A data summary and bibliography of binary (e, 2e) spectroscopic studies

A data summary and bibliography of binary (e, 2e) spectroscopic studies

Journal of Electron Spectroscopy and Related Phenomena, 35 (1985) 327-352 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands Da...

1MB Sizes 6 Downloads 40 Views

Journal of Electron Spectroscopy and Related Phenomena, 35 (1985) 327-352 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands

Data bank A DATA SUMMARY AND BIBLIOGRAPHY OF BINARY (e, 2e) SPECTROSCOPIC STUDIES K.T. LEUNG and C.E. BRION Department of Chemistry, The University of British Columbia, Vancouver, B.C. V6T 1 Y6 (Canada) (Received 27 October 1984)

The development of binary (e, 2e) spectroscopy over the last fifteen years has firmly established it as an important and powerful probe for the detailed study of electronic structure and orbital densities. Numerous studies using binary (e, Ze) spectroscopy have provided data for testing various collision approximations and models for the reaction mechanism in the (e, 2e) ionization process. Specific information concerning the binding energy spectra and spherically averaged orbital momentum distributions of atoms, molecules and solids (thin-film) has been accumulated. These data have provided complementary information to those obtained by photoelectron spectroscopy and Compton scattering methods. The experimental binding energy spectra are of considerable interest because of calculations of the inner valence shell ionization spectral distribution using the many-body Green’s function [ 1, 21 and the symmetry adapted cluster expansion [3, 41 techniques. Likewise, the measurement of electron momentum distributions at selective ionization energies (i.e., of individual orbit&) has provided a direct and unique evaluation of the quality of ab initio selfconsistent-field wavefunctions. Theoretical works using the generalized overlap technique [5] have attempted to go beyond the Hartree-Fock level. Recent developments [6-81 in orbital density topographical studies using contour mapping and three-dimensional graphic visualization techniques have provided a renewed interest in the ~vestigation of momentum-space chemical properties [ 9, lo]. This approach, together with the recently developed auto-correlation functional analysis [ 11) of the momentum density, have helped to improve the present understanding of experimental momentum distributions and momentum-space properties in general. The technique of binary (e, 2e) spectroscopy is thus opening up significant and new possib~ities in experimental qu~tum mechanics. In particular it is providing a’ direct and quantitative view of molecular orbitals for the first time. 036%2048/85/$03.30

0 1985 Elsevier Science Publishers, B.V.

323

There is a rapidly increasing number of publications related to binary (e, 2e) spectroscopy and in view of the growing interest and importance of the field in quantum chemistry a summary of the present status of the literature in the field seems timely. An up-to-date bibliography of all the published works in binary (e, 2e) spectroscopy is therefore given below. This compilation includes all of the experimental and theoretical studies based upon high-energy symmetric (e, 2e) reactions in both the coplanar and noncoplanar scattering kinematics. To the best of our knowledge this bibliography is complete up to mid-1984. It should be noted that two data banks on photoabsorption and photoionization measurements using the highenergy asymmetric (e, 2e) reaction (i.e., dipole (e, 2e) spectroscopy) have recently been published [12, 131. These data [12, 131 also include information on valence shell binding energy spectra, including the inner valence region. The chemical reference table (Table 1) gives a listing of all the chemical species that have been investigated by binary (e, 2e) spectroscopy. These species are listed in ascending order of the number of electrons in the system. Each entry has the following items: (1) SPECIES: This gives the number of electrons in the species followed by the chemical formula. Where there is more than one species with the same number of electrons, these are usually listed in ascending order of the number of atomic centres (i.e., atoms, diatomics, triatomics, etc.). (2) REF: References of works on the species are listed in ascending order by the year of publication. In cases where more than one work has been published in the same year, the references are listed alphabetically. Each reference is coded normally by five characters with the last two indicating the year of the publication. The remaining characters are the first characters of the last names of the lead authors. In cases where the same five characters are used for more than one reference, a sixth character (in lower case) is used. The references (REF) are listed in the bibliography shown in Table 3 of the present work (see explanation of the referencing convention below). (3) CODE: An approximate classification of the nature of the work is indicated using the following coding system: C = Coplanar (experimental) N = Noncoplanar (experimental) T = Theory or calculation R = Review For the experimental work (i.e., C or N), the employed base incident energy (in .units of 100eV) is enclosed in parentheses. The character “v” (for variable) is used to denote cases where several incident energies have been used. (4) BES: , The range of the binding energy spectrum (BES) is given in units of eV. In cases where the given spectrum is a sum of the binding energy spectra measured at several angles, the word “sum” is used.

329

BINARY (e,2e) SPECTROSCOPY

Juna 1984

Fig. 1.

(5) MD: The momentum distribution (MD) of the orbital is labelled by its orbital name whenever possible. When no single~orbital can be assigned, the binding energy (in eV) at which the momentum distribution is sampled is given. (6) COMMENTS: Some brief comments of the content of the published work are given. Various short-hand notations are also used: AEA -= Average Eikonal. Approximation CI = Configuration Interaction CWIA = Coulomb Wave Impulse Approximation DF’= Dirac-Fock DWIA = Distorted Wave Impulse Approximation EA= Eikonal Approximation FA= Factorization Approximation GF= Green’s Function HF= Hartree-Fock MO= Molecular Orbital PWBA = Plane Wave Born Approximation PWIA= Plane Wave Impulse Approximation Figure 1 gives a diagrammatic summary of all the chemicals investigated by binary (e, 2e) spectroscopy. Although the grouping of the chemicals in the diagram is somewhat arbitrary, the diagram attempts to emphasize chemically related groups of ..atoms and molecules. For instance, isoelectronic species are bound by -horizontal rectangles with heavy solid lines. Systems of chemicals such as the noble gases, hydrogen halides, methyl halides, etc. are listed in vertical columns.

330

Table 2 gives a listing of related theoretical works (T) and review articles (R) dealing with binary (e, 2e) spectroscopy. The titles of these articles are also given. Finally, the references are listed alphabetically in Table 3 by the reference codes (see (2) above). The items in each reference are given in the following manner: Authors, Journal, Volume (Year) Page. > Title. Note that the title is given at the end of each reference and is prefixed by the character “>“.

ACKNOWLEDGEMENTS

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. K.T. Leung gratefully acknowledges the receipt of an NSERC Postgraduate Scholarship. C.E. Brion acknowledges a Canada Council Killam Research Fellowship.

