 9
-7,73
0.089
0.082
238
23
23
162
10"* - 1 0
-8.75
0,107
0.100
280
26
26
194
48
216
G. PSlHOYIOS Table 24. Stiff D E T E S T normalized efficiency results for problem (D5).
PIAS
MEBDF
Expected Accuracy 10'* - 3 10'* - 4 10"* - 5 10"* - 6 10"* - 7 10"* - 8 10"* - 9 10"* - 2 10"* - 3 10"* - 4 10"* - 5 10"* - 6 10"* - 7 10"* - 8 10"* - 9
Equiv. Logl0 Tol. -2.96 -4.08 -5.20 -6.32 -7.44 -8.56 -9.68 -2.09 -3.17 -4.24 -5.32 -6.40 -7.48 -8.55 -9.63
Time
Ovhd.
0.013 0.018 0.028 0.045 0.066 0.102 0.127 0.011 0.017 0.023 0.031 0.041 0.063 0.094 0.118
0.010 0.015 0.024 0.039 0.059 0.092 0.114 0.009 0.014 0.020 0.028 0.037 0.058 0.087 0.109
Fcn. Calls 119 155 227 324 447 662 817 61 91 122 155 202 293 414 488
Jac. Calls 21 26 37 52 73 101 115 14 18 18 19 21 23 33 34
Mat. Fact 21 26 37 52 73 101 115 14 18 18 19 21 23 33 34
No. of Steps 46 61 97 152 214 325 407 23 42 58 79 103 154 230 270
Table 25. Stiff D E T E S T normalized efficiency results for problem (D6). Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
i0"* -4
-3.05
0.024
0.021
132
24
24
68
I0"* -5
-4.29
0.040
0.035
202
35
35
104
i0"* -6
-5.54
0.064
0.057
293
48
48
160
10"* - 4
-2.79
0.033
0.030
15
15
64
10"* - 5
-3.95
0.048
0.044
144
18
18
93
10"* - 6
-5.11
0.071
0.065
219
20
20
134
PIAS
MEBDF
97
No. of Steps
Table 26. S u m m a r y results for Group D problems (nonnormalized).
PIAS
MEBDF
Logl0 Tol.
Time
Ovhd.
Fen. Calls
Jac. Calls
Mat. Fact
No. of Steps
E n d Pnt. Glb. Err.
Maximum Glb. Err.
--2.00
0.090
0.071
541
95
95
244
0.65
1.05
--3.00
0.143
0.115
811
146
146
374
0.34
0.62
-4.00
0.207
0.170
1090
194
194
517
1.63
2.67
-5.00
0.311
0.260
1529
261
261
764
1.57
2.85
-6.00
0.437
0.373
1969
317
317
1048
2.29
3.04
-7.00
0.555
0.478
2423
377
377
1303
3.75
4.69
-8.00
0.692
0.601
2904
446
446
1620
1.25
3.05
-9.00
0.924
0.808
3793
569
569
2196
1.73
3.21
--i0.00
1.196
1.042
4653
755
755
2792
1.61
3.71
--2.00
0.118
0.096
434
78
78
236
0.70
0.70
-3.00
0.185
0.155
618
95
95
354
0.82
0.85
-4.00
0.264
0.226
847
109
109
494
2.60
3.29
--5.00
0.370
0.323
1127
121
121
671
1.60
2.01
--6.00
0.507
0.448
1449
141
141
905
3.77
4.93
--7.00
0.635
0.567
1703
160
160
1079
2.73
4.09
--8.00
0.807
0.724
2155
185
185
1406
5.37
7.29
--9.00
1.066
0.958
2787
244
244
1809
0.48
1.74
--i0.00
1.309
1.180
3334
265
264
2191
0.92
2.43
Implicit Advanced Step-Point Methods 6.4.
