A determination of the K-correction for quasars

A determination of the K-correction for quasars

Pergamon Press. 5 (1981) 174-182 -27 11980) 368-378 Chin.Astron.Astrophys. Acta Astron. Sinica Printed in Great Britain Ol46-6364/81/020174-09$07...

557KB Sizes 3 Downloads 68 Views

Pergamon Press.

5 (1981) 174-182 -27 11980) 368-378

Chin.Astron.Astrophys.

Acta Astron. Sinica

Printed in Great Britain Ol46-6364/81/020174-09$07.50/O

A DETERMINATIONOF THE K-CORRECTION FOR QUASARS *

Xiao

Xing-hua,

Cao Sheng-lin

Cheng Fu-zhen [iniversity

Beijing (bservatory,and Yang Lan-tian

Tang Xiao-ying

Received

1979 September

continuum

line

widths

spectral

indices

emission

line

for

A knowledge

of

in elucidating the

the

continuum

example,

Grewing

and Woltjer’s

indices being

of

calculate

[l]

of

of

using

al

[3], of

have

the

[4]

College

Hubble

found

lines.

the

spectrum

of

nature.

In all

these

portion

presence

of

optical energy

index continuum

curve

studies,

however,

the

2

continuum,

is

important

the

study

quasars,

candle

strong

Setti

was further

quasars of

of

different

redshifts

continuum

sample

of

for

10 objects.

of

the

the

number of

of

assumption

between

for giving

quasars

from

properties

this

K-correction.

a large

as a standard

correlation

2,

However,

spectra

Under the

diagrams.

a strong

in

and radio

a mean optical

intrinsic

the

spectral

against

continuum

a synthesized

radio

plotted

the

by the

and a

determined

of

studied

who analysed

component

lJ,B,Vcolours

gives

continuum

made difficult

their

Baldwin

Teachers

B-V and U-B, corrected

these

the

line

iteratively

are

and their

obtained

et

emission

the

features

[2]

an examination

width

Z between

Many people

and Lamla

idea

K-correction,

prcperties

has been

lines.

cosmological,

and the

to

emission

by Netzer in

used

characteristic

spectrum

emission

the

are

redshifts,

The colors

355 quasars. of

an emission

two components

Eliminating

then

their

and wide

developed

is

made up of

and intensities,

portion

mean relations. which

is

These

component.

from

Huazhong

12

ABSTRACT The K-correction

paper

Beijing Normal University,

of Science and Technology,

luminosity

size

is

rather

restricted. Burbidge’s

1977 Catalog

of

1978,

contains

1038 quasars.

radio

spectral

indices).

First,

we shall

and flat

spectrum

find

the

objects.

Secondly,

we shall

find

curves

we shall

find

quasar

* Figs.

for

the

1 and 2 in in

this

the

the

different

the

abridged

original

after

of

the

after

continuum

emission

been

use

lines the

color-redshift spectrum.

with

data

and color

we shall

determining

radio-spectrum

have

redshift

material,

corrected

translation.

supplemented

355 have

this

mean intensity

colours,

separately

[5],

Of these,

To exploit

on the

ions

Quasars

separately effect

the

measurements

statistical

of

curves.

Lastly,

up to

end of (270

for the

steep-spectrum

emission

Thirdly,

we shall

derive

3,4,5

re-labelled

using the

lines these K-correct-

quasars.

omitted

and Figs.

with

methods.

1,2,3

K-Correction

The apparent

magnitude

of

a quasar

comes

mi p - 2.5 log where I(u)

is

photometric

the

band

Ib(vI and the

It

is

-i,

into

i representing

emission

the

line

that

statistics

of

lines,

the

their

sample

equivalent

the

following LINE

CIV

1549

CIII MgII

U, B,

S;(v)

v,

I(v) is

V.

is

the

sensitivity

made up of

the

the

main characteristics

which

the

consists

of

mainly

of

as we could

large In each

W.

effect

for

of

quasars

the

emission

the

line

[19-381

a determination

case

O,

of

of

a I-distribution

the

8

x2

W

17.1

62A

d.f.