REFERENCES 1 2 3 4 5 6 7 8 9 10 11 12 13

FOR INTRODUCTION

L.S. Cederbaum and W. Domcke, Adv. Chem. Phys., 36 (1977) 205. W. von Niessen, J. Schirmer and L.S. Cederbaum, Comput. Phys. Rep., 1 (1984) 67. H. Nakatsuji and K. Hirao, J. Chem. Phys., 68 (1978) 2053. H. Nakatsuji, Chem. Phys., 76 (1983) 283. G.R.J. Williams, I.E. McCarthy and E. Weigold, Chem. Phys., 22 (1977) 281. K.T. Leung and C.E. Brion, Chem. Phys., 82 (1983) 87. K.T. Leung and C.E. Brion, Chem. Phys., 82 (1983) 113. K.T. Leung and C.E. Brion, Chem. Phys., 91(1984) 43. C.A. Coulson and W.E. Duncanson, Proc. Cambridge Philos. Sot., 37 (1941) 55, 67, 74,397,406;38 (1942) 100; 39 (1943) 180. I.R. Epstein and A.C. Tanner, in B.G. Williams (Ed.), Compton Scattering, McGrawHill, New York, 1977, p. 209. J.A. Tossell, J.H. Moore and M.A. Coplan, J. Electron Spectrosc. Relat. Phenom., 22 (1981) 61. C.E. Brion and J.P. Thomson, J. Electron Spectrosc. Relat. Phenom., 33 (1984) 287. C.E. Brion and J.P. Thomson, J. Electron Spectrosc. Relat. Phenom., 33 (1984) 301.

1

H2

SPECIES

CHEMICAL

TABLE

N(v) C(8) N(?) C(V) T C(4) C(v) C(v) C(-)

HM&73 MU&74 DMW76 GT&77b MC577 CG&78 FM&78 SCG78 WK&79 LB1 WK&8 1 L683a L683b LR83

M73 WH&73 OM&75 WM&77 MC&8 1 WK&8 1 LE83b

C(2.5) C(v) C(v) N(4.8.12) N(4.8.12)

WH&77 WN&79a WN&79b LW8 1 MW83a

A(4 IO) N(vj N( 12) N(4) CC-1 N(12)

c’(-, N(12) N(12) T

CODE

TABLE

REF

REFERENCE

14-20 10-55 11-23

19-30 18-30

-

10-75 -

8-25 Ii-20 -

BES

lag

lag. lag

fag

lag

IS

1s

IS IS

IS

is

IS

15 is

Is

lau.37.40

SUMMARY

MO

AND DATA

5

vs

momentum.

OWIA. OWIA.

CI

PWIA. PWIA.

effect

PWBA PWBA

correlation absolute wrt WK&81 absolute to 20% density maps and density

difference

maps

constant p plots FA. DWIA. EA absolute to a factor of 2. PWIA. CWIA reactlon models absolute to 20%. various a(n=2)/6(n=l) vs momentum absolute to 20%. PWBA. DWIA. AEA comparrson study density maps, density difference cf. Compton scattering data. a(n=2)/d(n=l) vs momentum, CI effects

f-1.2 transition 0(n=2)/a(n=l) PWIA. DWIA

double-theta plot double-theta plot, double-theta plot, cf. exact solution cf. exact solution

COMMENTS

maps

C(V) N(4) T N(-f 8-42

CS&76 HH676a WMW77 TL&84

NH3

12)

10-50 IO-45

N(4, N(4)

DD&77a HH977a

6-64

15-65

O-65 10-65 10-80

H20

CC251 C(v) N(2.4) C(v) N(12) C(V) C(v) C(v) N( 12)

O-600 O-400

12-50 5-55

L683a

0x80

w&74 UWM75 WHM75 GT&77b M&7% FM&70 SCG79

C( 140) C(90) C(93)

BES

HF

10 Ne

AE&69 CG&72a CG&72b

N(v)

DM&75

02

6 C

CODE

REF

SPECIES

TABLE 1 (continued)

model,

3a1

3al.le.Zal 3al.le,2al

lb1.3al.lb2,Zal lb1.3al.lb2.2al

ln.3a.26 ln.3a.2a

maps

autocorrelatlon

DWIA

GF

density

PWIA.DWIA PWIA.OWIA FA.OWIA.EA

film film frlm

2P.ZS 2p.zs 2P.2S 2P.2S 2p.2s 2P.25

thin thin thin

optical

shells shells

COMMENTS

2P‘ZS

K.L K.L

jag

MD

DWIA

w w Lo

NO

15

N(4) N(4)

GMT78

NC 12) N(26)

N(4)

FGTB2

TM&82

BC&62

CM&79

N(4.12)

OM&77

C2H2

N(v) N(4.6.12)

CS&76 WO&77

N(4)

TM&62

12)

i(4.12)

N(

00&77b

M75

LW82

Nf

CC&6 16)

N(4)

1

i(6.12)

WO&76

HH077a

N(4)

CODE

N2

co

14

Na

11

HW&73

CH4

M73

REF

SPECIES

TABLE 1 (continued) -

-

5-52

5-55

-

7-47 lo-26sum

IO-75

10-70

lt2.2al

10-40

2n.Sa.4~1

2n.46.30 2n. 17.22.41

1W-l

1nu.3ag.2au.2ag

lsu.3ag.2Llu.2&?.29

2ag 3ag.1nu.2au.2ag. 28.32 5

50.lll.4cl.3~

5a.ln.4a.3a.28.32. 38.43.55.60

3s.2~

lt2.3a1.31 -

IO-55

lt2.2a1.32.5.47

O-70

20-38

MO

BES

5

maps

density autocorrelation

maps

density

GF

OWIA

autocorrelation

CI

GF

COMMENTS

HCl

Ar

C(25)

N(v) C(v)

N(2.4)

C(v) T

C(l.5)

T

N(

C(80) T

EC&74

HM874

UWM75

WHM75

FM&78

1

W78

ML8

LB83s

LW&83

SE&80

BH880

MAM84

N(l2) N(l2)

12)

N(4)

WHT73

MUP78

T

N(v)

FW73b

10)

HM873

T

N(4)

CM879

FW73a

N(

OH&78

18

N(4)

CM&78

C2H4

N(4)

N(4)

TM&82

HHB76b

N(4.12)

CODE

SUB80

REF

H2CO

02

16

SPECIES

TABLE 1 (continued) -__

8-50

8-50

O-40

10-50

15-44

10-50

10-50

5-50

10-45

5-50

5-50

lo-36sum

10-40

IO-65

BES

1.20.3.24

2n.5a.40

3P

3P.3S

3p.3s

3P.3S

3P.35

3s.40

3P.3S

3p.3s

lblu

2ag.27.4.31

2

lblu.lblg.3ag.lb2u.2b3u.

