A Family of Semi-Inverse Problems of Nonlinear Elasticity

A Family of Semi-Inverse Problems of Nonlinear Elasticity

G.M. de La Penha, L.A. Medeiros ( e d s . ) Contemporary Developments i n Continuum Mechanics and P a r t i a l D i f f e r e n t i a l Equations Wort...

747KB Sizes 0 Downloads 96 Views

G.M. de La Penha, L.A. Medeiros ( e d s . ) Contemporary Developments i n Continuum Mechanics and P a r t i a l D i f f e r e n t i a l Equations Worth-Holland Publishing Company (1978)

A FAMILY O F SEM I-INVERSE

PROBLEMS OF N O N L I N E A R ELASTICITY

STUART

s.

ANTMAN*

D e p a r t m e n t o f Ma t,herna t i c s and I n s t i t u t e f o r P h y s i c a l S c i e n c e and T e c h n o l o g y U n i v e r s i t y of Maryland,

C o l l e g e P a r k , Maryland

20742

f ' o r t h e development of

the

1. I n t r o d u c t-i _on Much o f t h e i m p e t u s

theory

o f n o n l i n e a r e l a s t i c i t y f o l l o w i n e ; t h e Second World War was s u p p l i e d by the s t u d y of

c o n c r e t e problems

that

exhibit

i n t e r e s t i n g e f f e c t s due t o n o n l i n e a r m a t e r i a l r e s p o n s e . the study of

i n v e r s e p r o b l e m s R i v l i n f s work

[

111 was

In

paramoiint.

The n a t u r e o f s u c h p r o b l e m s was e x p o s e d by E r i c k s e n l s p r o o f

61 t h a t t h e o n l y d e f o r m a t i o n s p o s s i b l e i n e v e r y homogeneous ( c o m p r e s s i b l e ) e l a s t i c m a t e r i a l a t r e s t u n d e r z e r o body f o r c e a r e a f f i n e and by h i s s t u d y

[51

p o s s i b l e i n e v e r y homogeneous

of n o n - a f f i n e

deformations

incompressible e l a s t i c material

a t r e s t u n d e r z e r o body f o r c e .

(Ericksenls analysis

spawned a s m a l l l i t e r a t u r e d e v o t e d

[51

t o those aspects o f

the

problem t h a t h e l e f t u n r e s o l v e d . )

Semi-inverse ?+

problems,

studied i n t h e 1950's, lead t o

The r e s e a r c h r e p o r t e d h e r e was s u p p o r t e d b y N a t i o n a l S c i e n c e Foundation Grant

MCS77-03760.

2

STUART S.

a r i c h e r c l a s s of d e f o r m a t i o n s , by q u a s i l i n e a r s y s t e m s of (Cf.

G r e e n & Adkins [

for references.)

7,

Most

of solutions, A notable

many of w h i c h a r e d e s c r i b e d

ordinary d i f f e r e n t i a l equations.

Ch 111 a n d T r u e s d c l l & N o 1 1 [ t r e a t m e n t s of

y i e l d i n g a number o f r e s u l t s avoided the questions

ANTMAN

of

t h e s e problems,

o€ p h y s i c a l

interest,

1 3 , Sec.591 while

either

e x i s t e n c e and q u a l i t a t i v e b e h a v i o r

or e l s e t r e a t e d them o n l y f o r s p e c i a l m a t e r i a l s . to this i s the work

exception

radial oscillations elastic material.

of

of Knowles

a c y l i n d r i c a l t u b e of

181 on t h e

incompressible

The manner i n which Knowles employed

constitutive inequalities i s the natural precursor of

the

method u s e d h e r e . I n t h i s p r e s e n t p a p e r we examine a f a m i l y o f s e m i i n v e r s e problems

f o r compressible e l a s t i c m a t e r i a l s s a t i s f y -

ing the strong e L l i p t i c i t y condition.

( F o r s i m p l i c i t y we

assume t h a t t h e m a t e r i a l i s homogeneous and i s o t r o p i c . ) By f u l l y e x p l o i t i n g t h e s t r o n g e l l i p t i c i t y c o n d i t i o n w e r e a d i l y show t h a t

" r e a s o n a b l e " s e m i - i n v e r s e boundary v a l u e problems

a l w a y s h a v e s o l u t i o n s a n d t h a t a number of

their qualitative

f e a t u r e s can be determined. N o-n . - o t a t i.

E',

V e c t o r s , which a r e h e r e d e f i n e d t o b e e l e m e n t s o f

and v e c t o r - v a l u e d

l e t t e r s over t i l d e s . t o be elements o f

f u n c t i o n s a r e denoted by lower-case S _e _cond-order ~

L ( E 3 ,(E 3) ,

t e n s o r s , which a r e t a k e n

and f u n c t i o n s w i t h v a l u e s

in

L(E3,E3),

a r e d e n o t e d by u p p e r c a s e l e t t e r s o v e r t i l d e s .

The s u b s e t

o f second-order

i s denoted tensors

L+(E3,S3)

i s denoted

tensors with p o s i t i v e determinant

and s u b s p a c e o f s -y m m e t r i c s e c o n d - o r d e r

S(E3,E3).

The d _ o. . t product

of

2

and

b

SEMI- I N V E R S E PROBLEMS O F NONLINEAR ELASTICITY

a.!. -A*

is written The a d j o i n t

-

all

a,?.

tensors

- --

A

The v a l u e of

-

A

of

- -

-

B,

and

= A.(B-A).

A*?.

(ab)-c

=

(b*c)a

Asa.