R e s u l t s for t h e S t i f f D E T E S T
1217
Group D Problems
The picture changes a little for this group. The nonnormalized summary results from Table 26 show that, the experimental HAS code is faster (this is also true for individual problems, e.g., on problems (D2), (D3), (D4), (D6)). The normalized efficiency results, i.e., Tables 20-25, are also affected since, the superior accuracy of the MEBDF code is not as clear anymore and the MEBDF code is challenged for the first time in problem (D5) where both codes have approximately the same accuracy. As far as, the speed is concerned the two codes are approximately equally fast on problems (D2), (D5), and (D1) (on this last problem MEBDF is faster in high tolerances) and the experimental HAS code is faster on D6, D4 and, also (D3) (high tolerances). 6.5. Results for the Stiff D E T E S T Group E P r o b l e m s
The nonnormalized summary results from Table 32 show that, the experimental PIAS code is faster (this is also true for each individual problem). The normalized efficiency results, i.e., Table 27. Stiff D E T E S T normalized efficiency results for problem (El).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 3
-2.56
0.028
0.025
120
19
19
57
10"* - 4
-3.54
0,043
0.038
154
27
27
82
10"* - 5
-4.52
0,059
0.053
192
34
34
109
10"* - 6
-5.49
0.074
0.068
231
38
38
135
10"* - 7
-6.47
0,091
0.084
271
42
42
166
10"* - 8
-7.45
0.110
0.102
317
43
43
200
10"* - 9
-8.43
0,134
0.125
380
49
49
247
10"* - 4
-2.57
0.039
0.036
88
11
11
58
10"* - 5
-3.59
0.057
0,053
124
13
13
82
10"* - 6
-4.61
0,076
0.072
162
17
17
107
10"* - 7
-5.63
0.095
0,090
193
19
19
131
10"* - 8
-6.65
0.114
0.109
230
21
21
158
10"* - 9
-7.67
0.136
0.130
275
23
23
196
10"* - 1 0
-8.69
0,181
0.173
345
26
26
251
Table 28, Stiff D E T E S T normalized efficiency results for problem (E2).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
i0"* --i
--2.66
0.027
0.021
233
39
39
84
iO** -2
--3.61
0.035
0.028
273
46
46
113
i0"* --3
--4.57
0.052
0.044
365
59
59
170
i0"* --4
--5.52
0.072
0.062
463
67
67
233
10"* - 5
-6.48
0.092
0,080
541
79
79
352
10'* - 6
-7.43
0,111
0,098
627
89
89
352
10"* --7
-8.39
0.132
0.117
742
91
91
417
10"* - 8
-9.34
0.164
0.147
873
108
108
522
10"* --1
--2.87
0.035
0.029
198
23
23
93
10"* --2
-3.88
0.046
0.040
227
23
23
117
10"* - 3
--4.88
0.065
0.057
270
26
26
154
I0"* -4
--5.89
0.081
0.072
338
28
28
198
i0"* --5
-6.90
0.Iii
0.i00
424
32
32
259
i0"* --6
-7.90
0.133
0.121
495
33
33
311
I0"* --7
-8.91
0.178
0.163
607
42
42
404
10"* - 8
-9.91
0.227
0.208
771
55
55
525
1218
C. PsmoYIos Table 29. Stiff D E T E S T normalized efficiency results for problem (E3).
PIAS
MEBDF
Expected Accuracy
Equiv. Logl0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 3
-2.41
0.018
0.016
113
18
18
51
10"* - 4
-3.49
0.030
0.027
171
30
30
78 115
10"* - 5
-4.57
0.046
0.042
234
41
41
10"* - 6
-5.66
0.071
0.066
330
52
52
174
10"* - 7
-6.74
0.089
0.083
387
63
63
216
10"* - 8
-7.82
0.117
0.111
486
69
69
286
10"* - 9
-8.91
0.140
0.133
548
82
82
332
10"* - i 0
-9.99
0.222
0.206
891
151
151
529
10"* - 3
-2.69
0.026
0.024
97
13
13
53
10"* - 4
-3.60
0.040
0.037
140
14
14
81
10"* - 5
-4.50
0.054
0.051
179
17
17
108
10"* - 6
-5.41
0.067
0.064
211
20
19
129
10"* - 7
-6.31
0.087
0.083
248
21
21
156
10"* - 8
-7.22
0.114
0.109
294
26
26
196
10"* - 9
-8.12
0.134
0.128
360
30
30
242
10"* - 1 0
-9.02
0.162
0.156
428
37
36
292
10"* - 1 1
-9.93
0.197
0.190
507
38
38
356
Table 30. Stiff D E T E S T normalized efficiency results for problem (E4).