2ag.27.4

lblu.lb1g,3ag.lb2u.2b3u.

2au,32.5,20g.47 lng.lnU.3ag.2czU.2ag

lng.lnu.18

MO

GF

CI

model

maps

resolution

asymmetric

density

high

FA.OWIA.EA

optical

autocorrelation

5,

COMMENTS

OWIA

_

_

- - ..-

w K

MBW8 1

TL&84

CHBOH

CH3NH2

12)

16)

MB883

CHOCN

15.

12)

B-40

2n.7e.ln.6a.5a.4,

N(

2n.7a,ln.60,50.40

5-55

12)

o-55

lng,lnu.3uu.40g. 33.38

1ng.19.20.5.33.39

4S.3P

3al

4a’.3a’.36’

2a”.7a’.

2e.4al.3al

2alg.33.38,42.5,48

leg.3alg.leu.2a2u.

5al.2e.19.5.22.6.25.5

2b1.5al.2b2.4al

2b1,5al,2b2,4al

mo

N(

IO-48

IO-52

8-46

IO-45

IO-55

8-32

6-40

6-40

BES

N(26)

N(4)

FGREO MFW82

C(16)

C882a

N(12)

N(

N(

N(4.12)

N(4)

GT&77a

N20

co2

22

K

LW82

CC&8

CHOF

19

00876

C2H6

1

HHB77b

N(4)

PH3

N(4)

CB79

CBHEO

H2S

CODE

REF

SPECIES

TABLE 1 (continued)

1.5a’.

GF

absolute

GF.density

autocorrelation

GF

GF

GF

COMMENTS

wrt

WK881

maps

HEr

36 Kr

34 CHF3

EM&82

EC&74 WHM75 GT&77b FG&8 1 L683a

CC&82 CC&83a

CC&83b

32 C2H3C

1

CM&79

C4H6

N( 12)

C(25) N(2.4) Cfvf N( 12) Nt 12)

N( 161 N( t6t

N( 16)

N(4)

N(4)

N( 12)

MC&84

CW&8 1

NC121

NC161

CC&63a

MG&62

N( 46)

N14f N(4)

CODE

FG&82

CM&79 TMC79

REF

30 ocs

26 CH3C 1

C2H3F

24 C3H6

SPECIES

TABLE 1 (continued)

7-50

10-52 lo-48

10-40 O-50

10-50 10-50

5-45

IO-45

8-44

8-44

10-45

10-45

BES

lau

4lr.06.76

4p.4s 4p.4s.37 4P,4S 4P,4S 4P.4S

Ibg.

2e.3a 31.5 2e.3a , le.2al

. le.2al

2a”. lOa’, 15.15 17.5.19.21.5.5a’.4a’ 10.5.13,15,15.5.

3e 3e

MD

GF,compsrison

, la1

GF

PWIA.DWIA CI.correlation density maps

GF GF

GF

GF

MO

GF

GF

.lal,

5.

Jahn-Teller

COMMENTS

effect

study

effect

of

MeX group

FM&8

C6H6

C(v)

UWM75 GT&77b

Xe

HI

54

N(4)

N(

C(V)

NC121

NC121

N(l2)

OM&78

GF&8Oc

LB83a

CMW84

EM&82

12)

16)

HH677a

C(v)

N(

CC&83b

50

C2H3Er

N(12)

C(5000)

N(l2)

N(l2)

5-35

B-44

5-85

IO-36

5-40

7-45

5-45

6-50

15-50

N(16)

LWM83

SN82

1

BES

CODE

Cd

48

Ag

47

CH38r

44

MC&i34

CC&82

CF4

42

REF

SPECIES

TABLE 1 (continued)

6n.lia.lOa

5p3/2.5~1/2

5P.5S

5P.5S

5P.5S

5p.5s 5s

15.4

9.2.10

5s.4d

2.12

2e.3al.le.2al.lal

MO

4.13

2

effects

GF

relativistic

density

absolute

PWlA.OWIA

PWIA.OWIA

optical

GF

CI

K-shell

GF

MO.GF

GF

COMMENTS

maps

to

a

effects

factor

model.OWIA

ionization.thin

of

P.OWIA.AEA

film.asymmetric

333

Angular distribution of the outgoing electrons in electronic ionization Quasielastic knockout of an electron by a fast electron from atoms, molecules thin crystalline films. Value and limitations of quasi-free electron scattering experiments on atoms. On the (e.2e) reactions in solids. Study of atomic structure by means of (e.2e) impulsive reactions. Structure of wavefunctions of atoms in the (e,2e) reaction. (e,2el spectroscopy. The determination of the dynamic structures of atoms and molecules using the (e.2e) reaction. On the display of basic properties of the molecular electronic wavefunctions (e.2el quasielastic knockout experiments. The determination of electronic momentum distributions and molecular structure using the (e.2e) reaction. The experimental determination of electron momentum densities. Investigation of (e.2el knockout reaction via molecular electronic structure calculations.

R R

R R R R R R

R

R

R R

AC70 L72 GM974 LN&75 YW76.a MW76b

A77

W77a

W77b w77c

argon

the

G168 NNS69

of

for

: T T T T T T T T T T T T helium.

Optical model wave functions for atomic scattering. The (e.2.e) experiment as a probe for atomic structure Theory of the (e,2el reaction on molecules. Theory of the (e.2el reaction on molecules II. Triple-differential cross sections for electron-impact ionization Investigation of generalized overlap via (e,Zel spectroscopy Comparison of (e.2el. photoelectron and conventional spectroscopies Theory of (e.2e) experiments. Theoretical methods for ionization. The (e.2e) satellite spectrum of helium. Theoretical (e.2el cross sections for ionization of the 3s state A theory for relativistic (e.2e) reactions Momentum distributions for mercury The helium (e,2e) satellite spectrum. The (e.2el spectrum of argon.