- --

= bu . A- .

(fi-n)-,a = ah --

The dyad

2.

for all

k+,f(u)

for

The p r o d u c t of

i s d e f i n e d by

As?,

= trace

A::

t e n s o r d e f i n e d by

-

denoted

-

We s e t

A*.b

- -

is written

b . ( A * a ) = a*(;*.!)

i s d e f i n e d by

We a c c o r d i n g l y w r i t e

-A

-a

at

3

is

the

The FrGchet

d i f f e r e n t i a l o f t h e mapping

2

-

and t h e F r G c h e t d i f f e r e n t i a l o f

h

i s denoted

t h e mapping

- -

U - I - z F- ( U-)

3.

at

i n the direction

We s e t

a (fl,.

.. , f n )

a (u,, . . . a (f19f2,f3)

= A

a(Av+Bw,u 2

2.

i n the direction

-

B

,11

n

3(fl

a

afi

= d e t (-),

) I

a U .

3

f2

9

f3)

(v,u2,u3)

a ( f l 3 f -~ *,f3)

+ B-

a(w,u2,u3) *

The E q u a t i o n s o f E l a s t o s t a t i c s . ' (21,i2,i-3) =

Let

domain

n

in

E3

( i1 ,,I.z ,& 3 )

B3.

orthonormal b a s i s f o r that

( -i , J , E )

I

he a f i x e d

We i d e n t i f y a body ~ i t h the

i t occupies i n i t s r e f e r e n c e

c o n f i g u r a t i o n and w e i d e n t i f y a m a t e r i a l p a r t i c l e with i t s p o s i t i o n

- z a I. -

-z

i s denoted

D i a g o n a l l y r e p e a t e d i n d i c e s a r e summed f r o m

[aF(A)/$U]:B*. 1 to

-2

[af(a)/ay]

3

at

-a

-

-

= xi + y j

+

-z

i n this configuration.

-

zk.

Let

~ ( 5 )h e

i n a deformed c o n f i g u r a t i o n .

The d e f o r m a t i o n

F

of

We s e t

t h e p o s i t i o n of

t h e body

-z

particle

W e set

preserves orientation i f

=

and o n l y i f

4

STUART S. ANTMAN

Let at

5.

z(z)

be the first Piola-Kirchhoff stress tensor

Then the equilibrium equations f o r a body subject to

zero body force are

(2.3)

Div

n

The material of

I

-

ia.-

a

aza

AT*= 0,

-

-

is h_omogeneously elastic if there are

T: L + ( E 3 , E 3 )

functions

?-

4

L(!E3,E3)

2:

and

S(IE3,E3)

+ S(E3,E3)

such that

We assume that

T

and

5

are continuously differentiable.

This representation ensures Kirchhoff stress tensor.

_ _ _ _ _ _ . _ _ _ _ ~ -

-S

only if

where

-

I

(2.4).

,S

is the second Piola-

The material is isotropic if and

has the form

is the identity on

E3

and where

depend on the principal invariants of

c.

ao, a l , a 2

Assuming that

T

is continuously differentiable, we require it t o satisfy the strong ellipticity condition

Below we shall impose specific conditions ensuring that large stresses accompany large strains and strains for which det is small.

F

SEMI-INVERSE PROBLEMS OF NONLINEAR ELASTICITY

5

3. Formulation of the Semi-Inverse Problem. We consider deformations defined by

p(z) =

(3.1)

f(x)_el(z)

+

[h(x)+C~+Dz]k,

where

--

(3.2) ~ ~ ( =2 C)O S e(z)i

+ sin e ( ? ) i ,

e(.)

(This is ”Family 1 ” of [ 13, Sec. 591 . )

= g(x)

+ AY + BZ.

O u r problem will be

to determine the existence and properties o f functions and numbers

A, 8 , C, D

f,g,h

such that (3.1) satisfies the

equations (2.3) and (2.5) and certain subsidiary conditions. We set

(3.3)

-

e ( z ) = &~e_~(z), e = k , -2 -3

c?g

x

Denoting derivatives with respect to

where

f’el + fg’e -2

+

h‘

(3.5)

/

f’

0

0

(3.6)

Condition (2.2) reduces to

(3.7)

(AD-BC)ff’ > 0 .

e,c .

by primes, we have

(3.4)

aE2 ax =

=

,e3,

6

ANTMAN

STUART S.

(3.7) as

By making o b v i o u s s i g n c o n v e n t i o n s , we may i n t e r p r e t being e q u i v a l e n t t o t h e requirement be p o s i t i v e .

l i-a i-' j

C

The components o f

that

(3.7)

e a c h f a c t o r of

with r e s p e c t t o t h e b a s i s

are

+

,/(f')2

(cap) =

(3.8)

I\

+

(fg')2

(h')2

A f 2g ' + C h '

Bf 2 g ' + D h ' \

A2f2

2 ABf +CD

+C2

'> 'a

,/

B2f2+D2 /

T

We decompose

as

-

T = ~a L - eL- ia

(3.9) s o that

( 2 . 3 ) and

( 2 . 5 ) imply t h a t

(3.10)

Relations

on

G

( 3 . 5 ) and ( 3 . 8 ) t h u s i m p l y t h a t

- -

{ F a = e L . F . -a i ]

(3.12)

In p a r t i c u l a r , that

h',

g',

f , A,

B,

C,

D.