91

1.48

0.584

10

9.2

38

31

110

1.86

0.490

10

14.3

57

41

the

fit

is

W and the

Lp

10

significant

standard

Mean Equivalent

LINE

of

and the

line For

frequency to

inten3 emission

distribution apply,

Widths

given

and Intensities

1026

and the

at 5% level,

deviation

5SA

by the

ci

last

two columns

give

P-distribution.

Emission

Lines

of

quasars

L, 1216

OVI 1034

-_ SPECTRA

steep

flat

steep

all

-t

40

s

3.2

=

flat

all

steep

50

36

257

166

157

1

14

3.3

2.9

4.0

1

6

4

6

j

flat

1

all

--

2

NUMBER =

42

i=

NV 1240

LINE

SiV 1397 i- OIV 1406

ov 1549

_SPECTfti

steep

1

flat

steep

1 all

1 flat

1 all

steep

/

flat

1 all

-w

83

68

70

a

2.0

1.2

1.8

11

12

93

N~BER -

very

we must look

U(W’)

2798

1

presence

spectra.

was observed

1909

Table

the

lines,

widths

0.304

of

the

x,8 h

size

show that

of

background

(x G 0)

values

value

is

on quasar

1.25

expected

continuum

Ieiv):

110

The X2-values

curve

(2)

sufficiently

Sample

(1)

frequency

statistically

I,ivi,

f

with

one of

width

formula

dv,

as much material

is

the

I,(v).

To eliminate

We collected

sities.

from

intensities

Ib(Y) f

well-known

Ie iv).

strong

I(Y) &(Y) I at the optical

flux

I(v) -

the

175

Quasars

THE EMISSION-LINE PORTION OF THE ~-CORRECTION

1.

of

for

K-Correction

176

for

Tahle LINE

1 (contd.)

He11 1640

I steep

SPECTRA

all

steep

40

NUllBER LINE

[NcV] 3426

SPECTRA

80

63

0.7

0.7

1 .o

0.72

0.9

7

22

61

16

35

107

steep

flat

steep ___~

all

-w

70

s

1.56

!IUPlBER -l-

30

50

35

1.2

2.5

1.1

1

4

4

1

SPECTRA

steep

1 flat

flat

30

25

33

0.4

1.4

0.43

2.2

2

13

18

I

1

3

Hg 4861

H, 4340 + [OIIIJ 4363

Ha 4102

LINE

steep

1 all

63

[NeIII] 3869 + HI 3968

[OII] 3727 all

all

flat

39

13

flat

steep

steep ---

53

51

0.5

all

I

0.6

40

s

flat

I

---

2

MgII 2798

[OIII] 1909

flat

iP

Quasars

steep

all

flat

flat

all

-~~

-~____

w B

60

38

29

30

31

0.3

0.3

0.32

0.40

0.57

1

3

NUMBER

5

11

86

92 0.5

28

86

0.9

0.9

8

44

17

= LINE

[OIII] 4959

SPEC’TRA steep

LOIII] 5007

flat

steep

all

_~~___ w

23

44

P

0.92

1.25

18 emission a

spectrum optical than

lines

objects

(a > 0.5),

resolving the

power

types.

Generally

objects

than

4100A.

The table

a certain speaking,

in the

having

66

80

530

462

1.4

2.5

2.26

2.2

11

9

25

shows

equivalent

given

objects

no better

the

mean intensity

1026A and 6563A. in TABLE I,

(a < 0.5)

than

10

and all

?A to lOA,

the mean equivalent

separately

for

objects.

we used

steepBecause

only

those

the

wider

w and F.

difference lines

flat-spectrum

also

between

7

ti is

in Angstroms.