T

FM73a FM73b M73 975 KS77 WMW77 MUP78 M80 MS80 L81 ML81 FMS82 MF82 LR83 MAM84 of

TITLE

CODE

REF

REVIEW ARTICLES AND THEORY

TABLE 2

II

ion.

very

the

and

in

Ar

CODE

R

R R R R

R R R R R R R R R R R R R R

R R R

R R R R R R R

REF

GM&78

MU78 WM78 CS&79 GCS80

GF&80a GF&BOb WBOa W80b GF&8 1 TMC81 WEI C882b CTM82 FH&82 FW82 L82 M02a M82b

MTC82 SB82 W82

WO&82 MW83b CC&84 J84 LB84 LMW84 584

TABLE 2 (continued)

by (e.2e) coincrdence measurements Studies of Ionic states in atoms and molecules of direct ionlzatlon processes. rnto matter. Electron coincrdence spectroscopy: a new wav of looking (e.2e) collrsions. spectroscopy on orrented molecules Study of molecular orbitals by means of (e.2e) to test drfferent lonlzation theorJes Impulsive (e.2e) experiments. h tool and electronrc structures of atoms and molecules. of molecules by (e.2e) spectroscopy. Measurement of ionization potentials (e.2e) spectroscopy Electron coincidence experiments in atomic physics. (e.2e) spectroscopy (e.2e) experiments. Fourier analysts of spherically averaged momentum densitres for some gaseous mOleCUleS (e.2e) theory and experiment. Momentum density maps for molecules. Momentum densities in chemistry. Relativistic (e.2e) (e.2e) on solids - a progress report. Electron correlation and molecular effects in (e.2e) spectroscopy Theory of the (e.2el reaction. - electronic momentum dlstrlbutions Binary (e.2e) spectroscopy of molecules and molecular structure. Electronic structure of molecules by (e.2e) spectroscopy. Comment on momentum distributions of valence electrons of atoms and srmple molecules. - momentum space wavefunctron of electrons Electron coincrdence spectroscopy In atoms annd molecules Progress report on (e.2e) collrsons In thin films. Observing the motion of electrons in atoms and molecules. Fourier transform of spherically averaged momentum densities. Multiple scattering approach to the lnterpretatlon of (e.2e) experiments (e.2e) chemistry. Multiple scattering approach to the (e.2e) reaction on atomic hydrogen. Impulsive (e.2e) experiments. non drpolar form factor.

TITLE

341

TABLE 3: BIBLIOGRAPHY

A77

N R Avery; in 'Momentum Wave-Functions-1976", AIP Conf. >On proc. V36, AIP Press, New York, (1977) 195-203. the (e,2e) reactions in solids.

AC70

U Amaldi Jr and C Ciofi Degli Atti; 11 Nuovo Cimento, Vol LXVIA, (1970) 129-38. >Value and limitations of quasi-free electron scatttering experiments on atoms.

AE669 U Amaldi, A Egidi, R Marconero and G Pizzella: Rev. >Use of a two Sci. fnstrum. 40 (1969) 1001-4. channeltron coincidence in a new line of research in atomic physics. BC&74 A Botticelli. R Camilloni. A Giardini-Guidoni. G Missoni, G Stefani R Tiribelli and D Vinciguerra; Annali di Chimica k4 (1974) 189-97. >(e,2e) reactions on noble gases. Configuration interaction'peaks in the energy spectrum of valence electrons. BC&82 C E Brion, 3 P D Cook, I G Fuss and E Weigold; Chem. >Molecular orbital momentum Phys. 64 (1982) 287-97. distributions and binding energies for nitric oxide. BH&80 C E Brion, S T Hood, I H Suzuki, E Weigold, G R J Williams; J. Electron Spectrosc. Relat. Phenom. 21 (1980) 71-91. >Momentum distributions and ionization potentials for the valence orbitals of hydrogen fluoride and hydrogen chloride. BM&79 C E Brion, I E McCarthy, I H Suzuki and E Weigold: Mlomen t urn Chem. Phys. Lett. 67 (1979) 115-8. distributions for the valence orbitals of hydrogen fluoride. B&82

C E Brion. I E McCarthv. I H Suzuki. E Weiaold. G R J Williams,'K L Bedford,-A B Kunz and-E Weidman;'J. Electron Spectrosc. Relat. Phenom. 27 (1982) 83-107. >Electron momentum distributions and binding energies for the valence orbitals of hydrogen bromide and hydrogen iodide.

CB79

J P D Cook and C E Brion; J. Electron Spectrosc. Relat. Phenom. 15 (1979) 233-6. >Valence shell momentum distributions, binding energies and calculated wavefunction evaluation for H2S by binary (e,2e) spectroscopy.

342

CB82a J P D Cook and C E Brion; Chem. Phys. 69 (1982) 33956. >Binary (e,2e) spectroscopy and momentum-space chemistry of C02. CB82b J P D Cook and C E Brion; in "Momentum Wave-Function1982", AIP Conf. Proc. V86, AIP Press, New York, 1982, >Momentum density maps for molecules. p.278-96. CBHBO J P D Cook, C E Brion and A Hamnett; Chem. Phys. 45 (1980) 1-13. >On the ionization and momentum distributions of the valence electrons of H2S. CC&81 R Cambi. G Ciullo. A Soamellotti. F Tarantelli. R Fantoni; A Giardini-Guidoni and A Sergio; Chem: Phys. Lett. 80 (1981) 295-300. >Ionization of CH4 and some fluoromethanes: A Green's function study and an (e,2e) spectroscopic investigation. CC&82 R Cambi, G Ciullo, A Sgamellotti, F Tarantelli, R Fantoni, A Giardini-Guidoni, M Rosi and R Tiribelli; Chem. Phys. Lett. 90 (1982) 445-52. >Ionization of fluoromethanes: CHF3 and CF4. A Green's function study and an (e,2e) spectroscopic investigation. CC&83a R Cambi, G Ciullo, M Rosi, A Sgamellotti, F Tarantelli, R Fantoni and A Giardini-Guidoni; Int. J. Mass Spect. Ion Phys. 46 (1983) 261-4. >Ionization of fluorinated methanes and ethylenes through (e,2e) process and Green's function approach to predict ionization potentials. CC&83b R Cambi, G Ciullo, A Sgamellotti, F Tarantelli, R Fantoni, A Giardini-Guidoni, I E McCarthy and V.Di Martino; Chem. Phys. Lett. 101 (1983) 477-84. >An (e,2e) spectroscopic investigation and a Green's function study of the ionization of chloro- and bromoethylene. CC&84 M A Coplan, D J Chornay, J H Moore, J A Tossell and N S Chant: "Wavefunctions and Mechanisms from Electron Scattering Processes", F.A. Gianturco and G. Stefani teds.), Lecture Notes in Chemistry V35, Springer-Verlag >Fourier transform of (1984) Berlin, p.156-61. spherically averaged momentum densities. CG&72a R Camilloni, A Giardini-Guidoni, G Stefani and R Tiribelli: Frascati Report No. LNF72/53, Rome (1972). >Quasi-free electron-scattering on bound electron coincidence measurements of scattered and emitted electrons in carbon. CG&72b R Camilloni, A Giardini-Guidoni, R Tiribelli and G Stefani; Phys. Rev. Lett. 29 (1972) 618-21. Xoincidence measurement of quasifree scattering of 9keV electrons on K and L shells of carbon.