--

. + * i a ]a r e i n d e p e n d e n t

of

y

and

(3.10) has the componential f o r m 1

(3.13)

(3.14)

From

depend o n l y

and t h e r e f o r e o n l y o n

f',

(:&

(Tta]

(T2')'

+

-

g'Tll

AT2

+

( 3 . 1 5 ) we o b t a i n

(3.16)

T~~ = H ( c o n s t ) .

2

-

AT12

BT2

2

-

+ BT13

BT2'

= 0,

= 0,

z

so

SEMI-INVERSE

Among o t h e r r e l a t i o n s

f[ g ' T l l

(3.17)

implies that

(2.14)

+

+ BT13] =

ATI'

t h e s u b s t i t u t i o n o f which i n t o

D

f'T2

1

y

produces

the integral

(const).

I

Without loss of

C,

(3.14)

T, 1 = G

f

(3.18)

domain

7

PROBLEMS O F NONLINEAR E L A S T I C I T Y

R

i s the unit

t h e reference

g e n e r a l i t y we s u p p o s e t h a t cube

( 0 ~ ) ~ W e .s u p p o s e t h a t AD-BC

are prescribed with

>

0.

I n Section

7

By

A,

we d i s c u s s

how t o r e l a t e t h e s e c o n s t a n t s t o v a r i o u s r e s u l t a n t s a c t i n g over t he m a t e r i a l f a c e s o f any t r a c t i o n s p r e s c r i b e d with the i n t e g r a l s

H

and

(3.16), (3.18).

of

a non-zero

W e accordingly regard

corresponds

d e a d s h e a r l o a d s on t h e f a c e s

p r e s c r i p t i o n of

be c o m p a t i b l e G

e n t e r i n t o a d i s c u s s i o n of

€1

the prescription of

x = O,1

( 3 . 1 6 ) and (3.18), b u t m e r e l y n o t e

c o n d i t i o n s compatible b i t h that

the faces

011

W e do not

as g i v e n .

W e a l s o require that

t h e cube.

G

t o the p r e s c r i p t i o n

x = 0 , 1 , whereas

the

c o r r e s p o n d s n e i t h e r t o a dead

l o a d n o r t o a c o n s t a n t Cauchy s t r e s s .

The __ g o -. v_ e -r.n i n g e q u a t i o n s f o r o u r problem c o n s i s t of

(3.13), ( 3 . 1 6 ) laws

4.

(3.18),

which i n c o r p o r a t e

the s t r e s s - s t r a i n

(2.5).

Conseauences o f C o n s t i t u t i v e R e s t r i c t i o n s .

\\ie now t r a n s f o r m o u r e q u a t i o n s f u r t h e r by b r i n g i n g the strong e l l i p t i c i t y condition choosing

-

-

a = i

in

(2.7) we get

( 2 . 7 ) t o b e a r on them.

By

8

ANTMAN

STUART S .

b = b'

for

e

-L

f u n c t i o n of' Note t h a t

2.

Thus

T *-i

i s a s t r i c t l y monotone

f o r f i x e d v a l u e s of i t s o t h e r a r g u m e n t s .

ag/ax

t h e remarks p r e c e d i n g ( 3 . 1 2 )

i n d e p e n d e n t of g, y,

#

t h e b a s i s u s e d h e r e and t h e r e b y i n d e p e n d e n t of

I n consonance with

Z .

(TLa] are

imply t h a t

(4.1),

we impose t h e growth

conditions

(4.2)

TZ1

4

as

*m

for f i x e d values

of

fg'

+

+m,

T

+

3

t h e o t h e r arguments.

r e s t r i c t t h e arguments o f

-

T

as

fa

h'

+

fm,

Here and below we

t o b e d e f o r m a t i o n s of

t h e form

( 3 . 1 ) ; we t h e r e b y a v o i d t h e i n t e r e s t i n g q u e s t i o n o f p o s i n g r e a l i s t i c growth c o n d i t i o n s f o r e l a s t i c m a t e r i a l s u n d e r a r b i t r a r y deformation.

( T h i s g e n e r a l q u e s t i o n might b e hand-

l e d by combining i d e a s of B a l l Brezis

[4]

31 . ) The m o n o t o n i c i t y c o n d i t i o n

conditions

(4.2)

ensuring t h a t

(4.1)

and t h e growth

j u s t i f y a g l o b a l i m p l i c i t f u n c t i o n theorem

( 3 . 1 6 ) and (3.18), r e g a r d e d as a l g e b r a i c

e q u a t i o n s , can b e uniquely of

w i t h t h o s e of Antman &

t h e o t h e r v a r i a b l e s of

solved

for

fg'

t h e problem.

and

h'

i n terms

W e represent these

s o l u t i o n s by

(4.3)

(4.4)

fg' h'

= y(f',

G/f,

= n(f', G/f,

A,

B,

C, D ) ,

€1, A ,

B,

C,

H,

A l o c a l i m p l i c i t f u n c t i o n theorem e n s u r e s t h a t a r e c o n t i n u o u s l y d i f f e r e n t i a b l e because

T

is.

D).

y

and

q

SEMI - I N V E R S E

We

=ubstitute

a u t on ornous,

9

PROBLEMS O F N O N L I N E A R E L A S T I C I T Y

( b . 3 ) , ( 4 . 4 ) i n t o (3.13) t o get the

q u a s i 1i n e a r ,

s e c ontf

- ord e r

ord inary differentia 1

equation

h = (A,B,C,D,G,H)

where

T2' + A T 2 2 + BTz3 F21

-

[P(f',f,X)I'

(4.5)

and

F31

a ( f ' , f , h ) = 0,

aiid \ % h e r e p

evaluated

at

and

The m o n o t o n i c i t y c o n d i t i o n system

(3.l3),

semi-monotone

(fT2 (for

1

)

1

are

3

of

(3.6)

by d e f i n i t i o n o f

with

for

ensures t h a t the f,

g, h

i s formally

~t c o m e s a s n o s u r p r i s e t h a t

( 4 . 5 ) i s i t s e l f a f o r m a l l y semi-monotone e q u a t i o n f o r Indeed,

and

T1

('t.h).