PIAS
MEBDF
Expected Accuracy
Equiv. Log10 Tol.
Time
Ovhd.
Fcn. Calls
No. of Steps
10"* - 2
-2.79
0.053
0.040
223
39
39
104
-3.71
0.075
0.059
288
53
53
146
10"* - 4
-4.63
0.107
0.086
371
68
68
204
10"* - 5
-5.56
0.150
0.123
479
88
88
285
10"* - 6
-6.48
0.200
0.166
580
100
100
366
10"* - 7
-7.40
0.240
0.206
673
104
104
437
10"* - 8
-8.32
0.295
0.255
810
120
120
534
10"* - 9
-9.24
0.378
0.330
1002
142
142
679
10"* - 2
-2.40
0.055
0.043
157
22
22
83
10"* - 3
-3.34
0.078
0.064
198
24
24
117
10"* - 4
-4.28
0.116
0.100
266
26
26
172
10"* - 5
-5.22
0.168
0.147
359
32
32
235
10"* - 6
-6.16
0.217
0.191
467
39
39
307
10"* - 7
-7.10
0.284
0.254
568
45
45
382
10"* - 8
-8.04
0.346
0.310
673
53
53
468
10"* - 9
-8.98
0.449
0.404
852
66
66
601
10"* - 1 0
-9.92
0.553
0.499
1044
77
77
741
P I A S c o d e is c l e a r l y f a s t e r o n p r o b l e m s
(E5), and that, the two codes are approximately
(E2), (E4),
equally fast on problems (El) and (E3). As far
as, t h e a c c u r a c y is c o n c e r n e d , w e h a v e t h e f i r s t p r o b l e m , n a m e l y c o d e is, n o t o n l y f a s t e r , b u t a l s o m o r e a c c u r a t e .
are approximately
Mat. Fact
10"* - 3
Tables 27-31, show that, the experimental
HAS
Jac. Calls
(E2), where the experimental
On problems
(E5) and (E3) the codes
equally accurate and only on problems (El) and (E4) does the MEBDF
remain more accurate.
code
1219
Implicit Advanced Step-Point Methods Table 31. Stiff D E T E S T normalized efficiency results for problem (E5). Expected Accuracy
Equiv. Logl0 ToE
Time
Ovhd.
10"* --3
--2.55
0.018
0.014
82
15
15
41
10"* --4
--3.53
0.028
0.022
122
24
24
59
10"* --5
--4.50
0.038
0.030
158
31
31
76
10"* --6
--5.48
0.047
0.039
186
30
30
96
10"* --7
--6.46
0.059
0.050
222
31
31
118
10"* --8
--7.44
0.077
0.066
272
43
43
149
10"* --9
--8.41
0.103
0.088
347
56
56
199
10"* - 3
-2.22
0.020
0.016
63
11
11
35
PIAS
MEBDF
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 4
-3.26
0.031
0.025
84
14
14
51
10"* - 5
-4.29
0.044
0.036
122
16
16
68
10"* - 6
-5.33
0.058
0.049
144
18
18
87
10"* - 7
-6.36
0.072
0.063
167
18
18
108
10"* - 8
-7.40
0.091
0.080
205
21
21
137
Table 32. S u m m a r y results for Group E problems (nonnormalized).
PIAS
MEBDF
Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
End Pnt. Glb. Err.
Maximum Glb. Err.