343

CG&78 R Camilloni, A Giardini-Guidoni, I E McCarthy and G Mechanism Stefani; Phys. Rev. A 17 (1978) 1634-41. of the (e,2ef reaction with atoms. CG&80 R Camilloni, A Giardini-Guidoni, I E McCarthy and G z-Theeikonal Stefani; J. Phys. B 13 (1980) 397-409. approximation for the (e,2e) reaction. CM&78 M A Coplan, A L Migdall, J H Moore and J A Tossell; J. >Valence electron Am. Chem. Sot. 100 (1978) 5008-11. momentum distributions of ethylene from the (e,2e) experiment. CM&79 M A Coolan. J H Moore. S A Tossell and A Guvta: J. Chem. 'Whys;71 (1979)'4005-9. >Electron momentum distributions in the lrorbitals of small hydrocarbons from the (e,2e) experiment. CMT78 M A Coplan, J H Moore and J A Tossell; J. Chem. >Valence electron momentum 68 (1978) 329-30. distributions for acetylene.

Phys.

CMW84 J P D Cook, J Nitroy and E Weigold; Phys. Rev. Lett. 52 >Direct observations of relativistic 11984) 1116-8. effects in single-electron momentum distributions in xenon outer shells. CS&76 R Camilloni, G Stefani, A Giardini-Guidoni, R Tiribelli and D Vinciguerra; Chem. Phys. Lett. 41 (1976) 17- 20. >Efectron momentum distributions of valence states of NH3 and the 20 g of N2 as measured by (e,2e) experiments. CS&79 R Camilloni. G Stefani. R Fantoni and A GiardiniGuidoni; J..Electron Spectrose. Relat. Phenom. 17 >Studv of molecular orbitals bv means (1979) 209-28. of ie,2e) spectroscopy-on oriented molecules. CTN82 M A Coplan, J A Tossell and J H Moore; in "Momentum Wave-Functions-1982". AIP Conf. Proc. V86, AIP PraSS, momentum densities in New York, 1962, 82-9; chemistry. Cw&81 J P D Cook, H G White, C E Brion, W Domcke, J Schirmer, L S Cederbaum and W von Niessen; J. Electron Spectrosc. Relat. Phenom. 22 (1981) 261-70. >On the valence shell binding energy spectrum of carbonyl sulphide. DD&76 S Dey, A J Dixon, I E McCarthy and E Weigold; J. Electron Spectrosc. Relat. Phenom. 9 (1976) 397-412. >(e,Ze) spectroscopy of ethane. DD&77a A 3 Dixon, S Dey, I E McCarthy, E WeigotTearrr,GR J Williams; Chem. Phys. 21 (1977) 81-8. ,

344

spectroscopy of H20 -- separation energy spectra and valence orbital electron momentum distributions. DD&77b S Dev, A J Dixon. K R Lassev. I E McCarthy. P 3 0 Teubner, E Weigold, P S Bagus.and E K Viintkka; Phys. Rev. Al5 (1977) 102-11. >(e,2e) spectroscopy of the CO molecule. DH&78 A J Dixon, S T Hood, -E Weigold and G R J Williams: J. Electron Spectrosc. Relat. Phenom. 14 (1978) 267-75. Xorrelation effects and electron momentum distributions in the valence orbitals of ethylene. DMW76 A J Dixon, I E McCarthy and E Weigold; J. Phys. B9 (t976) Lt95-8. >Excitation of the n=2 states of He+ in the ionization of helium. DM&?5 S Dey, I E McCarthy, P J 0 Teubner and E Weigold; Phys. >(e,2e) probe for Rev. Lett. 34 (1975) 782-5. hydrogen molecule wave functions. DM&?7 A J Dixon, I E McCarthy, E Weigold and G R J Williams: J. Electron Spectrosc. Relat. Phenom. 12 (1977) 239-48. >Electron ionization spectroscopy of acetylene: mo~ntum distributions of valence orbitals and correlation effects. DN&78 A J Dixon, I E McCarthy, C J Noble and E Weigold; Phys. >Factorixed distorted-wave Rev. Al7 (1978) 597-603. approximation for the (e,2e) reaction on atoms: Noncoplanar symmetric. FGT82 R Fantoni, A Giardini-Guidoni and R Tiribelli; J. Electron Spectrosc. Relat. Phenom. 26 (1982) 99-105. >(e,2el gpectroscopy of valence states of the NO molecule. FGh80 R Fantoni, A Giardini-Guidoni, I?Tiribelli, R Camilloni and G Stefani; Chem. Phys. Lett. 71 (1980) 335-8. >Satellite structures and momentum distributions in binary fe,2e) spectroscopy of N20. FG&81 I Fuss, R Glass, I E McCarthy, A Minchinton and E SElectron Weigold; J. Phys. B14 (1981) 3277-87. correlation effects in the (e,2e) valence separation energy spectra of krypton. F&82

R Fantoni, A Giardini-Guidoni, R Tiribelli, R Cambi, G Ciullo and A Sqamellotti: Mol. Phvs. 45 (1982) 839- 52. >An (e,2e) spectroscopic investigation and a Green's function study of the ionization of fluoroethylene.

FHh82 I Fuss, R Helstrom, R Henderson and J Mitroy; in "Momentum Wave-Functions-1982", AIP Conf. Proc. V86, AIP Press, New York, 1982, 297-313. >Relativistic (e,?.e).

345 FM7 3a

J B Furness and I E McCarthy; FUPH-R-95; Oct. 73. >Optical model wave functions for atomic scattering.

FM73b J B Furness and I E McCarthy: J. Phys. B 6 (1973) L205>The (e,2e) experiment as a probe for atomic 7. structure. FMS82 I Fuss, J Mitroy and B M Spicer; J. Phys. B 15 (1982) 3321-31. >A theory for relativistic (e,2e) reactions. FM&78 I Fuss, I E McCarthy, C J Noble and E Weigold; Phys. z-Factorizeddistorted wave Rev. A 17 (1978) 604-13. approximation for the (e,2e) reaction on atoms: Coplanar symmetric. FM&81 I Fuss, I E McCarthy, A Minchinton, E Weigold and F P Momentum Larkins; Chem. Phys. 63 (1981) 19-30. distributions and-ionization potentials for the valence orbitals of benzene. FW82

L Frost and E Weigold; in "Momentum Wave-Functions1982", AIP Conf. Proc. V86, AIP Press, New York, 1982, 326-32. >(e,2e) on solids - a progress report.