(4.1)

(3.75)

= 0,

f > 0).

4,

{F a]

the

(4.3)

r e p l a c e d by

and

y, q

and

p,

f.

we f i n d

(4.6)

w h i c h i s s t r i c t l y p o s i t i v e by

a l s o compute

(4.7)

(4.8)

(4.1).

I n a l i k e manner we

10

STUART S.

ANTMAN

(4.9)

The s t r o n g e l l i p t i c i t y c o n d i t i o n i s i n c a p a b l e that the first

t e r m on t h e r i g h t s i d e d o f

s o t h e mapping monotone.

(p(f’,f,k),

(f’ ,f)-

of ensuring

(4.9) i s positive,

~ ( f, f‘ , x ) )

need n o t be

( 4 . 5 ) need n o t be f o r m a l l y

Therefore the equation

i t i s l i k e l y t h a t b o u n d a r y v a l u e problems

monotone

and h e n c e

for ( 4 . 5 )

f a i l t o have unique s o l u t i o n s .

T o e x a m i n e t h i s and r e l a t e d q u e s t i o n s f u r t h e r we G = €1 = 0.

c o n s i d e r t h e s p e c i a l c a s e i n which 1

(2.6) imply t h a t

1

= T3

T2

=

F

when

t h e monotonicity c o n d i t i o n ( k . 1 ) alone, that

2

Now ( 2 . 5 ) and

= F31 = 0.

without

Thus

( 4 . 2 ) , implies

( 3 . 1 6 ) and ( 3 . 1 8 ) h a v e t h e u n i q u e s o l u t i o n = 0,

g’

(4.10)

h’

= 0;

t h i s i n t u r n i m p l i e s t h a t t h e d e f o r m e d c o n f i g u r a t i o n s of t h e faces

y = O,l,

z = 0,1

(2.6)

imply t h a t

(4.11) so that (4.12)

T2

1

= T3

a r e planes.

1

= T1

2

I n t h i s case

= TI3 = 0

(3.13) o r ( 4 . 5 ) r e d u c e s t o p’-a

E

w h e r e t h e a r g u m e n t s of

-

(Tll)’

T1

1

,

T2

AT2 2

2

,

-

T2’

BT23 = 0

are

(2.5) and

SEMI-INVERSE

PRODLEMS O F NONLINEAR E L A S T I C I T Y

O

0

Af

BY

C

D

11

‘.

I n t h i s case

1

-Pa

(4.14)

af7 =-I

a T1

aFll

(4.15)

(4.16)

--

(4.17)

af

A

2

T+AB---aF 2

-

(4.1)

Inequality but

2

as

(p(-,-,h),

a T2 +

aF22

n o w implies that U(-,-,h))

3

AB -+ B

ap/af‘

>

2 aT2 __ 2 ‘ aF

and

0

as/af

> 0,

may n e v e r t h e l e s s f a i l t o be

monotone.

5 . E x i s t e n c e Theory f o r Boundary Value P r o b l e m s . W e impose b o u n d a r y c o n d i t i o n s

1 T1

(5.1 a,b)

I x=o

- qo

or

f(0) = fo

More g e n e r a l c o n d i t i o n s a r e p o s s i b l e . that

A,

y = 0,1,

B, z

C,

D

= 0,1

are prescribed, can e n s u r e t h a t

moment o n t h e body v a n i s h when

> O,

S i n c e we a r e a s s u m i n g

the reactions

on t h e f a c e s

t h e r e s u l t a n t f o r c e and

( 5 . l a ) and ( 5 . 2 a ) a r e prescribed.

STUART S. ANTMAN

12

There are several effective ways to attack the boundary value problem (4.5), ( 5 . 1 ) ,

(5.2).

The first method

is to give it a weak formulation i n a reflexive Sobolev space, the choice o f which is dictated by sharper growth conditions that must be imposed. In this setting the problem can be cast as an equation involving a pseudo-monotone operator.

The difficulty here

lies in the treatment of the strict inequality (3.7) and the

T

growth o f

where

(3.7) is small.

of Antman [2] and Antman & Brezis

Methods similar to those

133

can be used to handle

this difficulty and to yield a full regularity theory.

(The

latter work describes a useful set of growth conditions in Section

4.) This approach shows that there is a weak solution for

each

h

satisfying (3.7) and that each such weak solution is

classical.

Instead of carrying out the details of this theory,

we turn to another that provides somewhat more information about classical solutions. We impose the growth condition

(5.3) for fixed values of

f

and

1.

This condition and the positivity of

(4.6) imply that the

algebraic equation

(5.4)

P

has a unique solution for

(5.5)

(f’,f

1) = 9

f‘, which we denote by

f’ = cp

s,f,X).

13

SEMI-INVERSE PROBLEMS O F N O N L I N E A R ELASTICITY

W e c a n r e w r i t e t h e boundary v a l u e problem

(4.5), ( 5 . 1 ) ,

(5.2)

a s t h e system

(5.9 a , b )

q(l) =

q1

or

f ( l ) = fl.