-2.00
0.112
0.091
652
108
108
269
2.99
64.65
-3.00
0.165
0.135
852
148
148
382
3.63
38.29
-4.00
0.242
0.202
1124
205
205
547
3.69
32.62
--5.00
0.344
0.294
1469
255
255
771
2.98
37.60
-6.00
0.470
0.408
1863
294
294
1046
2.96
69.93
-7.00
0.587
0.518
2146
336
336
1276
0.52
43.03
-8.00
0.720
0.641
2586
368
368
1558
4.38
2.49
-9.00
0.922
0.826
3174
425
425
1974
43.81
16.48
-10.00
1.223
1.103
4067
570
570
2630
438.16
82.11
-2.00
0.147
0.120
557
90
90
267
1.74
24.86
-3.00
0.204
0.175
658
86
86
369
8.89
140.68
-4.00
0.299
0.264
892
95
95
525
8.03
116.15
-5.00
0.421
0.378
1118
116
115
698
7.75
105.28
-6.00
0.535
0.484
1395
125
125
881
7.97
81.44
-7.00
0.701
0.640
1695
145
144
1115
8.42
70.83
-8.00
0.860
0.788
2055
166
166
1388
9.41
104.53
-9.00
1.143
1.051
2605
207
206
1794
43.82
62.35
--10.00
1.424
1.315
3223
240
240
2264
438.18
64.71
6.6. R e s u l t s for t h e Stiff D E T E S T G r o u p F P r o b l e m s
N o t enough successful integrations to form normalized statistics In Group F the experimental PIAS code remains faster in the nonnormalized summary results as seen in Table 38 (and on each of the five individual problems). The normalized efficiency results, i.e., Tables 33-37, show that, the two codes are approximately equally fast on problems (F1), (F2), (F3), and that, the experimental PIAS code is clearly faster and also more accurate on
220
C-. PSIHOYIOS Table 33. Stiff D E T E S T n o r m a l i z e d efficiency r e s u l t s for p r o b l e m (F1).
PIAS
MEBDF
Expected Accuracy
Equiv. L o g l 0 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
No. of Steps
10"* - 3
-2.19
0.045
0.038
10"* - 4
-3.40
0.075
0.066
214
36
36
97
340
53
53
155
10"* - 5
-4.60
0,131
0.116
526
87
87
256
10"* - 6
-5.81
0.192
0.172
715
120
120
370
10"* --7
-7.02
0.251
0.225
889
151
151
476
10"* - 3
--2.09
0.048
0.042
142
23
23
79
10"* --4
-3.17
0.090
0.080
245
34
34
138
10"* - 5
-4.26
0.128
0.117
317
38
38
190
10"* - 6
-5.34
0.179
0.165
431
44
44
260
10"* - 7
-6.42
0.250
0.232
593
52
52
353
10"* --8
-7.50
0.339
0.316
790
62
62
476
Table 34. Stiff D E T E S T n o r m a l i z e d efficiency r e s u l t s for p r o b l e m (F2).
PIAS
MEBDF
Expected
Equiv.
Accuracy
L o g l 0 Tol.
Time
Ovhd.
Fcn,
Jac,
Mat.
No. of
Calls
Calls
Fact
10"* --3
-2.14
0.008
0.006
67
Steps
13
13
32
10"* --4
-3.18
0.016
0.012
106
10"* - 5
--4.23
0.023
0.018
144
19
19
52
25
25
10"* - 6
--5.27
0.033
0.027
192
33
75
33
106
10"* --7
--6.31
0.040
0.033
227
10"* --8
--7.36
0.048
0.040
260
37
37
129
42
42
10"* - 9
-8.40
0.060
0.050
312
154
46
46
188
10"* - 1 0
-9.44
0.075
0.064
10"* - 4
-2.61
0.014
0.011
379
55
55
237
64
10
9
10"* - 5
-3.60
0.022
0.018
40
92
12
12
57
10"* - 6
-4.58
0.030
0.025
121
13
13
76
10"* - 7
-5.56
0.040
0.034
152
14
14
100
10"* - 8
-6.55
0.051
0.044
185
18
18
125
10"* - 9
-7.53
0.062
0.053
220
21
21
152
10"* - 1 0
-8.51
0.077
0.067
258
24
24
184
i0"* -11
-9.49
0.095
0.084
313
26
26
228
T a b l e 35. Stiff D E T E S T n o r m a l i z e d efficiency r e s u l t s for p r o b l e m (F3).