FW82

L Frost and E Weigold; J. Phys. B 15 (1982) 2531-8. >Electron coincidence spectroscopy of sodium and potassium.

FWM83 L Frost, E Weigold and J Mitroy: J. Phys. B 16 (1983) 223-31. >Valence electron momentum distributions in cadmium. GCSBO A Giardini-Guidoni, R Camilloni and G Stefani; in "Coherence and Correlation in Atomic Collisons", H Kleinpoppen and J F Williams feds), Plenum, New York, (1980) 13-39. z-Impulsive te,2e) experiments: A tool to test different ionization theories and electronic structure of atoms and molecules. GF&79 A Giardini-Guidoni R Fantoni R Tiribelli D Vinciguerra, R Camilloni and G Stefani; J.'Chem. Phys. 71 (1979) 3182-8. aStudy of electronic properties of the SF6 molecule by (e,2e) spectroscopy. GF&80a A Giardini-Guidoni, R Fantoni, R Camilloni and G Stefani; Adv. in Mass Spect., V8A, A Quayle ted.), Heyden & Son, (1980) 71-8. >Measurement of ionization potentials of molecules by (e,2e) spectroscopy. GF&80b A Giardini-Guidoni, R Fantoni, R Camilloni and G Stefani; in NATO Advanced Study Inst. for "Emission and Scattering Techniques", Series C, Vol 73, P Day ted.), D Reidel, London, (1980) 293-317. >(e,2e) spectroscopy.

346

GF&80c A Giardini-Guidoni,

R Fantoni, R Tiribelli, R Marconero, R Camilloni and G Stefani; Phys. Lett. 77 A (1980) 19-22. >Absolute (e,2e) cross section measured for the valence orbitals of Xe.

GF&81 A Giardini-Guidoni, R Fantoni, R Camilloni and G Stefani; Comments Atom. Mol. Phys. 10 (1981) 107-20. >(e,2e) experiments. GI 68

A E Glassgold and G Ialongo; Phys. Rev. 175 (1968) zAngular distribution of the outgoing electrons 9. electronic ionization.

151in

G Missoni, R Camilloni and G GM&74 A Giardini-Guidoni, Stefani: in "Electrbns and Photons Interactions with H. Kleinpoppen and M R C McDowell teds), Atoms”, >Studv of atomic Plenum, New York, (1974) 149-60.

structure by means of (e,2e) impulsive reactions. GM&76 A Giardini-Guidoni, G Missoni, R Camilloni and G Stefani; Adv. in Mass Spectr., V7A, N.R. Daly (ea.), >Studies of ionic Heyden & Son, (1978), 175-81. states in atoms and molecules by (e,2e) coincidence measurements of direct ionization processes.

GT&77a A Giardini-Guidoni, R Tiribelli, D Vinciguerra, D Camilloni and G Stefani; J. Electron Spectrosc. Relat. Phenom. 12 (1977) 405-14. >Study of valence states of the CO2 molecule by (e,2e) momentum spectroscopy. R Tiribelli D Vinciguerra, R GT&77b A Giardin i-Guidoni and G MissoAi; in “Momentum WaveCamilloni, G Stefani Functions- 1976”, AIP Conf. Proc. V36, AIP Press, New >Validity of the (e,2e) reaction York, 1977, 205-26. as a probe of the atomic and molecular structure.

HHB76a S T Hood, A Hamnett and C E Brion: Chem. Phys. Lett. 39 (1976) 252-6. z-An (e,2e) study of ammonia: binding energies and momentum distributions of valence electrons. HHB76b S T Hood, A Hamnett and C E Brion: Chem. Phys. Lett. 41 (1976) 428-30. >The assignment of the ionization potentials of formaldehyde by an (e,2e) experiment, HHB77a S T Hood, A Hamnett and C E Brion; J. Electron Spectrosc. Relat. Phenom. 11 (1977) 205-24. >Molecular orbital momentum distributions and binding energies for H20 using an electron impact coincidence spectrometer. HHB77b A Hamnett, S T Hood and C E Brion; J. Electron Spectrosc. Relat. Phenom. 11 (1977) 263-74. >A study

347

of the bonding in phosphine by an electron impact coincidence experiment. HM&?3 S T Hood, I E McCarthy, P J 0 Teubner and E Weigold; Phys. Rev. A8 (1973) 2494-500. >Angular correlation for (e,2e) reactions on atoms. HM&74 S T Hood, I E McCarthy, P J 0 Teubner and E Weigold; >Structure of atoms from Phys. Rev. A9 (1974) 260-6. the (e,2e) reaction. HW&73 S T Hood, E Weigold, I E McCarthy and P J 0 Teubner; >Momentum space Nature Phys. Sci. 245 (1973) 65-8. wavefunctions and binding energies of the valence electrons in methane by the (e,2e) technique. 584

C J Joachain; "Wavefunctions and Mechanisms from Electron Scattering Processes"! F.A. Gianturco and G. Stefani teds.), Lecture Notes in Chemistry V35, Springer-Verlag (1984) Berlin, p.239-48. >Multiple scattering approach to the interpretation of (e,2e) experiments.

L72

V G Levin; Phys. Lett. 39A (1972) 125-6. astructure of wavefunctions of atoms in the (e,2el reaction.

L81

F P Larkins; J. Phys. B 14 (1981) 1477-84. (e,2e) satellite spectrum of helium.

L82

F P Larkins; in "Momentum Wave-Functions-1982", AIP Conf. Proc. V86, AIP Press, New York, 1982, 144-66. >Electron correlation and molecular effects in (e,2e) spectroscopy.

>The

LB83a K T Leung and C E Brion; Chem. Phys. 82 (1983) 87- 111. BExperimental investigation of the valence orbital momentum distributions and ionization energies of the noble gases by binary (e.2e) spectroscopy. LB83b K T Leung and C E Brion; Chem. Phys. 82 (19831 113- 37. aBinary (e,2el spectroscopic study and momentum space chemistry of the two-electron systems: He and H2. LB84

K T Leung and C E Brion; "Wavefunctions and Mechanisms from Electron Scattering Processes", F.A. Gianturco and G. Stefani teds.), Lecture Notes in Chemistry V35, Springer-Verlag (1984) Berlin, p.151-5. >(e,2e) chemistry.

