A generalized AKNS hierarchy, bi-Hamiltonian structure, and Darboux transformation

A generalized AKNS hierarchy, bi-Hamiltonian structure, and Darboux transformation

Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332 Contents lists available at SciVerse ScienceDirect Commun Nonlinear Sci Numer Simulat journal...

4MB Sizes 0 Downloads 67 Views

Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

Contents lists available at SciVerse ScienceDirect

Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns

A generalized AKNS hierarchy, bi-Hamiltonian structure, and Darboux transformation Zhaqilao College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022, People’s Republic of China

a r t i c l e

i n f o

a b s t r a c t

Article history: Received 25 July 2011 Accepted 9 October 2011 Available online 25 October 2011

A new generalized AKNS hierarchy is presented starting from a 4  4 matrix spectral problem with four potentials. Its generalized bi-Hamiltonian structure is also investigated by using the trace identity. Moreover, the special coupled nonlinear equation, the coupled KdV equation, the KdV equation, the coupled mKdV equation and the mKdV equation are produced from the generalized AKNS hierarchy. Most importantly, a Darboux transformation for the generalized AKNS hierarchy is established with the aid of the gauge transformation between the corresponding 4  4 matrix spectral problem, by which multiple soliton solutions of the generalized AKNS hierarchy are obtained. As a reduction, a Darboux transformation of the mKdV equation and its new analytical positon, negaton and complexiton solutions are given. Ó 2011 Elsevier B.V. All rights reserved.

Keywords: Darboux transformation Soliton solution Generalized AKNS hierarchy Bi-Hamiltonian structure

1. Introduction It is well known that the Darboux transformation (DT) method plays an important role in solving many nonlinear evolution equations [1–13] such as Korteweg-de Vries (KdV), nonlinear Schrödinger, sine–Gordon, and other nonlinear differential equations which have great application in physics. But the main difficulty of the DT method lies in finding an appropriate spectral problem for a given nonlinear evolution equation. Hence, it is interesting for us to search for as many new spectral problems and corresponding nonlinear evolution equations as possible in soliton theory. In 1989, Tu [14] proposed a so-called trace identity to generate integrable evolution equations form the spectral problem. According to this method, many integrable evolution equations, their soliton hierarchies, and Hamiltonian structures are successively obtained [14–18]. We note that most of these well-known soliton hierarchies are related to the 2  2 zero-trace matrix spectral problems [19–22]. It is more important to investigate their mathematical structures and integrable properties, such as Hamiltonian structures [23], constrained flows [24], Darboux transformations (DT) [3], soliton solutions [4–13], algebra–geometric solutions [25], etc. [26]. Some 3  3 and 4  4 matrix AKNS spectral problems have been studied in many papers [27,28], but they have not considered their Darboux transformations and explicit solutions. In this paper, we are interested in bi-Hamiltonian structure, Darboux transformation and multiple soliton solutions for a generalized AKNS hierarchy associated with the following 4  4 matrix spectral problem

0 /x ¼ U/;

u1

u2

Bu B 4 U¼B @ u3

k

u3 C C C; k u4 A u1 k

0

0 u2

0

1

k

0

which is introduced by a matrix Lie algebra [24]. E-mail address: [email protected] 1007-5704/$ - see front matter Ó 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.cnsns.2011.10.010

ð1Þ

2320

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

The outline of the present paper is as follows. In Section 2, a new generalized AKNS hierarchy is derived. It is shown that the new hierarchy is integrable in Liouville’s sense and possesses bi-Hamiltonian structure. Most importantly, some important nonlinear equations are produced from the generalized AKNS hierarchy, which including the special coupled nonlinear equation, the coupled KdV equation [29], the KdV equation, the coupled mKdV equation [30] and the mKdV equation, etc. In Section 3, the Darboux transformation for the generalized AKNS hierarchy is constructed by considering the gauge transformation of its Lax pair. In Section 4, some multiple soliton solutions of the generalized AKNS hierarchy are derived by the application of the Darboux transformation. In Section 5, as a reduction, a Darboux transformation of the mKdV equation and its new positon [30], negaton and complexiton [31,32] solutions are also obtained. The conclusion is given in Section 6.

2. A generalized AKNS hierarchy and its bi-Hamiltonian structure To obtain the generalized AKNS hierarchy and its bi-Hamiltonian structure with the matrix spectral problem (1), we first consider the stationary zero-curvature equation

V x  ½U; V ¼ 0;

V ¼ ðV ij Þ44 ;

ð½U; V ¼ UV  VUÞ:

ð2Þ

Let

V 21 ¼ V 34 ¼ A;

V 24 ¼ V 31 ¼ B;

V 11 ¼ V 44 ¼ F;

V 22 ¼ V 33 ¼ F;



X

aj kj ;



jP0

X

bj kj ;

V 13 ¼ V 24 ¼ C;

V 12 ¼ V 43 ¼ D;

V 14 ¼ V 41 ¼ H; X



jP0

cj kj ;



jP0

ð3Þ

V 23 ¼ V 32 ¼ H;

X

dj kj :

ð4Þ

jP0

Substituting (3) and (4) into (2), we have

F ¼ @ 1 ðu1 A þ u2 B  u3 C  u4 DÞ; kA ¼ u3 H þ u4 F  12 Ax ;

H ¼ @ 1 ðu2 A þ u1 B  u4 C  u3 DÞ;

kB ¼ u4 H þ u3 F  Bx ;

kC ¼ u1 H þ u2 F þ 12 C x ;

ð5Þ kD ¼ u2 H þ u1 F þ 12 Dx :

ð6Þ

Thus from Eqs. (5) and (6) we obtain the Lenard gradient sequence

kðA; B; C; DÞT ¼ LðA; B; C; DÞT ;

ð7Þ

where

0 B B L¼B @

 12 @ þ L11

L12

L13

L14

L12

 12 @ þ L11

L14

L13

L31

L32

L32

1 @ 2

L31

 L33

1 C C C; A

L34 1 @ 2

L34

 L33

with

L11 ¼ u3 @ 1 u2 þ u4 @ 1 u1 ; 1

1

L33 ¼ u1 @ 1 u4 þ u2 @ 1 u3 ;

L13 ¼ u3 @ u4  u4 @ u3 ; 1

1

L32 ¼ u1 @ u1 þ u2 @ u2 ;

1

1

L12 ¼ u3 @ 1 u1 þ u4 @ 1 u2 ;