PIAS
MEBDF
Expected
Equiv.
Accuracy
Log10 Tol.
Time
Ovhd.
Fcn.
Jac.
Mat.
No. of
Calls
Calls
Fact
i0"* -3
-2.19
0.038
0.030
Steps
133
24
24
69
i0"* --4
--3.22
0.061
I0"* -5
--4.26
0.094
0.048
194
35
35
104
0.077
262
45
45
10"* --6
--5.29
153
0.139
0.117
349
63
63
218
10"* --7
--6.32
0.185
0.158
446
79
79
285
10"* - 4
--2.76
0.066
0.054
133
19
19
88
10"* --5
-3.72
0.097
0.081
187
23
23
125
10"* --6
--4,67
0.136
0.116
242
25
25
164
10"* --7
--5,62
0.192
0.168
315
30
30
218
10"* --8
--6.58
0.244
0.215
383
35
35
269
10"* - 9
--7,53
0.291
0.257
452
39
39
319
Implicit Advanced Step-Point Methods
1221
Table 36. Stiff D E T E S T normalized efficiency results for problem (F4). Expected Accuracy
Equiv. Log10 Tol.
Time
Ovhd.
Fcn. Calls
10"* 0
-4.03
0.141
0.131
10"* - 1
-5.08
0.188
10"* - 2
-6.14
10"* - 3
-7.20
10"* - 4
PIAS
MEBDF
Jac. Calls
Mat. Fact
No. of Steps
765
103
103
253
0.172
1097
170
170
434
0.269
0.246
1429
243
243
614
0.347
0,322
1844
248
248
800
-8.25
0.491
0.454
2367
391
391
1120
10"* - 1
-5.72
0.283
0.267
941
103
103
451
10"* - 2
-6.62
0.353
0.333
1171
119
119
588
10"* - 3
-7.52
0.451
0.427
1413
145
145
768
10"* - 4
-8.42
0.522
0.497
1562
146
146
901
Table 37. Results for the stiff D E T E S T problem (F5) (nonnormalized).
PIAS
MEBDF
problem
(F4).
Log10 Tol.
Time
Ovhd,
Fcn, Calls
Jac. Calls
Mat. Fact
No. of Steps
End Pnt. Glb. Err.
--2.00
0.024
0.020
113
18
18
58
0.00
0.03
--3.00
0.036
0.030
158
29
29
83
0.00
0.09
--4.00
0.054
0.046
223
41
41
118
0.00
0.13
--5.00
0.081
0.071
311
54
54
171
0.03
0.16
--6.00
0.116
0.103
396
65
65
234
0.91
0.00
--7.00
0.160
0.143
537
88
88
318
0.62
0.00
--8.00
0.258
0.228
981
153
153
521
7.19
0.00
-9.00
0.514
0.445
2332
356
356
1084
15.67
0.00
--10.00
4.944
4.193
27771
3732
3732
11402
254.58
0.00
--2.00
0.032
0.027
93
17
17
58
0.00
0.16
--3.00
0.045
0.039
126
21
21
82
0.00
0.04
--4.00
0.067
0.060
173
25
25
114
0.01
0.03
-5.00
0.097
0.087
236
31
31
155
0.02
0.03
--6.00
0.152
0.140
344
35
35
225 '
0.06
O.00
-7.00
0.174
0.160
402
43
43
270
2.21
0.00
-8.00
0.305
0.278
743
86
86
457
3.32
0.00
-9.00
0.854
0.735
2710
399
399
1189
13.86
0.00
-10.00
5.640
4.668
20663
3351
3351
9589
6.37
0.00
On the first three problems the MEBDF
note that in problem
Maximum Glb. Err.
code remains more accurate.