LMW84 B Lohmann, I E McCarthy and E Weigold; "Wavefunctions and Mechanisms from Electron Scatterino Processes". F.A. Gianturco and G. Stefani (eds.l,_iecture Notes in Chemistry V35, Sprinoer-Verlaa (1984) Berlin. ~-254-8. >Multiple scattering approaih to the (e,2ej ieaction of atomic hydrogen.

343

LN&75 V G Levin, V G Neudatchin, A V Pavlitchenkov and Yu F Smirnov: J. Chem. Phvs. 63 (19751 1541-6. >On the display-of basic properties of the molecular electronic wavefunctions in the (e,2e) quasielastic knockout experiments. LR83

F P Larkins and J A Richards: Chem. Phys. 81 (1983) 329-33. >The helium (e,2e) satellite spectrum.

LW81

B Lohmann and E Weigold; Phys. Lett. 86A (1981) 139>Direct measurement of the electron momentum 41. probability distribution in atomic hydrogen.

LW&83 A Lahman-Bennani, H Rouault; J. Phys. B triple differential ionization of argon

F Wellenstein, A Duguet and M 16 (1983) 121-30. >Absolute cross sections for the 3p by electron impact.

M73

I E McCarthy: J. Phys. B 6 (19731 2358-67. the (e,2el reaction on molecules.

>Theory of

M75

I E McCarthy: J. Phys. B 8 (1975) 2133-39. the (e,2e) reaction on molecules II.

>Theory of

MB0

I E McCarthy; in "Coherence and Correlation in Atomic Collisons", H Kleinpoppen and J F Williams (edsl, Plenum, New York, (i98b) l-11. >Theory of (e,2&) experiments.

M82a

I E McCarthy: in "Momentum Wave-Functions-1982", AIP Conf. Proc. V86, 'AIP Press, New York, 1982, 5-18. >Theory of the (e,2e) reaction.

M82b

A

Minchinton; in "Momentum Wave-Functions-1982", AIP Conf. Proc. V86, AIP Press, New York, 1982, 115-43. z-Binary (e,2e) spectroscopy of molecules - electronic momentum distributions and molecular structure.

MAM84 J Mitroy, K Amos and I Morrison; J. Phys. B 17 (1984) >The (e,2e) spectrum of argon. 1659-74. MBW81 A Minchinton, C E Brion and E Weigold; Chem. Phys. 62 >Momentum distributions and binding (19811 369-75. energies for the valence orbitals of methanol. MB&83

A Minchinton, C E Brion, J P D Cook and E Weigold; >Molecular orbital Chem. Phys. 76 (1983) 89-101. electron momentum distributions and separation energies of CH3CN.

MCS77

D H Madison, R V Calhoun and W N Shelton Phys. Rev. A >Triple-differential cross sections 16 (1977) 552-62. for electron-impact ionization of helium.

349

MC&78 J H Moore, M A Coplan, T L Skillman and E D Brooks; >Multichannel Rev. Sci. Instr. 49 (1978) 463-8. (e,2ef apparatus. MC&81 J N Migdall, M A Coplan, D S Hench, J H Moore, J A Tossell, V H Smith and J W Liu; Chem. Phys. 57 (1981) 141-6. >The electron momentum distribution of molecular hydrogen. MF82

J Mitroy and I Fuss: J. Phys. B 15 (1982) L367-70. >Momentum distributions for mercury.

MFW82 A Minchinton, I Fuss and E Weigold; J. Electron Spectrosc. Relat. Phenom. 27 (1982) 1-14. >Valence electron separation energies and momentum distributions for N20. MG&82

A Minchinton, A Giardini-Guidoni, E Weigold, F P Larkins and R M Wilson; J. Electron Spectrosc. Relat. Phenom. 27 (1982) 191-203. rMomentum distributions and separation energies for the valence orbitals of chloromethane.

ML81

D H Madison and R Lang: J. Phys. B 14 (1981) 4137-47. >Theoretical fe,2e) cross sections for ionization of the 3s state of argon.

MS80

I E McCarthy and A T Stelbovics; in "Atomic and Molecular Processes in Controlled Thermonuclear Fusion", NATO Adv. Study Institutes Series B, V53, M R C McDowell and A M Ferendeci teds), Plenum, New York, (1980) 207-44. >Theoretical methods for ionization.

MTC82 3 H Moore, J A Tossell and M A Coplan: Act. Chem. Res. 15 (1982) 195-8. >Electronic structure of molecules by (e,2ef spectroscopy. MUP78 I E McCarthy, P Uylings and R Poppe; J. Phys. B 11 (1978) 3299-308. Komparison of (e,2e), photoelectron and conventional spectroscopies for the Ar II ion. MU&74 I E McCarthy, A Ugbabe, E Weigold and P J 0 Teubner; Phys. Rev. Lett. 33 (1974) 459-62. >(e,2e) reaction as a probe for details of the helium wavefunction. MW76a I E McCarthy and E Weigold; Phys. Rep.27C (19761 275371. >(e,2e) spectroscopy. MW76b I E McCarthy and E Weigold; Adv. in Phys. 25 (1976) 489-515. >The determination of the dynamic structures of atoms and molecules using the (e,2ef reaction. MW78

I E McCarthy and E Weigold; Endeavour 2 (1978) 72-9. (Pergamon Press) >Electron coincidence spectroscopy: a new way of looking into matter.

350

MW83a I E McCarthy 5. >A real atom.

and E Weigold; Am. J. Phys. 51 (1983) “thought” experiment for the hydrogen

MW83b I E McCarthy and E Weigold; Contemp. Phys. 163-84. >Observing the motion of electrons and molecules.

l52-

24 (1983) in atoms

NNS69 V G Neudachin, G A Novoskol’tseva and Yu F Smirnov; Soviet Physics JETP 28 (1969) 540-3. >Quasielastic knockout of an electron by a fast electron from atoms, molecules and very thin crystalline films. S84

G Stefani; “Wavefunctions and Mechanisms from Electron Scattering Processes”, F.A. Gianturco and G. Stefani teds.), Lecture Notes in Chemistry V35, Springer-Verlag (1984) Berlin, p.226-38. >Impulsive (e,2e) non dipolar form factor. experiments:

SB82

I H Suzuki and C E Brion; Bull. Chem. Sot. Jpn. 55 >Comment on momentum distributions (1982) 3327-8. valence electrons of atoms and simple molecules.