B are

flat-spectrum is

135

-ngths

wav

intensit.

of

all

1.3

rest

involved

calculation

TABLE 1 reveals

some lines

with

mean relative

flat

---

mean equivalent width to the continuum.

and the

15A in

steep

all

28

1

3 D is the relative

For

flat

~-

NUIBER

width

H. 6563

that widths

in

shorter objects, the in

line than

intensity 41OOA are

while

emission the

range

reverse lines of

between stronger is

the

seriously hundreds

different

spectral

in

the

steep-spectrum

case

for

lines

affect of

radio

quasar

angstroms

longer photometry,

and intensities

than

K-Correction

times

the

background.

when we study

several

the

continuum.

The U, B, I/data vations

of

Mt.

Johnson-Morgan

Amf

In the

first

the

this

paper

and Palomar.

is

come mostly

The

177

important

from

photometric

to

the

system

Ibfvl

and

correct

60-, [39]

for

IOO-, is

the

emission

and ZOO-inch

about

the

same

lines

obser-

as

line

to

continuum

Table

correction

for

the

lines

is

given

by

(4)

we put Ih

(w) = 1,

and we took

I,(V)

from

the

data

of

TABLE I,

After we found the be an isosceles triangle in the rest-frame. (21 we applied (4) once more to (v), as described below, spectrum I

b

These

corrections.

2

emission



approximation

final

IQ(v), the

=

each

approximate give

in

it

Therefore,

Quasars

system.

When we know

regarding

used

Wilson

for

The

“emission-line

Emission-Line

T

lteep

Portion

T

Spectra(-Am)

of

Flat

are

K-corrections”

the

K-Correction

Spectra

(-

for

in TABLE 2.

Quasars

T All

Anz)

given

Spectra

(-Am)