(Please
( F 5 ) , i.e., T a b l e 37, t h e r e a r e n o t e n o u g h s u c c e s s f u l i n t e g r a t i o n s t o f o r m
normalized statistics.) The
"summary
same pattern, experimental
o f r e s u l t s o v e r all g r o u p s " , as s e e n i n T a b l e 39, t a b l e d i s p l a y s o n c e m o r e t h e
i.e., t h a t , t h e e x p e r i m e n t a l
P I A S c o d e is f a s t e r .
code has more function and Jacobian
W e m a y also o b s e r v e t h a t , t h e
calls than the MEBDF
code.
surprising since we would expect the PIAS code to have some more Jacobian
T h i s is n o t
calls due to the
extra iteration matrix that, it requires and due to this some more function evaluations.
1222
G. PSIHOYIOS Table 38. Summary results for Group F problems (nonnormalized).
PIAS
MEBDF
Logl0 Tol.
Time
Ovhd.
Fcn. Calls
-2.00
0.112
0,094
525
-3.00
0.178
0.149
803
-4.00
0.392
0.344
1761
-5.00
0.573
0.504
-6.00
0,789
0.699
-7.00
0.984
-8.00 -9.00 -10.00
Jac. Calls
Mat. Fact
No. of Steps
End Pnt. Glb. Err.
Maximum Glb. Err.
95
95
258
0.07
0.08
139
139
394
1.64
0.27
275
275
765
0.31
5754.96
2491
407
407
1189
0.56
35578.80
3161
552
552
1609
1.60
6090.21
0.882
3913
581
581
1998
0.70
24477.29
1.323
1,186
5118
839
839
2688
7.19
15987.75
1.935
1.731
7768
1191
1191
3979
15.67
16439.78
6,798
5,872
34365
4810
4810
15038
254.58
17858.96
-2.00
0,146
0.122
432
81
81
247
0.12
0.16
-3.00
0,232
0.199
637
98
97
383
0.42
0.15
-4.00
0.487
0.433
1618
190
190
794
1.02
0.41
-5.00
0.678
0.615
1918
205
205
1068
1.36
39224.95
-6.00
0.935
0.856
2341
241
241
1359
0,52
73249.16
-7.00
1.170
1.075
3003
284
284
1770
2.21
47821.59 33614.29
-8,00
1.585
1.460
3878
380
380
2375
3.34
-9.00
2.314
2.088
6258
677
677
3421
13,86
16786.10
-10.00
7.601
6,485
25353
3766
3766
12534
6.37
29117.39
Table 39. Summary results over all groups (nonnormalized).
PIAS
MEBDF
Log10 Tol.
Time
Ovhd.
Fcn. Calls
Jac. Calls
Mat. Fact
-2.00
0.809
-3.00
1.269
-4.00
2.103
1.757
-5.00
2.942
2.501
-6.00
3,949
3,415
-7,00
4.993
4.372
--8.00
6.450
-9.00
8.434
--10.00 -2.00
No. of Steps
0.646
3409
378
536
1587
1.012
4823
567
834
2400
7365
862
1185
3699
9594
1151
1547
5200
12047
1430
1881
6881
14726
1582
2104
8628
5.671
18428
2023
2669
11103
7.472
24270
2590
3323
14743
15.215
13.356
55303
6621
7472
29054
1.022
0.829
2643
318
425
1535
-3.00
1.639
1.385
3749
360
508
2342
-4.00
2.564
2.232
5928
492
661
3562
-5.00
3.606
3,201
7518
551
746
4777
-6.00
4,822
4.334
9403
636
854
6149
--7.00
6.160
5.579
11645
725
982
7752
-8.00
7,893
7,170
14747
893
1208
10012
-9.00
10.370
9.413
19972
1321
1661
13200
-10.00
17.920
15.910
42639
4502
4905
24984
7. C O N C L U S I O N S H a v i n g s e e n t h e n u m e r i c a l c o m p a r i s o n s i n S e c t i o n 6, w e a r e i n a p o s i t i o n t o d r a w s o m e i n t e r esting conclusions regarding the behaviour and the potential of the HAS
scheme.