SB&78 T L Skillman, Instr. Nucl. microcomputer system.

of

E D Brooks, M A Coplan and J H Moore; and Meth. 155 (1978) 267-72. >A based multiple detector data acquisition

SB&80 I H Suzuki, C E Brion, E Weigold and G R J Williams; >Binding Int. J. Quan. Chem. XVIII (1980) 275-80. energies at different momenta for the valence orbitals of HCl by the binary (e,2e) method. R Camilloni and A Giardini-Guidoni; Phys. SCG78 G Stefani, >Asolute (e,2e) differential Lett. 64 A (1978) 364-6. cross section measured in coplanar conditions: He. R Camilloni and A Giardini-Guidoni; J. Phys. SCG79 G Stefani, B 12 (1979) 2583-94. >Absolute (e,2e) coplanar symmetric cross sections measured for valence orbitals of Ne. SN82

E Schule and W Nakel; J. Phys. B 15 (1982) L639-41. >Triply-differential cross section for K-shell ionization of silver by relativistic electron impact.

E Weigold and C E Brion; J. Electron SWBBO I H Suzuki, Spectrosc. Relat. Phenom. 20 (1980) 289-303. >Electron coincidence spectroscopy of 02: Valence electron momentum distributions and binding energies. TL&84 J A Tossell, S M Lederman, J H Moore, M A Coplan and D J Chornay; J. Am. Chem. Sot. 106 (1984) 976-9. >Experimental evidence for delocalization of the

351 lone- pair orbital in CH3NH2 from ( e,2e) spectroscopy. TM&82 J A Tossell, J H Moore, M A Coplan, G Stefani and R Camilloni; J. Am. Chem. Sot. 104 (1982) 7416-. z-Fourieranalysis of the orbital momentum densities of CO, NO and 02. TMC79 J A Tossell, J H Moore and M A Cop1an; Chem. Phys. >Molecular distortions and Lett. 67 (1979) 356-8. electron momentum distributions. TMC81 J A Tossell, J H Moore and M A Coplan; J. Electron >Fourier Spectrosc. Relat. Phenom. 22 (1981) 61-75. analysis of spherically averaged momentum densities for some gaseous molecules. uWM75 A Ugbabe, E Weigold and I E McCarthy; Phys. Rev. A 11 (1975) 576-85. >(e,2e) reaction in inert gases: Coplanar symmetry geometry. W77a

E Weigold; in "Momentum Wave-Functions-1976", AIP Conf. >The Proc. V36, AIP Press, New York, (1977) 84-110. determination of electronic momentum distributions and molecular structure using the (e,2e) reaction.

W77b

B G Williams; Physica Scripta 15 (1977) 92-111. experimental determination of electron momentum densities.

W77c

G R J Williams; in "Momentum Wave-Functions-1976", AIP Conf. Proc. V36, AIP Press, New York, (1977) 151-67. >Investigation of (e,2e) knockout reactions via molecular electronic structure calculations.

W78

>High J F Williams: J. Phys. Bll (1978) 2015-21. resolution energy and angular correlation of the scattered and ejected electrons in electron impact ionization of argon atoms.

WBOa

E Weigold; FIAS-R-61, March 80. experiments in atomic physics.

W8Ob

E Weigold; Proceedings, XI ICPEAC, Kyoto (1980) 81-93. >(e,2e) spectroscopy.

W81

E Weigold; Nucl. Phys. A 353 (1981) 327c-40~. theory and experiment.

W82

E Weigold; Aust. J. Phys. 35 (1982) 571-91. >Electron coincidence spectroscopy - momentum space wavefunctions of electrons in atoms and molecules.

>The

>Electron coincidence

>(e,2e)

WD&76 E Weigold, S Dey, A J Dixon, I E McCarthy and P J 0 Teubner; Chem Phys. Lett. 41 (1976) 21-4. z(e,2e) spectroscopy of methane.

352

WDf77 E Weigold, S Dey, A J Dixon, I E McCarthy, K R Lassey and P J 0 Teubner; J. Electron Spectrosc. Relat. Phenom. 10 (1977) 177-91. >(e,2e) spectroscopy of N2 -- Valence momentum distributions and configuration interaction. WD&82 J F Williams, S Dey, D Sampson and D McBrinn; in "Momentum Wave-Functions-1982", AIP Conf. Proc. V86, AIP Press, New York, 1982, 315-25. z-Progressreport on (e,2e) collisions in thin films. WHM75 E Weigold, S T Hood and I E McCarthy; Phys. Rev. All >Structure of inert gases from the (1975) 566-75. fe,2e) reaction. WHT73 E Weigold, S T Hood and P J 0 Teubner; Phys. Rev. Lett. 30 (19731 475-8. >Energy and angular correlations of the scattered and ejected electrons in the electronimpact ionization of argon. WH&73 E Weigold, S T Hood, I E McCarthy and P J 0 Teubner; Phys. Lett. 44A (1973) 531-2. >The (e,2e) reaction in molecules: Momentum space wave function of H2. WH&77 E Weigold, S T Hood, 10 (1977) L623-7. Angular correlations

I Fuss and A J Dixon; J. Phys. >lonixation of atomic hydrogen: of the outgoing electrons.

B

WK&79 B van Wingerden,

J T N Kimman, M van Tifburg, E Weigold, C J Joachain, 8 Piraux and F J de Heer; J. Phys. B 12 (1979) L627-31. >Absolute tripleand doubledifferential cross sections for ionization of helium by electron impact.

J T N Kimman, M van Tilburg and F 3 de WK&81 B van Wingerden, Heer; J. Phys. B 14 (1981) 2475-98. >Triple and double differential cross sections for electron impact ionization of helium and molecular hydrogen.

WM78

E Weigold and I E McCarthy; Adv. Atom. Mol. 41978) 127-79. >(e,2el collisions.

Phys. 14

WMW77 G R J Williams, I E McCarthy and E Weigold; Chem. Phys. 22 (1977) 281-7. >Investigation of generalized overlap via (e,2e) spectroscopy. WM&77 E Weigold, I E McCarthy, A J Dixon and S Dey; Chem. Phys. Lett. 47 (1977) 209-12. >Ground state correlations in H2 measured by the (e,2e) technique. . WNh79a E Weigold, C J Noble, S T Hood and I Fuss; J. Phys. B 12 (19791 291-313. >(e,2e) experiments on atomic hydrogen: Comparison with the distorted and plane wave impulse approximations. WN&79b

E Weigold, C J Noble, S T Hood and I Fuss: 3. Electron >Electron Spectrosc. Relat. Phenom. 15 (1979) 253-6. impact ionization of atomic hydrogen: Experimental and theoretical (e,2e) differential cross sections.