Z

lJ

B

V

0.00

0.15

0.16

0.04

0.05

0.21

0.07

0.12

0.17

0.04

0.05

0.12

0.13

0.19

0.11

0.17

0.28

0.09

0.16

0.21

0.10

0.16

0.15

0.23

0.10

0.15

0.31

0.12

0.14

0.24

0.15

0.10

0.15

0.19

0.08

0.13

0.24

0.08

0.13

0.19

0.20

0.12

0.18

0.17

0.10

0.13

0.19

0.10

0.15

0.16

0.25

0.14

0.16

0.16

0.12

0.10

0.18

0.12

0.13

0.16

--

u

B

u

V

B

V

0.30

0.15

0.13

0.14

0.12

0.07

0.07

0.12

0.10

0.15

0.35

0.13

0.11

0.14

0.11

0.06

0.17

0.11

0.09

0.14

0.40

0.03

0.10

0.15

0.02

0.04

0.15

0.02

0.08

0.14

0.45

0

0.16

0.15

0

0.11

0.12

0

0.12

0.13

0.50

0

0.16

0.19

0

0.13

0.12

0

0.13

0.15

0.55

0.01

0.15

0.19

0.01

0.12

0.10

0.01

0.12

0.15

0.60

0.05

0.13

0.16

0.05

0.11

O.L)S

0.05

0.11

0.12

0.65

0.07

0.12

0.12

0.07

0.09

0.06

0.07

0.09

0.09

0.70

0.10

0.11

0.08

0.10

0.09

0.04

0.10

0.09

0.06

0.75

0.11

0.07

0.07

0.12

0.06

0.03

0.12

0.06

0.05

0.80

0.13

0.05

0.10

0.13

0.04

0.07

0.13

0.04

0.08

0.85

0.17

0.03

0.18

0.17

0.02

0.14

0.17

0.02

0.15

0.90

0.20

0.01

0.19

0.20

0.01

0.15

0.20

0.01

0.15

0.95

0.25

0.01

0.18

0.24

0.01

0.14

0.25

0.01

0.14

1 .oo

0.29

0.01

0.16

0.27

0.01

0.12

0.27

0.01

0.12

1.05

0.27

0.03

0.12

0.25

0.03

0.10

0.25

0.03

0.10

1.10

0.30

0.08

0.09

0.26

0.08

0.08

0.27

0.08

0.08

1.15

0.34

0.12

0.07

0.30

0.12

0.06

0.32

0.12

0.06

1.20

0.38

0.13

0.04

0.33

0.13

0.03

0.36

0.13

0.03

1.25

0.41

0.13

0.03

0.35

0.13

0.02

0.40

0.13

0.02

1.30

0.44

0.14

0.02

0.37

0.14

0.02

0.42

0.14

0.02

1.35

0.45

0.14

0

0.35

0.14

0

0.38

0.14

0

1.40

0.51

0.15

0

0.38

0.15

0

0.44

0.15

0

1.45

0.60

0.19

0

0.43

0.19

0

0.46

0.19

0

1.50

0.62

0.23

0

0.41

0.22

0

0.50

0.22

0

1.55

0.71

0.25

0.01

0.47

0.24

0.01

0.56

0.24

0.01

178

K-Correction for Quasars

Table 2 (contd.) tee?

2. Figs.

1

(-am)