T o b e s p e c i f i c and t o a v o i d minor problems w i t h Neumann conditions w e r e s t r i c t o u r attention t o conditions (5.8a),

(5.9b). f

>

0

where

a

Let

( T h e s e c o n d i t i o n s do n o t r e n d e r t h e r e q u i r e m e n t of

( 3 . 7 ) c o m p l e t e l y i n n o c u o u s a s would ( 5 . 8 b ) . )

@

i s a c o m p l e t e l y c o n t i n u o u s mapping f r o m

reduces

If

A

a

ExA i n t o E.

be c o n f i n e d t o l i e o n a s i m p l e smooth c u r v e i n

g i v e n p a r a m e t r i c a l l y by

a

=

;(p),

0 E IR,

so that

Then

A

(5.12a)

to

i s continuously d i f f e r e n t i a b l e ,

then

Y

i s completely

14

STUART S. ANTMAN

continuous.

W e assume t h i s .

F o r s u c h problems we h a v e R a b i n o w i t z [ 101

Theorem ( L e r a y & S c h a u d e r [ 9 ] ,

cf.

(uo,e0)

(5.12b).

b e a s o l u t i o n p a i r of

u = Y(u,po)

equation

t h e component of

E x

Suppose t h a t t h e

t h e s e t of

i s e i t h e r unbounded i n

To e x p l o i t t h i s

of

Then

s o l u t i o n p a i r s that E x

and i n

[po,m)

o r e l s e a p p r o a c h e s t h e boundary of

(-m,po]

(u0,$,)

t h e c l o s u r e of

(uo,p0)

contains

Let

as i t s u n i q u e s o l u t i o n .

uo

has

-

)

these s e t s .

theorem we must f i r s t f i n d a s o l u t i o n p a i r One way t o g e t t h i s i s t o u s e t h e weak

(5.12b).

But i t i s more i l l u m i n a t i n g t o

f o r m u l a t i o n mentioned a b o v e .

u s e a d i f f e r e n t approach m o r e i n keeping with t h e continuation methods d e v e l o p e d by R a b i n o w i t z [ 103

. (uo,Bo)

I n m o s t problems t h e n a t u r a l c h o i c e f o r t r i v i a l s o l u t i o n , which would c o r r e s p o n d s t a t e f o r o u r e l a s t i c i t y problem. s t a t e i s n o t i n t h e form

is a

t o the reference

Unfortunately the t r i v i a l

( 3 . 1 ) of a d m i s s i b l e s o l u t i o n s ;

i s rather a singular l i m i t of

such s o l u t i o n s .

it

The continuation

of s o l u t i o n s from t h i s t r i v a l s o l u t i o n i s o f t e n termed " b i f u r c a t i o n from i n f i n i t y " .

We c a n u s e t h e p h y s i c a l

structure

of o u r problem t o r e n d e r t h i s t e c h n i c a l d i f f i c u l t y i n n o c u o u s . W e s t a r t t h i s p r o c e s s by c o n s i d e r i n g t h e problem i n which

B = C = G = H = 0, case (3.6)

D = 1.

(Cf.

(4.10)-(4.17).)

In this

i s d i a g o n a l and i s t h e s q u a r e r o o t of t h e correspond-

i n g v e r s i o n of

(3.8).

L e t u s assume t h a t t h e r e f e r e n c e s t a t e

is a natural stress-free

state, i.e.,

:(I)

=

2.

We assume

that

(5.13)

-

H:

-

-

aT(I)/aF : H > 0 -

I

V diagonal

I;! f

2.

(This i s a milder r e s t r i c t i o n linear elasticity.) then says t h a t

F‘s

c l a s s of

t h a n t h a t commonly made i n

The c l a s s i c a l i m p l i c i t f u n c t i o n t h e o r e m

the constitutive

relations f o r our special

a r e e q u i v a l e n t t o e q u a t i o n s o f t h e form

(5.14)

f’

1 = V ( T ~,

(5.15)

Af

= V(T1

where

(P,v)

15

PROBLEMS OF NONLINEAR E L A S T I C I T Y

SEMI-INVERSE

i s monotone,

1

,

AT,^), AT2

w(O,O)

2

),

= 1,

v(0,O)

= 1.

Note t h a t t h e c u b i c a l r e f e r e n c e s h a p e i s a t t a i n e d i n t h e l i m i t

+

that

A + 0,

while

( 4 . 12) g i v e s

f

Af

+

1.

(Tll)’

-

m ,

(5.17) The s y s t e m ( 5 . 1 6 ) ,

From ( 5 . 1 4 ) ,

AT2‘

(5.17) replaces

(5.15)

we get

= 0. Equation (5.16)

(4.12).

i s a compatibility condition.

Now t h e b o u n d a r y c o n d i t i o n s (5.18)

T1 1( 0 ) = q 0 ,

(5.8a), ( 5 . 9 b ) become v ( T 1 1(I), A T 2 2 ( 1 ) ) = Afl.

In v i e w of o u r m o n o t o n i c i t y c o n d i t i o n s , t h e u n i q u e s o l u t i o n of

(5.16)-(5.18)

I f we v a r y

when

(A,Afl,qO)

9,

= 0,

Afl

from (O,l,O)

= 1

is

T1

along a curve i n

t h e n a s t a n d a r d i m p l i c i t f u n c t i o n theorem e n s u r e s (5.16)-(5.18) enough t o

= T 2 2 = 0. R3,

that

has a unique s o l u t i o n f o r t h e s e parameters n e a r

(0,1,0). B y o u r c o n s t r u c t i o n ,

such a s o l u t i o n

would c o r r e s p o n d t o a d e f o r m a t i o n i n w h i c h t h e f a c e s

x = 0,l

l i e on c o n c e n t r i c c i r c u l a r c y l i n d e r s o f f i n i t e r a d i u s . A n y such s o l u t i o n i s a s o l u t i o n of

(5.10), (5.11) f o r

16

STUART S .

the se parameters.