L14 ¼ u3 @ u3  u4 @ u4 ; 1

1

L34 ¼ u1 @ u3  u2 @ u4 ;

L31 ¼ u1 @ 1 u2 þ u2 @ 1 u1 ; @@ 1 ¼ @ 1 @ ¼ 1:

Substituting (4) into (7) and comparing coefficients for the same power of k gives rise to the recursion relation

LGj ¼ Gjþ1 ;

Gj ¼ ðaj ; bj ; cj ; dj ÞT ;

j P 0:

We take the initial value

G0 ¼ ðbu4 ; bu3 ; bu2 ; bu1 ÞT ; then we work out Gj, which is uniquely determined by (8), the first few terms are as follows

0

 12 bu4;x

B  1 bu C 3;x C B G1 ¼ B 1 2 C; @ 2 bu2;x A 1 bu1;x 2

0b

1 G2 ¼

  1  2u1 u23 þ u24 þ u4;xx  2  C  2u2 u3 þ u24 þ u3;xx C    C;  2u3 u21 þ u22 þ u2;xx C A   2   b 2 4u u u  2u u þ u þ u 1 2 3 4 1;xx 1 2 4

4u2 u3 u4 4 Bb B 4 4u1 u3 u4 B  B b 4u u u @4 1 2 4

ð8Þ

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

2321

0 G3 ¼

1 b ð6u2 ðu4 u3;x þ u3 u4;x Þ þ 6u1 ðu3 u3;x þ u4 u4;x Þ  u4;xxx Þ 8 B b C B 8 ð6u1 ðu4 u3;x þ u3 u4;x Þ þ 6u2 ðu3 u3;x þ u4 u4;x Þ  u3;xxx Þ C B C: B  b ð6u ðu u þ u u Þ þ 6u ðu u þ u u Þ  u C @ 8 2 4 1;x 3 2;x 1 3 1;x 4 2;x 2;xxx Þ A  8b ð6u1 ðu4 u1;x þ u3 u2;x Þ þ 6u2 ðu3 u1;x þ u4 u2;x Þ  u1;xxx Þ

Assuming the auxiliary problem

V ðnÞ ¼ ðkn VÞþ ;

/tn ¼ V ðnÞ /;

n P 0;

ð9Þ

where the symbol + denotes the choice of non-negative power of k. Then the compatibility condition of (1) and (9) gives rise to the zero-curvature representation ðnÞ U tn  V ðnÞ  ¼ 0; x þ ½U; V

ð10Þ

which is equivalent to

1 u1 Bu C B 2C B C ¼ X n ¼ JGn ¼ KGn1 ; @ u3 A 0

u4

ð11Þ

tn

where

0

0

B 0 B J¼B @ 0

0

0 2

1

2 0C C C; 2 0 0 A

2

0 0

0

0

K ¼ JL and L is given by Eq. (7). When n = 2, we have the auxiliary problem

0 /t2 ¼ V ð2Þ /;

B B B V ð2Þ ¼ B B @

ð2Þ

ð2Þ

bk2  M 5

M1

ð2Þ

bk2 þ M 5

ð2Þ

ð2Þ

M6

M4 M3

ð2Þ

M 6

ð2Þ

M3

1

ð2Þ

ð2Þ

M6

ð2Þ

bk2 þ M5

ð2Þ

ð2Þ

M1

ð2Þ

M2

M 6

ð2Þ

M2

ð2Þ

M4

ð2Þ

bk2  M 5

C C C C; C A

ð12Þ

where

b ð2Þ M 1 ¼ bu1 k þ u1;x ; 2 b ð2Þ M 4 ¼ bu4 k  u4;x ; 2

b b ð2Þ ð2Þ M 2 ¼ bu2 k þ u2;x ; M 3 ¼ bu3 k  u3;x ; 2 2 b b ð2Þ ð2Þ M 5 ¼ ðu1 u4 þ u2 u3 Þ; M6 ¼ ðu1 u3 þ u2 u4 Þ: 2 2

Substituting (1) and (12) into (10), we have a new coupled integrable equation

8 u1;t2 > > > > u > 3;t 2 > > : u4;t2

    ¼ 2b 4u1 u2 u3  2u4 u21 þ u22 þ u1;xx ;     ¼ 2b 4u1 u2 u4  2u3 u21 þ u22 þ u2;xx ;     ¼  2b 4u1 u3 u4  2u2 u23 þ u24 þ u3;xx ;     ¼  2b 4u2 u3 u4  2u1 u23 þ u24 þ u4;xx :

ð13Þ

When u2 = u3 = 0, b = 1, Eq. (13) is reduced to a special coupled nonlinear equation

1 u1;t2 ¼  u1;xx þ u4 u21 ; 2

u4;t2 ¼

1 u4;xx  u1 u24 : 2

ð14Þ

When n = 3, we have the auxiliary problem

0 /t3 ¼ V ð3Þ /;

ð3Þ

V 11

B ð2Þ B M k þ M ð3Þ B 5 V ð3Þ ¼ B 4ð2Þ B M k þ M ð3Þ 6 @ 3 ð2Þ ð3Þ M6 k þ M4

ð2Þ

ð3Þ

M1 k þ M2 ð3Þ

ð2Þ

ð3Þ

M 6 k  M 4

ð2Þ

ð3Þ

M3 k þ M6

M2 k þ M3 M6 k þ M4

V 11 ð2Þ

ð3Þ

V 11

ð2Þ

ð3Þ

M1 k þ M2

M6 k þ M4 M2 k þ M3

ð3Þ

ð2Þ

ð2Þ

ð3Þ

ð2Þ

ð3Þ

ð2Þ

ð3Þ

M4 k þ M5 ð3Þ

ð3Þ

V 11

1 C C C C; C A

ð15Þ

2322

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

where ð3Þ

ð2Þ

ð3Þ

ð3Þ

V 11 ¼ bk3  M 5 k þ M 1 ; M 1 ¼ 4b ðu4 u1;x  u3 u2;x þ u2 u3;x þ u1 u4;x Þ;     ð3Þ ð3Þ M2 ¼ 4b 4u1 u2 u3  2u21 u4  2u22 u4 þ u1;xx ; M 3 ¼ 4b 2u21 u3  2u22 u3  4u1 u2 u4 þ u2;xx ;   ð3Þ ð3Þ M4 ¼ 4b ðu3 u1;x þ u4 u2;x  u1 u3;x  u2 u4;x Þ; M5 ¼ 4b ð4u2 u3 u4  2u1 u23 þ u24 þ u4;xx Þ; ð3Þ