All Spectra (-Am>

Z

u

B

Y

u

B

v

u

B

V

1.60

0.79

0.33

0.03

0.53

0.39

0.03

0.62

0.31

0.03

1.65

0.85

0.36

0.09

0.57

0.32

0.09

0.66

0.33

0.09

1.70

0.90

0.37

0.15

0.61

0.33

0.15

0.69

0.34

0.15

1.75

0.90

0.37

0.17

0.61

0.32

0.17

0.66

0.34

0.17

1.80

0.93

0.37

0.18

0.64

0.32

0.18

0.68

0.34

0.18

1.85

0.96

0.38

0.17

0.65

0.32

0.17

0.69

0.36

0.17 0.16

1.90

0.98

0.41

0.16

0.68

0.24

0.16

0.70

0.40

1.95

0.97

0.40

0.14

0.69

0.31

0.14

0.72

0.39

0.14

2.00

0.92

0.42

0.14

0.66

0.32

0.14

0.69

0.40

0.14

2.05

0.84

0.44

0.14

0.61

0.32

0.14

0.64

0.41

0.14

2.10

0.72

0.52

0.17

0.54

0.37

0.17

0.55

0.45

0.17

2.15

0.60

0.58

0.22

0.46

0.41

0.21

0.48

0.56

0.21

2.20

0.54

0.68

0.25

0.44

0.47

0.24

0.45

0.55

0.24

2.25

0.41

0.79

0.31

0.34

0.54

0.29

0.36

0.62

0.29

2.30

0.37

0.87

0.37

0.35

0.59

0.34

0.35

0.67

0.34

2.35

0.35

0.90

0.42

0.34

0.62

0.38

0.34

0.69

0.39

2.40

0.35

0.95

0.43

0.35

0.65

0.38

0.35

0.72

0.39

2.45

0.35

0.96

0.42

0.35

0.65

0.37

0.35

0.72

0.38

2.50

0.35

0.95

0.41

0.35

0.64

0.35

0.35

0.70

0.37

2.55

0.35

0.94

0.40

0.35

0.63

0.34

0.35

0.69

0.37

2.60

0.34

0.91

0.40

0.34

0.61

0.33

0.34

0.67

0.38

2.65

0.32

0.89

0.40

0.32

0.60

0.32

0.32

0.65

0.39

2.70

0.24

0.85

0.40

0.24

0.58

0.31

0.24

0.62

0.40

2.75

0.11

0.82

0.38

0.11

0.56

0.29

0.11

0.60

0.40

2.80

0.07

0.78

0.38

0.07

0.54

0.28

0.07

0.58

0.39

2.85

0.05

0.76

0.37

0.05

0.54

0.26

0.05

0.56

0.37

2.90

0.02

0.77

0.41

0.02

0.58

0.30

0.02

0.60

0.41

2.95

0

0.75

0.51

0

0.58

0.34

0

0.59

0.44

3 .oo

0.71

0.53

0.56

0.41

0.57

0.50

3.05

0.67

0.72

0.53

0.48

0.55

0.57

3.10

0.62

0.83

0.51

0.56

0.52

0.64

3.15

0.57

0.92

0.48

0.63

0.49

0.70

3.20

0.53

1 .oo

0.45

0.69

0.46

0.75

3.25

0.48

1.04

0.42

0.72

0.43

0.78

3.30

0.44

1.08

0.39

0.75

0.40

0.80

3.35

0.40

1.09

0.37

0.76

0.37

0.81

3.40

0.36

I .08

0.34

0.74

0.34

0.79

3.45

0.33

1.05

0.31

0.62

0.31

0.77

3.50

0.30

1.01

0.29

0.69

0.29

0.73

3.55

0.27

0.96

0.26

0.65

0.27

0.69

MEAN OPTICAL

A

Tlat Spectra

Spectra<-Am)

CONTINUUM SPECTRUM FOR QUASARS

and 2 show two colour-redshift diagrams for 355 quasars. The colours have been

corrected for (i) the galactic absorption and (ii) the "emission-line portion of the Kcorrections" of TABLE 2.

Correction (ii) distinguishes the present diagrams from previous

color-redshift diagrams such as given in [39]. We note that quasars of different radio

K-Correction

spectra

appear

summarized

to

follow

the

same trends

by the

quadratic

B-V

-

0.0187 + 0.3914 z -

U-B

-

-0.8195

Application

of

the

F-test

regression

in the

these

179

Quasars

figures.

These

trends

are

adequately

curves, 0.08297

-I- 0.3247 Z -

shows

for

22,

0.09054 22.

mean relations

cl -

kO.03

u -

kO.05

to

(51 (6

he highly

significant,

[30l

B-1. 1.0-

.

0.8-

.

.

.

-_0

I

Fig.

Figs. are

1 and 2. steep

cirlces

Eliminating continuum

spectrum are

for

the

power

over

crosses a.

the

two equations This

3.

2

diagrams

quasars.

Fig. Fitting

objects;

mean values

2 between

spectrum

Colour-redshift

is

are

for flat

spectrum curves

(5)

gives

and (6)

shown in Fig.

the various

355 quasars.

The fitting

A mean continuum

law I = v-' to

I

spectrum ranges

Filled

objects; (5)

open

and (6)

effectively

circles

are

a mean optical

3.

for

shown.

quasars.

gives

9001L-IlOOK,

a -

0.98;

29OOb;-38OOh;,

a -

0.73;

llOO~--29006;,

a -

1.30;

38OOA-55OOb;,

a -

0.1.