L e t one s u c h s o l u t i o n p a i r be d e n o t e d

A condition sufficient

(uo,ao).

u = Y(u,@,), that

ANTMAN

a. = & ( P o ) ,

where

t h e mapping

t o ensure that

the equation

h a s a t m o s t one s o l u t i o n i s

1 2 1 1 2 ( F 1,F * ) A T 1 ( F 1 ,O , O , 0 , F ~,0 , O , O , D )

2 1 2 T2 ( F l , O , O , O , F 2,0,0,0,D)

a.

o u r c o n s t r u c t i o n of

be s t r i c t l y monotone.

,

(Note t h a t

F

e n t a i l s t h a t t h e components o f

have t h e form i n d i c a t e d i n t h e a r g u m e n t s o f

TI1

and

T2

2

.

T h i s r e s t r i c t e d m o n o t o n i c i t y c o n d i t i o n i s i m p l i e d by t h e

[ I 3 1 b u t n o t by t h e s t r o n g e l l i p t i c i t y

Coleman-No11

inequality

condition.)

The c o n t i n u a t i o n theorem o f Leray & S c h a u d e r

a p p l i e s t o parameters

a =

a^(@)

a

confined t o c u r v e s of

t h e form

with The c o n t i n u a t i o n method o f Leray & S c h a u d e r i m p l i e s

that solutions of

(5.10), ( 5 . 1 1 ) a r e c l a s s i c a l u n t i l the

continuum of s o l u t i o n p a i r s becomes unbounded o r e l s e approaches everywhere.

~ ( E x A ) . Such a c l a s s i c a l s o l u t i o n s a t i s f i e s

(3.7)

One c a n g e t a somewhat s t r o n g e r r e s u l t by look-

ing f o r solutions

(5.10),

( 5 . 1 ~ )i n a s m a l l e r c l a s s of

f u n c t i o n s , say L i p s c h i t z continuous f u n c t i o n s .

By s t r e n g -

t h e n i n g o u r growth c o n d i t i o n s o n t h e c o n s t i t u t i v e f u n c t i o n s we c a n show t h a t any- L i p s c h i t z c o n t i n u o u s s o l u t i o n must satisfy

( 3 . 7 ) everywhere provided t h i s

with t h e c h o i c e of

a.

The p r o o f

i s not

incompatible

r e l i e s on t h e o b s e r v a t i o n

t h a t a L i p s c h i t z c o n t i n u o u s f u n c t i o n whose r e c i p r o c a l i s i n t e g r a b l e o n a n i n t e r v a l c a n n o t v a n i s h on t h a t i n t e r v a l . (Cf.

C11.)

SEMI - I N V E R S E

17

PROBLEMS O F N O N L I N E A R E L A S T I C I T Y

6. Qualitative Behavior o f Solutions. Since

(4.5)

o r the equivalent system ( 5 . 6 ) ,

(5.7) is

autonomous, we can readily determine the qualitative behavior of all solutions of these equations by studying their phase-

plane trajectories.

For simplicity we fix the parameter

at a value for which

aJ/af

> 0

(cf. ( 4 . 1 0 ) - ( 4 . 1 7 ) )

1

and we

assume that

(6.1)

D ( f / , f , ~ )

as

+

f +

{+om].

Then the algebraic equation

o(f',f,h) =

(6.2)

0

has a unique solution

We sketch the curve defined by (6.3) in Fig. 1.

Figure 1 We are now ready to s t u d y the

(5.6),

(5.7).

j-rnplies that

(f,q)

phase-plane diagram o f

W e first note that our construction o f

f'

cp

> 0. Thus there are no singularities f o r

18

Y

STUART S. ANTMAN

>

0.

left f

of

Moreover

(5.7)

t h e image o f

i s t o the right.

says t h a t

the curve

q‘

f =

< 0 (f’

when

,x)

the rurve ( 6 . 2 )

and

i s to the

q’

> 0

when

U s i n g t h e s e i d e a s we s e e t h a t t h e p h a s e -

p l a i i e d i a g r a m h a s t h e c h a r a c t e r shown i n F i g . of

f

or

2.

The image

( 6 . 3 ) , which i s g i v e n by all t h e

(f,q)

satisfying

(6.4a) or

(6.’kb) i s i n d i c a t e d b y t h e dashed l i n e . ‘1

= o

Figure 2

SEMI-INVERSE PROBLEMS O F WONLI'JEAR

Suppose t h a t

t h e boundary ( - 0 n c 1 i t i o n s a r e

c a n d i d a t e s for t h e s o l u t i o n s of a r e the t r a j e c t o r i e s

123, 2 3 , h i 6 ,

a segment o f u n i t

( J. 8 a ) , ( 5.9a)

. Then

t h i s b o u n d a r y v a l u e problem

c a n d i d a t e would be a s o l u t i o n i f traverses

19

ELASTICITY

5 6 , c t c . of F i g . 2 .

A

the independent v a r i a b l e

length as the point

x

(f,y)

traverses the indicaked t r a j e c t o r y . (From t h e pseudo-monotone

operator analysis described i n the

l a s t s e c t i o n w e know t h a t t h e r e i s a t l e a s t one s o l u t i o n f o r

X .)

each

Fig.