M6 ¼ 4b ð2u2 u23  4u1 u3 u4  2u2 u24 þ u3;xx Þ: Substituting (1) and (15) into (10), we have a new coupled integrable equation

8 u1;t3 > > > > u > 3;t3 > > : u4;t3

¼  4b ð6u1 ðu4 u1;x þ u3 u2;x Þ þ 6u2 ðu3 u1;x þ u4 u2;x Þ  u1;xxx Þ; ¼  4b ð6u2 ðu4 u1;x þ u3 u2;x Þ þ 6u1 ðu3 u1;x þ u4 u2;x Þ  u2;xxx Þ;

ð16Þ

¼  4b ð6u1 ðu4 u3;x þ u3 u4;x Þ þ 6u2 ðu3 u3;x þ u4 u4;x Þ  u3;xxx Þ; ¼  4b ð6u2 ðu4 u3;x þ u3 u4;x Þ þ 6u1 ðu3 u3;x þ u4 u4;x Þ  u4;xxx Þ:

(i) When u4 ¼ 1; u3 ¼ 12 ; b ¼ 4 and t3 = t, Eq. (16) is reduced to the coupled KdV equation [29]



u1;t ¼ 3u2 u1;x þ 3u1 u2;x  6u1 u1;x  6u2 u2;x  u1;xxx ;

ð17Þ

u2;t ¼ 3u1 u1;x þ 3u2 u2;x  6u2 u1;x  6u1 u2;x  u2;xxx : When u2 = u1 = u, Eq. (17) is reduced to the celebrated KdV equation [1–3]

ut þ 6uux þ uxxx ¼ 0:

ð18Þ

(ii) When u4 = u1, u3 = u2, and t3 = t, Eq. (16) is reduced to the coupled mKdV equation [30]

(

  u1;t ¼ 4b 6u21 u1;x þ 6u22 u1;x þ 12u1 u2 u2;x þ u1;xxx ;   u2;t ¼ 4b 6u21 u2;x þ 6u22 u2;x þ 12u1 u2 u1;x þ u2;xxx :

ð19Þ

When u1 = u, u2 = 0, Eq. (19) is reduced to the celebrated mKdV equation [3]

ut ¼

b ð6u2 ux þ uxxx Þ: 4

ð20Þ

To investigate the generalized Hamiltonian structure of the hierarchy (11), we take the Killing-Cartan form hA, Bi as tr(AB). Then by direct calculations, we conclude that

  @U ¼ 4F; V; @k

  @U ¼ 2A; V; @u1

  @U V; ¼ 2B; @u2

  @U V; ¼ 2C; @u3

  @U V; ¼ 2D: @u4

ð21Þ

By using trace identity [14], we have



d d d d ; ; ; du1 du2 du3 du4

 V;

@U @k



           @ @U @U @U @U ¼ kc kc V; ; V; ; V; ; V; : @k @u1 @u2 @u3 @u4

ð22Þ

Substituting (4) and (21) into (22), we have



d d d d ; ; ; du1 du2 du3 du4

 Z  4 ðu1 aj þ u2 bj  u3 cj  u4 dj Þdx ¼ ðc  jÞð2aj ; 2bj ; 2cj ; 2dj Þ;

j P 0:

ð23Þ

To fix the constant c, we compare the coefficient of j = 0 in the above equation and get c = 0. Substituting c = 0 into (23), we arrive at



 Z d d d d 2 Hj ¼ GTj ; Hj ¼ ðu1 aj þ u2 bj  u3 cj  u4 dj Þdx; ; ; ; du1 du2 du3 du4 j

j P 0:

ð24Þ

Therefore, we obtain the generalized bi-Hamiltonian structure of the hierarchy (11)

0

u1

0 dHn1 1

1

du1

Bu C B 2C B C @ u3 A u4

0 dHn 1 du

B dHn1 C B dH1n C C B B C B du C B du C ¼ K B dH 2 C ¼ J B dH2 C; B n1 C B nC @ du3 A @ du3 A tn

dHn1 du4

where K and J are given by (11).

dHn du4

ð25Þ

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

2323

3. Darboux transformation In this section, we proceed to construct the Darboux transformation of the generalized AKNS hierarchy (11). We assume that / = (/1, /2, /3, /4)T is a solution of Lax pair (1) and (9). Now we introduce a gauge transformation for the Lax pair (1) and (9)

 ¼ T/; /

ð26Þ

 ¼ ð/ 1; /  2; / 3; /  4 ÞT and T is a Darboux matrix, from which Lax pair (1) and (9) are transformed into new matrix specwhere /  as follows: tral problems of /

 x ¼ U /;  / U ¼ ðT x þ TUÞT 1 ;  t ¼ V ðnÞ /;  / V ðnÞ ¼ ðT t þ TUÞT 1 :

ð27Þ ð28Þ

With the help of the Darboux matrix method [12], we can obtain the following propositions. Proposition 1. The matrix U determined by the second expression of (27) has the same form as U:

0

k Bu  B 4 U¼B 3 @u 0

1 0 3 C k 0 u C C 4 A 0 k u 2 u 1 k u 1 u

2 u

and the transformation formulae from original potentials u1, u2, u3 and u4 into new ones are given by

 1 ¼ u1  2b; u

 2 ¼ u2  2c; u

 3 ¼ u3 þ 2f ; u

 4 ¼ u4 þ 2s; u

ð29Þ

10 1 0 1 0 /1 kþa b c d /1 C B B/ B C kþh g f C CB /2 C B 2 C B s CB C; B C¼B @ /3 A @ f g kþh s A@ /3 A 4 /4 d c b kþa /

ð30Þ

with



Da ; D

ð1Þ f1 ð2Þ f D ¼ 1ð1Þ f4 ð2Þ f4



Db ; D

ð1Þ

f3

ð2Þ

f3

ð1Þ

f2

ð2Þ

f2

f2 f2 f3 f3

ð1Þ ð2Þ ð1Þ ð2Þ



Dc ; D



Dd ; D



Ds ; D



Dh ; D



Dg ; D

f ¼

Df ; D

ð1Þ f4 ð2Þ f4 ð1Þ f1 ð2Þ f1

ð31Þ

ð32Þ

T ð1Þ ð2Þ ð1Þ ð2Þ and Da, Db, Dc, Dd, are produced from D by replacing its1st, 2nd, 3rd, 4th column with k1 f1 ; k2 f1 ; k1 f4 ; k2 f4 , respec