K-Correction

180

Table

T 0.05

Flat

Kv

Z

0.01

K-Correction

T

Spectra

Steep

3

0

-0.t9

0 -0.01

0 0.01

for

0

-0.25

Quasars

for

Quasars

-r

Spectra

All

KB

KB

0 0

Spectra

0

0

0

-0.08

-0.21

-3.03

KU

0 0.01

-0.33

-0.03

-0.0’1

-0.29

-0.06

-0.04

-0.31

-0.04

-0.08

-0.29

-0;08

-0.01

-0.03

-0.30

-0.06

-0.11

-0.30

-0.12

-0.04

-0.05

-0.33

-0.05

-0.13

-0.34

-0.12

-0.06

-0.06

-0.25

-0.04

-0.13

-0.36

-0.11

-0.06

-0.03

-0.39

-0.04

-0.11

-0.39

-0.11

-0.04

-0.40

-0.03

-0.01

-0.42

-0.11

0.06

0.11

-0.40

-0.11

0.01

-0.44

-0.16

0.08

-0.21

0.12

-0.42

-0.13

0.02

-0.48

-0.17

0.09

-0.53

-0.20

0.13

-0.41

-0.12

0.01

-0.49

-0.16

0.10

0.60

-0.51

-0.18

0.10

-0.40

-0.11

0.00

-0.47

-0.15

0.07

0.65

-0.48

-0.15

0.09

-0.39

-0.0’1

-0.02

-0.45

-0.13

0.06

0.7c

-0.45

-0.15

0.07

-0.38

-0.08

-0.03

-0.43

-0.12

0.04

0.75

-0.45

-o.to

0.07

-0.38

-0.04

-0.04

-0.43

-0.08

0.03

0.80

-0.49

-0.08

0.07

-0.43

-0.02

-0.03

-0.47

-0.06

0.04

-0.05

O.lf

-0.28

-0.08

0.15

-0.29

-0.11

o.zc

-0.31

-0.16

0.25

-0.34

-0.15

0.3c

-0.35

-0.14

0.35

-0.39

-0.14

0.4c

-0.43

-0.14

0.08

0.45

-0.46

-0.21

0.5a

-0.52

0.55

0.00

0.85

-0.58

-0.05

0.04

-0.51

0.01

-0.06

-0.55

-0.03

0.01

0.90

-0.59

-0.02

0.03

-0.52

0.03

-0.07

-0.55

-0.01

0.00

0.95

-0.57

-0.01

-0.01

-0.50

0.04

-0.10

-0.53

-0.00

1.00

-0.55

-0.04

-0.48

0.05

-0.12

-0.51

0.01

-0.05

1.05

-0.51

-0.01

-0.46

0.04

-0.08

-0.49

0.00

-0.01

1.10

-0.47

-0.15

-0.02

-0.43

0.00

-0.03

-0.46

0.04

-0.02

1.15

-0.45

-0.08

-0.05

-0.41

-0.03

-0.11

-0.44

0.07

-0.06

0.00

0 .oo

-0.04

1.20

-0.41

-0.08

-0.07

-0.37

-0.03

-0.12

-0.40

-0.07

-0.08

1.25

-0.40

-0.07

-0.09

-0.36

-0.02

-0.13

-0.39

-0.06

-0.11

1.30

-0.38

-0.07

-0.11

-0.35

-0.02

-0.14

-0.38

-0.06

-0.12

1.35

-0.35

-0.06

-0.11

-0.32

-0.01

-0.11

-0.35

-0.05

-0.07

1.40

-0.34

-0.05

-0.16

-0.31

-0.13

-0.34

-0.04

-0.12

I .45

-0.33

-0.08

-0.24

-0.30

-0.03

-0.17

-0.33

-0.07

-0.13

1.50

-0.33

-0.11

-0.25

-0.30

-0.05

-0.14

-3.33

-0.09

-0.16

1.55

-0.36

-0.t2

-0.33

-0.31

-0.06

-0.19

-0.34

-0.10

-0.21

1.60

-0.34

-0.19

-0.40

-0.31

-0.20

-0.24

-0.34

-0.16

-0.26

1.65

-0.40

-0.21

-0.45

-0.37

-0.12

-0.27

-0.40

-0.17

-0.29

0.00

1.70

-0.44

-0.21

-0.49

-0.41

-0.12

-0.30

-0.44

-0.17

-0.31

1.75

-0.46

-0.20

-0.47

-0.43

-0.10

-0.28

-0.46

-0.16

-0.26