2 t e l l s us that

different solutions that

1 2 3 , has t h e s t r e s s

q

there a r e t w o q u a l i t a t i v e l y

arc possible: d e c r e a s e from

The f i r s t , of

x = 0

t o an i n t e r i o r

x = 1.

minimum and t h e n i n c r e a s e t o i t s v a l u e a t of

the f o r m 23, has the s t r e s s increase with

7.

F u r t h e r R e s u l t s and Comments.

t h e form

The second,

x.

-

A l l our r e s u l t s a r e v a l i d f o r non-homogeneous, materials

aeolotropic

with t h e property t h a t t h e r e s u l t i n g equations a r e still

ordinary d i f f e r e n t i a l equations with

independent variable x .

S u i t a b l e a e o l o t r o p i c m a t e r i a l s would even y i e l d autonomous e q u a t i o n s ( c f . [ 7 ] ) . I n place o f prescribing some r e s u l t a n t

A,

B,

C,

D

w e c o u l d prescribe

f o r c e s and moments on t h e f a c e s

y = 0,1, z=O,l.

Then t h e u n s p e c i f i e d c o n s t a n t s a r e t o be d e t e r m i n e d f r o m a system o f e q u a t i o n s o f

(7.1)

t h e form

'I

T ( f ' , f , h ) d x = const.

By u s ng t h e s t r o n g e l l i p t i c i t y c o n d i t i o n or

-

k

( 2 . 7 ) with

2 = J

we o b t a i n a m o n o t o r i i c i t y c o n d i t i o n , which w h e n coupLd

STUART S. ANTMAN

20

with mild growth conditions, enables us to solve appropriate parameters as functionals of ing parameters.

f

(7.1) for

and the remain-

These functionals may be substituted into

(4.5) to convert it into a functional-differential equation. A preliminary analysis indicates that the resulting equakion

together with reasonable boundary conditions generates both a pseudo-monotone operator equation on a suitable Sobolev space and an equation on

C1([O,l])

involving the sum of the

identity plus a compact operator.

Thus these problems can be

readily treated by the methods of analysis described in Section

5. The difficulty with the singular character of the

cubical reference state disappears in "Family 2 " of semi-inverse problems (as categorized in [ 1 3 ] ) .

Here the reference

configuration may be taken as a body described in cylindrical polar coordinates z1 < z < z 2 .

(r,B,z)

by

r

1

< r < r2,

8 , < 8 < €I2,

The deformation is defined by a representation

obtained from (3.1) by replacing

(x,y)

by

(r,B).

Because

the independent variables are polar coordinates, the resulting equations will be singular at

r = 0.

This singularity

is manifested i n a semi-inverse problem when

rl = 0 ,

i.e.,

when the reference configuration contains the material line r = 0.

When

E (0,n)

U (n,m)

this singularity might

cause serious analytical difficulties because the domain has a corner.

n

It is not so obvious that tliis singularity can

cause serious difficulty when a segment o f a solid cylinder.

B2-01 = m , i.e.,

L-2

is

I n this case the analogs

of

when

the various completely continuous operators used i n the

21

SEMI-INVERSE PROBLEMS O F N O N L I N E A R ELASTICITY

analysis o f Section

6 may f a i l t o he c o m p l e t e l y c o n t i n u o u s r = 0.

when t h e m a t e r i a l i s a e o l o t r o p i c n e a r i s o i r o p y f o r s u c h problems t r e a t s t h e h u c k l i n g of When

rl

The r o l e o f

i s examined i n d e t a i l i n

[ 7 1 , which

a circular plate.

> 0 , t h i s problem d o e s n o t a r i s e .

The

5 c a n he a d a p t e d w i t h o u t change t o t r e a t

methods o f S e c t i o n

I n particular,

t h e c o r r e s p o n d i n g s e m i - i n v e r s e problems.

the

p r o c e d u r e b e g i n n i n g w i t h t h e weak e q u a t i o n s p r o d u c e s a soluticn

t o t h e e v e r s i o n problem,

d i s c u s s e d by T r u e s d e l l [ 1 2 ]

elsewhe=

i n t h i s volume.

T h i s problem c a n h e s o l v e d u n d e r t h e

requirement

that

there he zero r e s u l t a n t

t h e ends of

the tube.

equations of t h e problem.)

t h e form

f o r c e and moment a t

(This r e s t r i c t i o n yields

(7.1)

I n general,

by v i r t u e o f

.just t w o

t h e symmetries o f

t h e r e w i l l be n o n - z e r o

tractions

r e q u i r e d o v e r t h e end f a c e s i n o r d e r t o e n s u r e t h a t of

the c i r c u l a r c y l i n d e r s

This semi-inverse

z e r o end t r a c t i o n s .

remain c i r c u l a r cylinders.

r = r 1,r2

p r o c e s s would n o t

t h e images

treat

t h e problem w i t h

The f l a r i n g t h a t T r u e s d e l l d e s c r i b e s ,

which o c c u r s u n d e r z e r o end t r a c t i o n s , singular perturbation of

seems t o r e p r e s e n t a

t h e s e m i - i n v e r s e s o l u t i o n and t o

o f f e r a n e x p e r i m e n t a l v e r i f i c a t i o n of a S t .

Venant P r i n c i p l e

f o r t h i s problem o f n o n - l i n e a r

This e v e r s i o n

problem and o t h e r s o f

elasticity.

Family 2 w i l l b e d i s c u s s e d elsewhere.