T ð1Þ ð2Þ ð1Þ ð2Þ tively. Ds, Dh, Dg, Df are produced from D by replacing its1st, 2nd, 3rd, 4th column with k1 f2 ; k2 f2 ; k1 f3 ; k2 f3 , respec

T

T ð1Þ ð1Þ ð1Þ ð1Þ ð2Þ ð2Þ ð2Þ ð2Þ tively. Where f1 ; f2 ; f3 ; f4 and f1 ; f2 ; f3 ; f4 are solutions of the Lax pair (1), (9) with k = k1 and k = k2, respectively. Proof. Let T1 = T⁄/detT, where it is a known formula of the inverse matrix,

ðT x þ TUÞT  ¼ ðfsl ðkÞÞ44 ;

ð33Þ





where T stands for the adjugate matrix of T, and every element of the matrix T is an algebraic cofactors of the matrix T. A direct calculation shows that fsl(k) are polynomials of k. Resorting to Eqs. (31) and (32), it can be verified that all kj(j = 1, 2) are roots of fsl(k)(s, l = 1, 2, 3, 4). Hence, Eq. (33) can be written as

ðT x þ TUÞT  ¼ ðdet TÞPðkÞ;

ð34Þ

where

0

k

B ð0Þ Bp B PðkÞ ¼ B 21 B pð0Þ @ 31 0

ð0Þ

ð0Þ

p12

p13

k

0

0

k

ð0Þ

p43

p42

ð0Þ

0

1

C ð0Þ p24 C C C; ð0Þ C p34 A k

2324

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332 ð0Þ

ð0Þ

ð0Þ

ð0Þ

ð0Þ

ð0Þ

ð0Þ

ð0Þ

with p12 ; p21 ; p13 ; p31 ; p24 ; p42 ; p34 and p43 are functions of (x, t) independent of k. Eq. (34) can be written as

T x þ TU ¼ PðkÞT:

ð35Þ

By comparing the coefficients of k in Eq. (35), we obtain ð0Þ

ð0Þ

p12 ¼ p43 ¼ u1  2b;

ð0Þ

ð0Þ

ð0Þ

p13 ¼ p42 ¼ u2  2c;

ð0Þ

p24 ¼ p31 ¼ u3 þ 2f ;

ð0Þ

ð0Þ

p21 ¼ p34 ¼ u4 þ 2s;

which implies U ¼ PðkÞ. The proof is completed. h Proposition 2. The matrix V ðnÞ determined by the second expression of (28) has the same form as V(n), in which original potentials 1 ; u 2 ; u  3 and u  4 according to the same transformation (29), (30). u1, u2, u3 and u4 are mapped into new potentials u For each integer n P 2, we can prove Proposition 2 similarly to the proof in Proposition 1. According to Propositions 1 and 2, the transformation (29), (30), maps the Lax pair (1) and (9) into another Lax pair (27) and (28) of the same type. Therefore, both of the Lax pair lead to the same system (11). We call the transformation  u 1 ; u 2 ; u 3 ; u  4 Þ a Darboux transformation of the generalized AKNS hierarchy (11). We obtain the ð/; u1 ; u2 ; u3 ; u4 Þ ! ð/; following assertion: 1 ; u 2 ; u 3 ; u  4 Þ of the generalized AKNS Theorem 1. Every solution (u1, u2, u3, u4) of the system (11) is mapped into a new solution ðu hierarchy (11) under the Darboux transformation (29), (30).

4. Soliton solutions of the generalized AKNS hierarchy In this section, we will obtain some multi-soliton solutions of the whole generalized AKNS hierarchy (11) by applying the Darboux transformation (29), (30). If choose a trivial solution u1 = 0, u2 = 0, u3 = 0 and u4 = 0 of the generalized AKNS hierarchy (11), then the Lax pair (1) and (9) are written as

/1;x ¼ k/1 ;

/2;x ¼ k/2 ;

/1;t ¼ bkn /1 ;

/3;x ¼ k/3 ;

/2;t ¼ bkn /2 ;

/4;x ¼ k/4 ;

/3;t ¼ bkn /3 ;

ð36Þ

/4;t ¼ bkn /4 :

Eq. (36) has a solutions with k = kj (j = 1, 2, 3, . . .):

1 C 1j exp kj x þ bknj t C B

C C B B C n B ðjÞ C B C 2j exp kj x  bkj t C B f2 C B C C¼B B

C; B ðjÞ C B C n B f3 C B C exp kj x  bkj t C A B @ C B 3j @ ðjÞ

A f4 n C 4j exp kj x þ bkj t 0

ðjÞ f1

1

0

ð37Þ

where C1j, C2j, C3j, C4j are arbitrary constants and kj(j = 1, 2, 3, . . .) are spectral parameters. According to (29)–(32) and (37) with j = 1, 2, we have a new explicit solution for the generalized AKNS hierarchy (11) as follows:

u1½0 ¼ u1  2b1 ; u2½0 ¼ u2  2c1 ; u3½0 ¼ u3 þ 2f 1 ; u4½0 ¼ u4 þ 2s1 ;

ð38Þ

where b1 = b, c1 = c, f1 = f, s1 = s, a1 = a, d1 = d, g1 = g and h1 = h. Substituting (31), (32) and (37) (with j = 1, 2) into (38) with the zero seed (u1 = u2 = u3 = u4 = 0) and constant parameter selections

C 11 ¼ 1;

C 21 ¼ 2;

C 31 ¼

8 ; 3

C 41 ¼ 5;

C 12 ¼ 3;

C 22 ¼ 3;

C 32 ¼ 2;

one can obtain a new solution for the generalized AKNS hierarchy (11) as follows:

1 C 42 ¼  ; 5

b ¼ 2;