1.80

-0.46

-0.19

-0.48

-0.43

-0.09

-0.29

-0.46

-0.15

-0.26

1.85

-0.44

-0.19

-0.50

-0.41

-0.08

-0.29

-0.44

-0.16

-0.26

1.90

-0.41

-0.21

-0.53

-0.38

+o.ot

-0.31

-0.41

-0.19

-0.26

1.95

-0.38

-0.19

-0.49

-0.35

-0.05

-0.31

-0.38

-0.17

-0.27

2.00

-0.38

-0.20

-0.43

-0.35

-0.05

-0.27

-0.38

-0.17

-0.23

2.05

-0.37

-0.21

-0.25

-0.34

-0.04

-0.22

-0.37

-0.17

-0.18

2.10

-0.40

-0.28

-0.22

-0.37

-0.08

-0.14

-0.30

-0.20

-0.08

2.15

-0.43

-0.33

-0.10

-0.39

-0.11

-0.06

-0.42

-0.30

-0.01

2.20

-0.46

-0.42

-0.03

-0.42

-0.16

-0.03

-0.45

-0.28

0.03

K-Correction for Quasars

181

Table 3 (contd.)

-r

Steep Spectra KV

2

2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.98 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35

KU

-0.51 -0.57 -0.60 -0.60 -0.59 -0.57 -0.55 -0.55 -0.54 -0.53 -0.50 -0.49 -0.48 -0.50 -0.60 -0.61 -0.69 -0.90 -0.98 -1.04 -1.08 -1.11 -1.11 -1.10 3.4a 3.45 -1.07 3.5t -1.02 3.51 -0.96

3.

Flat Spectra

-0.52 -0.59 -0.60 -0.64 -.0.65 -0.63 -0.60 -0.57 -0.54 -0.49 -0.46 -0.42 -0.40 -0.40 -0.38 -0.33 -0.29 -0.24 -0.18 -0.14 -0.10 -0.06 -0.03 0.01 0.04 0.07 0.10

+0.11 0.15 0.17 0.17 0.17 0.17 0.17 0.18 0.20 0.28 0.41 0.45 0.47 0.49 0.50 0.49 0.49 0.49 0.48 0.48 0.47 0.47 0.47 0.47 0.47 0.47 0.47

KV

-0.46 -0.51 -0.53 -0.52 -0.51 -0.48 -0.46 -0.45 -0.43 -0.41 -0.38 -0.36 -0.34 -0.36 -0.40 -0.46 -0.52 -0.60 -0.66 -0.71 -0.73 -0.75 -0.75 -0.73 -0.61 -0.67 -0.62

KU

KV

KB

-0.22 -0.26 -0.27 -0.29 -0.29 -0.26 -0.24 -0.22 -0.20 -0.17 -0.15 -0.13 -0.13 -0.14 -0.14 -0.11 -0.08 -0.06 -0.02 -0.01 0.01 0.04 0.05 0.08 0.11 0.13 0.16

All Spectra

i-

0.08 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.10 0.18 0.31 0.35 0.37 0.39 0.40 0.39 0.39 0.39 0.38 0.38 0.37 0.37 0.37 0.37 0.37 0.37 0.37

-0.49 -0.54 -0.57 -0.56 -0.55 -0.53 -0.52 -0.53 -0.53 -0.53 -0.52 -0.50 -0.48 -0.50 -0.53 -0.58 -0.64 -0.75 -0.76 -0.80 -0.82 -0.83 -0.83 -0.81 -0.79 -0.75 -0.69

-0.34 -0.38 -0.38 -0.40 -0.40 -0.36 -0.34 -0.32 -0.29 -0.25 -0.23 -0.21 -0.19 -0.22 -0.21 -0.19 -0.17 -0.14 -0.10 -0.07 -0.04 -0.01 0.01 0.04 0.07 0.09 0.11

0.13 0.17 0.14 0.15 0.14 0.14 0.14 0.15 0.17 0.25 0.38 0.42 0.44 0.46 0.47 0.46 0.46 0.46 0.45 0.45 0.44 0.44 0.44 0.44 0.44 0.44 0.44

K-CORRECTIONS FOR QUASARS

The currently used formula for the K-correction is K = -0.751og

(1 + 2).

There are two problems. i)

(7)

It neglects the effect of emission lines and this is unreason-

able; ii) It was obtained using the mean radio spectral index o = 0.7.