• T h e e x p e r i m e n t a l P I A S c o d e is c l e a r l y f a s t e r o n t h e v a s t m a j o r i t y o f t h e t e s t p r o b l e m s . The MEBDF the MEBDF
c o d e is m o r e a c c u r a t e o n m o s t o f t h e t e s t p r o b l e m s . I t is n o t s u r p r i s i n g t h a t , c o d e is m o r e a c c u r a t e t h a n t h e e x p e r i m e n t a l H A S
code on certain problems
Implicit Advanced Step-Point Methods
1223
since MEBDF is L-stable whereas the PIAS methods are only A-stable. It has to be mentioned though that, the accuracy of the experimental H A S code is very satisfactory. • The experimental HAS code displays an increased accuracy on the nonlinear test problems Groups D, E, and F. This seems a particularly promising feature if we consider the prospect of improving its speed. Keeping in mind though that this form of the H A S code is an experimental code, there is little doubt that, we can substantially improve its speed when we will a t t e m p t to create a proper parallel variable order/variable stepsize code in the
near future. We also believe that, we will be able to improve its accuracy behaviour.
APPENDIX Coefficients of the second parallel predictor (7) of the PIAS methods. bk+l
56
55
~.4
2 -- bk--1 6--bk_ 1 5 12--bk_ 1 13 3(40+%k--1 )
154 2(30--bk_1) 87
1800--611bk_I 348
10(42--bk_l) 669 5(56--bk_1) 481
78400--20159bk_ 1 9620
88200--25961bk_ 1 13360
10(--2940+739b~_1) 2007
4(--7840+1583bk_1) 1443
15(3920--551bk_1) 1924
Coefficients of the second (parallel) predictor (7) of the PIAS methods. k
53
52
51
1
50
1
2
9-4bk_1
3
4(--l+bk-1)
5
5
4(9--4bk-1) 13
4(--8+5bk--1) 13
9--4bk--1 13
4
3600-- 26 S l b k _ 1 924
-- 800+661 {)k-- 1 154
3 (300 -- 371 bk - 1 ) 308
-- 286-- 427b k _ 1 462
5
8(--300~-97bk-- 1) 261
3(76--17bk-- 1 )29
6(--36+7bk--1) 67
600--107bk-- 1 1044
6
15(245-43bk-1) 223
4 ( - 1 7 6 4 + 2 6 5 b k - 1) 669
5(5880--809bk-- 1 ) 8028
6(-- 100+13bk--1) 1115
7
8(--4704+565bk-- 1) 1443
5(15680-- 1723bk-- 1) 5772
12(--800+835k-- 1) 2405
2940--293bk- 1 5772
REFERENCES 1. W.L. Miranker and L. Liniger, Parallel methods for the integration of ordinary differential equations, Math. Comp. 21, 303-320, (1967). 2. M.A. Franklin, Parallel solution of ordinary differential equations, IEEE Trans. on Comp. 27, 413-420, (1978). 3. K. Burrage, Parallel methods for initial value problems, Appl. Num. Math. 11, 5-25, (1993). 4. G.-Y. Psihoyios and J.R. Cash, A stability result for general linear methods with characteristic function having real poles only, BIT Num. Math. 38 (3), 612-617, (1998). 5. G. Psihoyios, Advanced step-point methods for the solution of initial value problems, Ph.D. thesis, Imperial College, University of London (1995). 6. J.R. Cash, The integration on stiff IVPs in ODEs using modified extended BDF, Computers Math. Applic. 9, 645-657, (1983). 7. S. Considine, Modified linear multistep methods for the numerical integration of stiff IVPs, Ph.D. thesis, Imperial College (1988). 8. J.R. Cash and S. Considine, An MEBDF code for stiff IVPs, A C M TOMS 18II, 142-155, (1992).
224
G. PSIHOYIOS
9. J.R. Cash, On the integration of stiff systems of ODEs using extended BDF jour Num. Math. 34, 235-246, (1980). 10. W.H. Enright, T.E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of ODEs, B I T 15, 10-48, (1975). 11. W.H. Enright and J.D. Pryce, Two Fortran packages for assessing initial value methods, A C M T O M S 13, 1-27, (1987).