ð39Þ

2325

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

6 expðn1 þ n2 Þð1935 expðn1 Þ þ 952 expðn2 ÞÞðk1  k2 Þ ; 3375 expð2n1 Þ þ 784 expð2n2 Þ þ 7710 expðn1 þ n2 Þ 6 expðn1 þ n2 Þð1215 expðn1 Þ þ 616 expðn2 ÞÞðk1  k2 Þ ¼ ; 3375 expð2n1 Þ þ 784 expð2n2 Þ þ 7710 expðn1 þ n2 Þ 15ð275 expðn1 Þ  126 expðn2 ÞÞðk1  k2 Þ ¼ ; 2ð3375 expð2n1 Þ þ 784 expð2n2 Þ þ 7710 expðn1 þ n2 ÞÞ 5ð1275 expðn1 Þ þ 602 expðn2 ÞÞðk1  k2 Þ ¼ ; 2ð3375 expð2n1 Þ þ 784 expð2n2 Þ þ 7710 expðn1 þ n2 ÞÞ

u1½0 ¼  u2½0 u3½0 u4½0

ð40Þ

    where n1 ¼ 2 xk1 þ 2tkn1 ; n2 ¼ 2 xk2 þ 2tkn2 . Particularly, the solutions of the coupled integrable Eqs. (13) and (16) are obtained by (40) with n = 2 and n = 3 respectively. If different spectral parameters k1 and k2 are chosen, the solution determined by (40) may be of different properties. For example, when k1 = 1,k2 = 1, the functions (40) is a one-soliton solution of the generalized AKNS hierarchy (11) (see Fig. 1). After taking the Darboux transformation (29), (30) once again, we can obtain the explicit solution for the generalized AKNS hierarchy (11) as follows:

u1½1 ¼ u1½0  2b2 ;

u2½1 ¼ u2½0  2c2 ;

1 ð3Þ 0 f k3 þ a1 B 1½1 C B ð3Þ C B B f2½1 C B s1 C B B ð3Þ C ¼ B B f3½1 C @ f1 A @ d1 ð3Þ f4½1

u3½1 ¼ u3½0 þ 2f 2 ;

0

0

ð4Þ

c1

k3 þ h1

g1

g1

k3 þ h1

c1

b1

b1

c1

k4 þ h1

g1

g1

k4 þ h1

c1

b1

ð41Þ

1 0 1 f ð3Þ 1 B ð3Þ C C B f1 C CB f2 C CB ð3Þ C; C s1 AB @ f3 A ð3Þ k3 þ a1 f4

ð42Þ

1 0 1 f ð4Þ 1 B ð4Þ C C B f1 C CB f2 C CB ð4Þ C; C s1 AB @ f3 A ð4Þ k4 þ a1 f4

ð43Þ

d1

1

0 k4 þ a1 C B B ð4Þ C B B f2½1 C B s1 C B B ð4Þ C ¼ B B f3½1 C @ f1 A @ d1 ð4Þ f4½1 f1½1

b1

u4½1 ¼ u4½0 þ 2s2 ;

d1

with

u1 0

4

0.1

2

0.05

0 4

0 t

2 x

2 1 u2 0 0 1 2 4

0 t

2

0.05

0

0.1 0.05

x

2 4

0.05

0 2

0.1

4

0.1

0.5 u3 0 0 0.5

0

0.1 0.05

4 2 x

0 2 4

0.1

u4 0

0.5

0 t

1

0.05

4

0.1 0.05 0 t

2 x

0.05

0 2 4

Fig. 1. One soliton solution (40) with k1 = 1, k2 = 1, n = 2.

0.1

2326

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

a2 ¼

D½1a 2 D½1

s2 ¼

D½1s 2 D½1

D½1

; ;

f ð3Þ 1½1 ð4Þ f1½1 ¼ ð3Þ f4½1 ð4Þ f4½1

b2 ¼ h2 ¼

D½1b

2

D½1 D½1h

2

D½1

f2½1

ð3Þ

f3½1

f2½1

ð4Þ

f3½1

f3½1

ð3Þ

f2½1

ð4Þ

f2½1

f3½1

; ;

c2 ¼

D½1c 2 D½1

g2 ¼

D½1g 2 D½1

; ;

d2 ¼ f2 ¼

D½1d

2

D½1 D½1f

2

D½1

; ð44Þ ;

ð3Þ f4½1 ð4Þ f4½1 ð3Þ f1½1 ð4Þ f1½1

ð3Þ ð4Þ ð3Þ ð4Þ

ð45Þ

and D½1a2 ; D½1b2 ; D½1c2 ; D½1d2 , are produced from D[1] by replacing its 1st, 2nd, 3rd, 4th column with

T ð3Þ ð4Þ ð3Þ ð4Þ k3 f1½1 ; k4 f1½1 ; k3 f4½1 ; k4 f4½1 , respectively. D½1s2 ; D½1h2 ; D½1g2 ; D½1f2 are produced from D[1] by replacing its 1st, 2nd,

T

T

T ð3Þ ð4Þ ð3Þ ð4Þ ð3Þ ð3Þ ð3Þ ð3Þ ð4Þ ð4Þ ð4Þ ð4Þ and f1 ; f2 ; f3 ; f4 3rd, 4th column with k3 f2½1 ; k4 f2½1 ; k3 f3½1 ; k4 f3½1 , respectively. Where f1 ; f2 ; f3 ; f4 are solutions of the Lax pair (1), (9) with k = k3 and k = k4, respectively. Substituting (40), (42)–(45) into (41) with the zero seed (u1 = u2 = u3 = u4 = 0) and constant parameter selections

C 11 ¼ 1;

C 21 ¼ 2;

C 31 ¼

1 C 42 ¼  ; 5

k1 ¼ 1;

C 43 ¼ 7;

C 14 ¼ 8;

8 ; 3

k2 ¼ 1;

C 41 ¼ 5; b ¼ 2;

C 24 ¼ 3;

C 12 ¼ 3;

C 13 ¼ 2;

C 34 ¼ 6;

C 22 ¼ 3;

C 32 ¼ 2;

8 C 33 ¼  ; 3 3 3 k3 ¼  ; k4 ¼ ; 4 4

ð46Þ

C 23 ¼ 1;

C 44 ¼ 9;

one can obtain two-soliton solution for the generalized AKNS hierarchy (11), and their graphs are shown in Fig. 2. Iterating the above method, we can obtain a series of multiple soliton solutions of the generalized AKNS hierarchy (11).

5. Reduction of the Darboux transformation and analytical solutions of the mKdV equation In this section, we will discuss a reduction of the Darboux transformation (29), (30), by which the Darboux transformations of the coupled mKdV Eq. (19) and the mKdV Eq. (20) are given. Most importantly, some new nonsingular positon, negaton solutions and complexiton solutions for the mKdV Eq. (20) are given out both analytically and graphically by means of the iterative Darboux transformation.