Great caution must

be exercised in so extending the index to the optical range. Having now determined a mean optical continuum spectrum, we can now find the continuum portion of the K-correction according to the formula - 2.5 log (1 f z>, (81 0 suffixes Y and 0 referred to the rest and observed frequencies respectively. K = - 2.5 log +

where

Adding the values given by (8) to the values in TABLE 2 gives the total K-corrections for quasars. The results are given in TABLE 3.

Acknowledgement

We thank Professors Fang Li-zhi and Qu Qin-yue for guidance.

K-Correction

182

for

Quasars

REFERENCES

r11 [21 r31 r41 151 [61 r71 i-81 r91 [lOI 1111 Cl21 [I31 [I41 [I51 [I61 [I71 [I81 [I91 [201 [2Il [=I t231 [241 1251 [261 [271 [281 r291 1301 r311 [321 [331 [341 r351 [361 [371 [381 [391 [40]

Graving, Setti, Netzer,

M. and

E. Landa, 2. Bstroph, 68(1968),

G. and L. Woltjer, H., et, al., 1.

Ann. New

York,

Academy,

N. E. A. S., 184(1978),

473. S., 224(1973),

8.

21.

Baldwin, J. A., Ap. J., 2l4(1977), 679. Burbi‘dge, G. R., et al., Ap. J. Supp& 33(1977), 113. Wright, A. E., et aL, Ap. J., n1(1977), L113. Ckmer, P. 8. and M. G. Smith, -%P. J., Zl3(1977), 607. Smith, E E., et al., Ap. J., 215(1977), 427. Osmer, P. S., & M. G. Smith, BP. J., 215(1977), L47. Schmidt, M., Ap. J., 217(1977), 358. Hoag, A. A., & M. G. Smith, BP. J., 2l7(197ij, 362. Osmer, P. S., Ap. J., 218(1977), L8Y. Peterson, B. A., & J. J. Condon, Ap. .I., 219 f 1978), Ll. Sramek, R A., & D. W. Weedman, Ap. J., 221(1978), 468. Wills, D., & R. Lpnds, Ap. J. Suppl, 36(1978), 317. Smith, A. L., A. Ap., 27(1977), 205. Adam, G., A. Ap., Suppl, 31(1978), 151. Savage,

A., et al., df. N. E. A. 8., 183(1978).

473.

Browne, I. W. A., et al., hf. N. R. A. S., 173(1975), 87. Browne, I. W. A., et al., M. N. R. A. S., 177(1976), 77. Browne, I. W. A., et al., M. N. R. A. S., 1?9(1977), 65. Savage, A., et al., M. N. R. A. S., 183(1978), 473. Oke, J. B., Ap. J., 141(1965), 10. Oke, J. B., Ap. J., 145(1966), 668. Oke, J. B., Ap. J., 161(1970), L17. Baldwin, J. A, et al., Ap. J., 185(1973), 739. Baldwin, J. A., et al., Ap. J., i95(1975), 269. Baldwin, J. A., et al., Ap. J., 206(1976). L83. Peterson, B. A., et al., Ap. J., 207(1976), L5. Osmer, P. S., & hf. G. Smith, Ap. J., 210(1976), 267. Peterson, B. A., et al., Ap. J., 211(1977), Lll5. Osmer, P. 5, & M. G. Smith, Ap. J., 2l3(1977), 607. Baldwin, J. A., Ap. J., 214(1977), 679. Smith, H. E, et al., Ap. J., 215(1977), 427. Osmer, P. S., & M. 0. &ith, Ap. J., 215(1977), L47. wer, P. S., Ap. J., 218(1977), L89. Peterson, B. A., et al., Ap. J., 219(1978), Ll. Baldwin, J. A., Ap. J., 226(1978), 8. Sandage, A., BP. J., 178(1972), 25. Department of Mathematics, Shanghai Normal University, Analysis and Experimental Design” (in Chinese).

“Regression