( A l t h o u g h t h e g o v e r n i n g e q u a t i o n s of a r e n o t autonomous,

t h e problems

t h e q u a l i t a t i v e b e h a v i o r of

of F a m i l y 2

t h e i r solutions

may b e s t u d i e d by means of P r f l f e r t r a n s f o r m a t i o n s and o t h e r a p p a r a t u s u s e d i n t h e s t u d y of S t u r m - L i o u v i l l e

systems.

STUART S.

22

ANTMAN

The r e s u l t s r e p o r t e d h e r e s u g g e s t t h a t a l l r e a s o n a b l e boundary v a l u e problems f o r q u a s i l i n e a r systems of o r d i n a r y d i f f e r e n t i a l equations describing semi-inverse

problems of

compressible e l a s t i c bodies ha>e c l a s s i c a l solutions.

o n a f o r m u l a t i o n i n m a t e r i a l c o o r d i n a t e s and

analysis relies

on t h e e x p l o i t a t i o n o f Many of

the strong e l l i p t i c i t y condition,

t h e s t u d i e s of semi-inverse

employed s p a t i a l d e s c r i p t i o n s , equations

(cf.

s i m p l i c i t y of

Our

[7,l3]).

problems i n t h e 1950's

which y i e l d o s t e n s i b l y s i m p l e r

Bu1. t h e s e f o r m u l a t i o n s o b s c u r e t h e

the strong e l l i p t i c i t y condition.

At

one s t a g e

o f o u r a n a l y s i s w e made a c o n s t i t u t i v e a s s u m p t i o n t h a t i s i m p l i e d b y t h e Coleman-No11

inequality.

I t s use could be avoided

but a p e r i p h e r a l r o l e i n our bork: by u s i n g a c o n t i n u a t i o n t h e o r e m b a s e d (cf.

[41)

This i n e q u a l i t y plays

on weak er h y p o t h e s e s

o r by u s i n g t h e pseudo-monotone

operator theory.

8. R e f e r e n c e s [l]

S.S.

Antman,

O r d i n a r y D i f f e r e n t i a l E q u a t i o n s of

Non-linear

E l a s t i c i t y 11: E x i s t e n c e a n d R e g u l a r i t y T h e o r y f o r C o n s e r v a t i v e Boundary V a l u e Problems, Mech. [2]

S.A.

Antman, Arch.

[ 3 ] S.S.

Anal.

Arch. R a t i o n a l

6 1 ( 1 9 7 6 ) 353-393.

B u c k l e d S t a t e s o f N o n l i n e a r l y E l a s t i c Plates,

R a t i o n a l Mech.

Antman & H .

BrGzis,

Anal.,

67(1978)

111-149.

The E x i s t e n c e o f O r i e n t a t i o n -

Preserving Deformations i n Nonlinear E l a s t i c i t y , Research Notes i n Mathematics, ed. R. Knops, Pitman, London,

t o appear.

SEMI-INVERSE PROBLEMS O F NONLINEAR ELASTICITY

B a l l , Convexity Conditions

J.M.

i n Non-linear

-63 _ ( 1977) \J.L. E r i c k s e n ,

and E x i s t e n r e Theorems

E l a s t i c i t y , Arch.

337-'ho'3

-

R a t i o n a l Mech.

Anal.,

Deformations P o s s i b l e i n Every I s o t r o p i c ,

Incompressible,

P e r f e c t l y E l a s t i c Body.

Z.A.M.P.

5

( 1 9 5 4 ) , ,466-486. E r i c k s e n , D e f o r m a t i o n s P o s s i b l e i n E v e r y Compressible,

J.L.

Isotropic, Perfectly Elastic Material,

J . Math.

Phys.

-qb _ (195'1)~ 126-128.

A.E.

G r e e n & \J.E.

Non-linear Oxford,

L a r g e E l a s t i c D e f o r m a t i o n s and

Continuum M e c h a n i c s , C l a r e n d o n P r e s s ,

1960.

Knowles,

J.A.

Adkins,

L a r g e AmpLitude O s c i l l a t i o n s

Incompressible E l a s t i c Material, (1960, J.

o f a Tube of

Appl.

Q.

Math.

18 -

71-77.

Leray & J.

Schautler, Topologie e t Gquations

fonctionelles,

Ann.

S c i . E c o l e Norm.

Sup ( 3 ) j l

-

(1934), 45-78. Rabinowitz,

[lo] P . H .

v a l u e Problems

A G l o b a l Theorem f o r N o n l i n e a r E i g e n -

and A p p l i c a t i o n s ,

l i n e a r Functional Analysis, Academic P r e s s , New Y o r k ,

[ll] R . S .

e d . E.H.

Zarantonello,

1971.

R i v l i n , Large E l a s t i c Deformations of I s o t r o p i c

Materials,

Parts I V , V , V I , P h i l . T r a n s . Roy.

London A 2 4 1 (1948) A

C o n t r i b u t i o n t o Non-

379-397,

Proc.

Roy.

SOC.

S O C . London

195 ( 1 9 4 9 ) 4 6 9 - 4 7 3 , P h i l . T r a n s . Roy. S o c . London ( 1 9 4 9 ) 173-195.

A 242

24

[l21

STUART S. ANTMAN

C. Truesdell, Comments on Rational Continuum Mechanics, i n this volume.

[13l

C. Truesdell & W.

Noll, T h e Non-Linear Field Theories o f

Mechanics, Handbuch d e r Physik, III/3, Springer-Verlag, Berlin, 1965.