8 u1 1 6 4 2 0

0.1 0.05 0 t

4

2 x

0

2

2

x

0.05

0 2

0.1

4

0.05 0 t 0 x

0 t

4

0.1

2

0.1 0.05

0.05 4

0 u3 1 1 2 3 4

0 u2 1 1 2 3

0.05

2 4 6

0.1

0.1

0 1 u4 1 2 3 4 4

0.1 0.05 0 t

2 0 x

0.05 2 4

Fig. 2. Two-solution (41) with (42)–(46) and u1 = u2 = u3 = u4 = 0, n = 2.

0.1

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

2327

Under the condition u3 = u2, u4 = u1, s = b, g = d, f = c, h = a, Darboux transformation (29), (30) is reduced to the Darboux transformation of the coupled mKdV Eq. (19) as follows

 2 ¼ u2  2c; u

 1 ¼ u1  2b; u

ð47Þ

10 1 0 1 0 /1 kþa b c d /1 B/ C B B C k  a d c C CB /2 C B 2 C B b CB C; B C¼B @ /3 A @ c d k  a b A@ /3 A 4 /4 d c b kþa /

ð48Þ

with



Da ; D



ð1Þ f1 ð1Þ f D ¼ 2ð1Þ f3 ð1Þ f4

Db ; D



ð1Þ

f3

ð1Þ

f4

ð1Þ

f1

ð1Þ

f2

f2 f2 f4 f3

Dc ; D



Dd ; D

ð49Þ

ð1Þ f3 ð1Þ f2 ð1Þ f1

ð1Þ

ð1Þ

f4

ð1Þ ð1Þ ð1Þ

ð50Þ

T ð1Þ ð1Þ ð1Þ ð1Þ and Da, Db, Dc, Dd, are produced from D by replacing its 1st, 2nd, 3rd, 4th column with k1 f1 ; k1 f2 ; k1 f3 ; k1 f4 , respectively. Under the condition u1 = 0, u2 = u, b = d = 0, Darboux transformation (47), (48) is reduced to the Darboux transformation of the mKdV Eq. (20) as follows

 ¼ u  2c; u

ð51Þ

10 1 0 1 0 /1 kþa 0 c 0 /1 B/ C B B C ka 0 c C CB /2 C B 2 C B 0 CB C; B C¼B @ /2 A @ c 0 ka 0 A@ /2 A 1 0 c 0 kþa /1 /

ð52Þ

with



2 ð1Þ ð1Þ 2 k1 f2  f1 ð1Þ 2

f2

ð1Þ 2



;

ð1Þ ð1Þ 2k1 f2 f1 ð1Þ 2

f2

þ f1

ð1Þ 2

;

ð53Þ

þ f1

ðjÞ ðjÞ where f1 ; f2 is solution for the Lax pair of the mKdV Eq. (20)

/1;x ¼ k/1 þ u/2 ; /2;x ¼ u/1  k/2 ; 1 1 /1;t ¼ bkð2k2 þ u2 Þ/1 þ bð4k2 u þ 2u3 þ 2kux þ uxx Þ/2 ; 2 4 1 1 2 2 /2;t ¼  bkð2k þ u Þ/2  bð4k2 u þ 2u3  2kux þ uxx Þ/1 ; 2 4 ðjÞ

ð54Þ

ðjÞ

with k ¼ kj ; /1 ¼ f1 ; /2 ¼ f2 ; ðj ¼ 1; 2; 3; . . .Þ. From (51) and (53), we obtain a solution of the mKdV Eq. (20) as follows

u½0 ¼ u þ

ð1Þ ð1Þ 4k1 f2 f1 ð1Þ 2

f2

ð1Þ 2

:

ð55Þ

þ f1

With the Darboux transformation (51), (52), after taking the solution u[0] in (55) as the seed solution, we can obtain another solution for the mKdV Eq. (20) as follows:

u½1 ¼ u½0  2c2 ;

ð56Þ

2328

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

0

1

1 0 1 f ð2Þ k þ a 0 c 0 1 2 C B B ð2Þ C B ð2Þ C B C B B f2½1 C B 0 0 c C k2  a CB f2 C C¼B B C C; B B ð2Þ C @ c ð2Þ C 0 k2  a 0 AB B f2½1 C @ f2 A A @ ð2Þ 0 c 0 k2 þ a ð2Þ f1 f1½1 ð2Þ

f1½1

0

ð57Þ

with

a2 ¼

2 ð2Þ ð2Þ 2 k2 f2½1  f1½1 ð2Þ 2

ð2Þ 2

c2 ¼

;

ð2Þ ð2Þ 2k2 f2½1 f1½1 ð2Þ 2

f2½1 þ f1½1

ð2Þ 2

ð58Þ

;

f2½1 þ f1½1

ð2Þ ð2Þ is solution of (54) with k = k2. where a, b are give by (53) and f1 ; f2 In what follows, we shall apply the solution formulas (55) and (56) to construct analytical positon, negaton, complexiton, and their interaction solutions for the mKdV Eq. (20). If choose a trivial solution u(x, t) = u (u is a constant) of the mKdV Eqs. (20), (54) are written as

/1;x ¼ k/1 þ u/2 ; /2;x ¼ u/1  k/2 ; 1 1 /1;t ¼ bkð2k2 þ u2 Þ/1 þ bð4k2 u þ 2u3 Þ/2 ; 2 4 1 1 /2;t ¼  bkð2k2 þ u2 Þ/2  bð4k2 u þ 2u3 Þ/1 : 2 4

ð59Þ

5.1. Positon solution 2 Eq. (59) has a solutions with positive parameter k ¼ kj ðj ¼ 1; 2; 3; . . .Þ:

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 4 u2  kj A sin nj ; ¼ cj1 cos nj  @ 2 kj qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 0 4 ucj1  cj2 u2  kj A cos nj þ cj2 sin nj ; ¼@ 2 kj 0

ðjÞ f1

ðjÞ f2

ucj2 þ cj1

ð60Þ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 4 where nj ¼ 12 u2  kj ð2x þ t 2kj þ u2 bÞ and cj1, cj2 (j = 1, 2, 3, . . .) are arbitrary constants. Substituting (60) into (55) with j = 1 and parameter selections

c11 ¼ c12 ¼

1 ; 4

k1 ¼

1 ; 2

b ¼ 1;

u ¼ 1;

one can obtain the analytical positon solution for the mKdV Eq. (20) as follows:

h pffiffiffiffiffiffi i 1 15  9t8 þ 2x 4 h pffiffiffiffiffiffi u¼ i : 8 þ 2 sin 14 15  9t8 þ 2x 7  2 sin

ð61Þ

(a)

(b) 3 2 1

4 3 u 2 1 0 1

0 5 1 0

t 2

5 5

0 x

3 5

4

2

Fig. 3. One-positon solution for the mKdV Eq. (20) by (61).

0

2

4

2329

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

Fig. 3 shows the nonsingular one-positon structure by (61). Substituting (55), (57), (58) and (60) into (56) with j = 1, 2, positon–positon solution for the mKdV Eq. (20) can be constructed. Fig. 4 shows the nonsingular positon-positon structure (56) with (55), j = 1, 2 and parameter selections

c11 ¼ c12 ¼

1 ; 4

k1 ¼ 1;

k2 ¼

5 ; 8

1 c21 ¼ c22 ¼  ; 5

b ¼ 1;

u ¼ 2:

5.2. Negaton solution and positon–negaton solution 2 Eq. (59) has a solutions with negative parameter k ¼ kj ðj ¼ 1; 2; 3; . . .Þ: ðjÞ f1 ðjÞ f2



cj2 k2j cj2

pffiffiffiffiffiffiffiffiffi ffi 4 k u2

j expðfj Þ; ¼ cj1 expðfj Þ þ u ffi  2 pffiffiffiffiffiffiffiffiffi  cj1 kj cj1 k4j u2 expðfj Þ; ¼ cj2 expðfj Þ þ u

ð62Þ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 4 where fj ¼ 12 kj  u2 ð2x þ tð2kj þ u2 ÞbÞ and cj1, cj2(j = 1, 2, 3, . . .) are arbitrary constants. Substituting (62) with j = 1, c11 ¼ c12 ¼ 14 ; k1 ¼ 12 ; b ¼ 1; u ¼ 16 into (55), one-negaton solution for the mKdV Eq. (20) can be constructed as follows

pffiffi

pffiffi

pffiffi 3 exp 114325t þ 3 exp 35x  14 exp 8645 ð11t þ 144xÞ

pffiffi

pffiffi

pffiffi : u¼

6 3 exp 114325t þ 3 exp 35x  4 exp 8645 ð11t þ 144xÞ

ð63Þ

Fig. 5 shows the nonsingular one-negaton solution structure by (63). Substituting

 pffiffiffiffiffiffiffiffiffi ffi c k2 c k4 u2 ð1Þ expðf1 Þ; f1 ¼ c11 expðf1 Þ þ 12 1 12u 1   p ffiffiffiffiffiffiffiffiffi ffi c k2 c k4 u2 ð1Þ expðf1 Þ; f2 ¼ c12 expðf1 Þ þ 11 1 11u 1  pffiffiffiffiffiffiffiffiffi4ffi uc22 þc21 u2 k2 ð2Þ sin n2 ; f1 ¼ c21 cos n2  k22  pffiffiffiffiffiffiffiffiffi4ffi uc21 c22 u2 k2 ð2Þ cos n2 þ c22 sin n2 ; f2 ¼ k22 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi



4 4 4 4 f1 ¼ 12 k1  u2 2x þ t 2k1 þ u2 b ; n2 ¼ 12 u2  k2 2x þ t 2k2 þ u2 b

ð64Þ

and (57), (58) into (56), we have positon–negaton solution of the mKdV Eq. (20), and their graphs are shown in Fig. 6. 5.3. Complexiton solution If choose a trivial solution u(x, t) = 0 of the mKdV Eqs. (20), (54) are written as

/1;x ¼ k/1 ;

/1;t ¼ bk3 /1 ;

/2;x ¼ k/2 ;

/2;t ¼ bk3 /2 :

ð65Þ

Eq. (65) has a solutions with complex parameter k = aj + ibj (j = 1, 2, 3, . . .):

(a)

(b) 3 2 1 4 0

10 u

2 5 0

0 4 2

2

0 x

2

1 t 2 3

4

4

4

2

0

2

4

Fig. 4. Positon–positon (56) with (57), (58), (60) and c11 ¼ c12 ¼ 14, k1 ¼ 1; k2 ¼ 58 ; c21 ¼ c22 ¼  15 ; b ¼ 1; u ¼ 2:

2330

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

(a)

1.5 u 1 0.5 0

10 0 t 10 0

10

x

10

Fig. 5. One-negaton solution for the mKdV Eq. (20) by (63).

(a)

(b) 20

10

u

3 2 1 0 1 20

20

0

10 10

0 t 10

0 x

20

20

20

30

20

10

0

10

20

Fig. 6. Positon–negaton (56) with (57), (58), (64) and c11 ¼ c21 ¼ 1; c12 ¼  12 ; c22 ¼ 5; k1 ¼ 45 ; k2 ¼ 13 ; u ¼ 12 ; b ¼ 1.

ðjÞ

ðjÞ

f1 ¼ expðfj Þðcos nj þ i sin nj Þ;

f2 ¼ expðfj Þðcos nj  i sin nj Þ;





ð66Þ



where fj ¼ xaj þ t a3j bj  3aj b3j ; nj ¼ xbj þ t 3a2j b2j  b4j and aj, bj (j = 1, 2, 3, . . .) are arbitrary constants. 1 Substituting (66) with j ¼ 1; a1 ¼ 1; b1 ¼ 12 ; b ¼ 20 , into (55), one-complexiton solution for the mKdV Eq. (20) can be constructed as follows

u¼

  ð4 þ 2iÞ exp 40t þ 2x 

   

: 1 þ expð20t þ 4xÞ cos 11t þ x þ i 1 þ exp 20t þ 4x sin 11t þx 80 80

ð67Þ

Fig. 7 shows the one-complexiton structure by (67).

(a)

(b) 40

20 15 u 10 5 0 4

20 0

0

t 20

2

20

0 x

2 4

40

4

2

0

Fig. 7. The module of one-complexiton solution for the mKdV Eq. (20) by (67).

2

4

2331

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332

(b)

(a) 60 40 20 15 10 u 5 0

50 25 0 t

4 2

0 20 40

25 0 x

60 2

50 4

4

2

0

2

4

1 Fig. 8. The module of complexiton–complexiton solution (56) with (55), (57), (58), (66) and a1 ¼ a2 ¼ 1; b1 ¼ 12 ; b2 ¼  13 ; b ¼ 20 .

Substituting (55), (57), (58) into (56)and using (66) with j = 1, 2, complexiton–complexiton solution for the mKdV Eq. (20) can be constructed. Fig. 8 shows the complexiton–complexiton structure (56) with (66), j = 1, 2 and parameter selections

1 2

1 3

a1 ¼ a2 ¼ 1; b1 ¼ ; b2 ¼  ; b ¼

1 : 20

6. Conclusions In this paper, we have derived a new integrable generalized AKNS hierarchy (11) and its bi-Hamiltonian structure with the help of a 4  4 matrix spectral problem. We have demonstrated an approach to constructing a Darboux transformation for the generalized AKNS hierarchy (11) based on a gauge transformation between the corresponding 4  4 spectral problem with four potentials. The Darboux transformations for the coupled mKdV equation and mKdV equation are obtained through the reduction technique. As applications of Darboux transformations, some analytical positon, negaton, complexiton and their interaction solutions of the mKdV Eq. (20) are discussed. The analytical positon, negaton and complexiton solutions of the coupled mKdV Eq. (19) can be also obtained by its Darboux transformation (47), (48). How to construct the DTs for the coupled KdV Eq. (17) and the KdV Eq. (18) from DT (29), (30) in order to give out the corresponding positon, negaton and complexiton solutions is also an interesting and a significant topic. We shall consider it in the near future. Acknowledgments This work was supported by the High Education Science Research Program of China (Grant No 211034), the Natural Science Foundation of Inner Mongolia (Grant No 2009MS0108) and the High Education Science Research Program of Inner Mongolia Autonomous Region (NJ10045). References [1] Matveev VB, Salle MA. Darboux transformations and solitons. Berlin: Springer-Verlag; 1991. [2] Rogers C, Schief WK. Bäklund and Darboux transformations geometry and modern applications in soliton theory. Cambridge: Cambridge University Press; 2002. [3] Gu CH, Hu HS, Zhou ZX. Darboux transformations in integrable systems. In: Theory and their applications to geometry. Dortrecht: Springer-Verlag; 2005. [4] Neugebauer G, Meinel R. General N-soliton solution of the AKNS class on arbitrary background. Phys Lett A 1984;100:467–70. [5] Levi D, Neugebauer G, Meinel R. A new nonlinear Schrödinger equation, its hierarchy and N-soliton solutions. Phys Lett A 1984;102:1–6. [6] Li YS, Ma WX, Zhang JE. Darboux transformations of classical Boussinesq system and its new solutions. Phys Lett A 2000;275:60–6. [7] Zeng YB, Ma WX, Shao YJ. Two binary Darboux transformations for the KdV hierarchy with self-consistent sources. J Math Phys 2001;42:2113–27. [8] Geng XG, Ren HF, He GL. Darboux transformation for a generalized Hirota–Satsuma coupled Korteweg-de Vries equation. Phys Rev E 2009;79:056602. [9] Fan EG. Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation. J Phys A Math Gen 2000;33:6925–33. [10] Ling L, Liu QP. Darboux transformation for a two-component derivative nonlinear Schrödinger equation. J Phys A Theor 2010;43:434023. [11] Li HZ, Tian B, Li LL, Zhang HQ, Xu T. Darboux transformation and new solutions for the Whitham–Broer–Kaup equations. Phys Scr 2008;78:065001. [12] Zhaqilao, Sirendaoreji. A generalized coupled Korteweg-de Vries hierarchy, bi-Hamiltonian structure, and Darboux transformation. J Math Phys 2010;51:073501. [13] Xu SW, He JS, Wang LH. The Darboux transformation of the derivative nonlinear Schrödinger equation. J Phys A Math Theor 2011;44:305203. [14] Tu GZ. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys 1989;30:330–8. [15] Sirendaoreji. On gauge equivalent constrained flow for AKNS hierarchy and Geng hierarchy. Adv Math 1999;28:437–46. [16] Guo FK, Zhang YF. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J Phys A Math Gen 2005;38:8537–48. [17] Xia TC, Fan EG. The multicomponent generalized Kaup–Newell hierarchy and its multicomponent integrable couplings system with two arbitrary functions. J Math Phys 2005;46:043510. [18] Qin ZY. A generalized Ablowitz–Ladik hierarchy, multi-Hamiltonian structure and Darboux transformation. J Math Phys 2008;49:063505.

2332 [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32]

Zhaqilao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2319–2332 Ablowitz MJ, Clarkson PA. Solitons, nonlinear evolution equations and inverse scattering. Cambrige: Cambrige University Press; 1991. Wadati M, Konno K, Ichikawa YH. A generalization of inverse scattering method. J Phys Soc Jpn 1979;46:1965–6. Kaup DJ, Newell AC. An exact solution for derivative nonlinear Schrödinger equation. J Math Phys 1978;19:798. Qiao ZJ. A hierarchy of nonlinear evolution equations and finite-dimensional involutive systems. J Math Phys 1994;35:2971. Ma WX, Fuchssteiner B. The bi-Hamiltonian structure of the perturbation equations of the KdV hierarchy. Phys Lett A 1996;213:49–55. Zhang YF. A few expanding integrable models, Hamiltonian structures and constrained flows. Comm Theor Phys 2011;55:273–90. Cao CW, Wu YT, Geng XG. Relation between the Kadometsev–Petviashvili equation and the confocal involutive system. J Math Phys 1999;40:3948. Qiao ZJ. A new integrable equation with cuspons and W/M-shape-peaks solitons. J Math Phys 2007;48:082701. Li YS, Ma WX. Hamiltonian structures of binary higher-order constrained flows associated with two 3  3 spectral problems. Phys Lett A 2000;272:245–56. Ma WX, Chen M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J Phys A Math Gen 2006;39:10787–801. Lou SY, Tong B, Hu HC, Tang XY. Coupled KdV equations derived from two-layer fluids. J Phys A Math Gen 2006;39:513–27. Hu HC, Sang BW, Zhu HD. New nonsingular positon, negaton and complexiton solutions for a special coupled mKdV system. Phys Lett A 2010;374:1141–6. Ma WX. Complexiton solution to the Korteweg-de Vries equation. Phys Lett A 2002;301:35–44. Wu HX, Zeng YB, Fan TY. complexitons of the modified KdV equation by Darboux transformation. Appl Math Comput 2008;196:501–10.