Annalsof Discrete Mathematics 27 (1985) 227-232 0 Elsevier Science Publishers B.V. (North-Holland)
221
A LEMMA ON CYCLE DECOMPOSITIONS
Roland H a g g k v i s t P i l g r i m s v ' a g e n 54B 5-12648 H a g g e r s t e n SWEDEN
Some r e s u l t s a b o u t decomposing v a r i o u s g r a p h s i n t o e v e n l e n g t h c y c l e s are g i v e n .
$1.
MAIN RESULTS Let
b e a g r a p h ( w i t h o u t l o o p s ) and
G
r e p e t i t i v e ) of ( u n l a b e l l e d ) graphs. subgraph isomorphic w i t h where
E(G)
Each
1
@ G
Gi
@
where
M d i v i d e s G).
(M,M,..
of
.. , m ,
. ,M)
...,Gm
is isomorphic with G
pack
G
.
I
=
m
has a
G
IE(Hi)
C
i=l
i s s a i d t o pack
I
if
G
G
(we o f t e n w r i t e t h i s
for
Hi
i
=
1,2,. ..,m.
G(2) x'
i s s a i d t o h a v e a n M-decomposition
T h i s i s sometimes w r i t t e n i s o b t a i n e d from
, x" ,
G
MIG
if (read
by r e p l a c i n g e a c h
joining every v e r t e x i n
{x'
, x''}
to
w i t h e d g e s o f t h e same m u l t i p l i c i t y a s t h e m u l t i p l i -
[ x , y ] ; no o t h e r e d g e s a r e p r e s e n t .
c i t y of
L
IE(G)
An euen l i s t i s a l i s t w h e r e e a c h e n t r y o c c u r s
F i n a l l y , t h e graph {y' ,y"}
G1,G2,
a list(possib1y
i s proper ( f o r G ) i f
L
and m o r e o v e r
The list
G.
The g r a p h
b y a p a i r of v e r t i c e s
every v e r t e x i n
The l i s t
1,2,.
Gi
2 is a l a b e l l e d graph.
the proper l i s t x
=
u n i o n of t h e g r a p h s
... CH Gm)
a n e v e n number of times.
vertex
,i
denotes t h e edge-set
is t h e edge-disjoint
G = G
H.
...,Hm )
L = (H1,H2,
S e e F i g u r e 1.
Figure 1 The p u r p o s e o f t h i s n o t e i s t o g i v e t h e f o l l o w i n g lemma w h i c h p e r t a i n s t o t h e decomposition of LEMMA.
Let
2-regular graph on
where
G'
=
G"
=H.
G(2)
i n t o even c y c l e s .
be a path o r a c y c l e w i t h
G
2n
n
edges and let
v e r t i c e s w i t h a27 components euen. Therefore,
H ~ G ( Z.)
Then
H
be a
G(2) = G ' tt3 G"
228
R. Haggkvist Proof.
If
i s a path, then
G
d i s j o i n t cycles with lengths Put
m
j
=
C i=l
Let
G
j
ni
mo
and
has length
and
{x;
Gi
[ X ~ , X ~ , . . . , X ~where +~] [xm ,x +l,...,x i-1 mi-l
t h e segment
1 = 1,2,
ni,
...,m .
Note t h a t
b e t h e subgraph of
"
d i s t i n c t ) and edges
,XI
i-1 mi..1
independent edges between and f i n a l l y
Gi(2)
-1'
IJ {x;.-~.x; 1
[x;
H
c o n s i s t s of
G
m
m
C ni = n . i=1
1.
=
Gi
+l~x~i-l+l~ i-1
...,m.-2
and n o t e , moreover, t h a t
r e s p e c t i v e l y , where
{x! 3
[x;.-~, 1
+1]
, x'.'} 3 1
XI'
i
I
i
, [x;
with v e r t i c e s
"
{xi i
'
of
m ] i
{x;
G
if
G.
G
is
Clearly
is a cycle
1u
i-1
( a l l t h e s e v e r t i c e s are
,x" +1] i-1 mi-l
and
xn+l = x1
xm = x if i-1 mi
m = l . Let
"
# V(G")
2n1,2n 2 , . . . , 2 n m ,
be the path o r cycle
a c y c l e and denote by Gi
V(G')
Assume w i t h o u t l o s s of g e n e r a l i t y t h a t
could b e a 2-cycle.
t o g e t h e r w i t h any p a i r of
{X;+~,X;+~} f o r
j = mi-l+l,mi-2>+2,
[ x i -l,x" ] ( s e e F i g u r e 2 ) . i mi
Figure 2
It is clear that G . (2) 1
is a n o t h e r
Gi
i s a c y c l e of l e n g t h
2ni-cycle
G'!
2n.
( s e e F i g u r e 3).
Figure 3
whose edge-induced complement i n
229
Cycle Decompositions A l s o , w e h a v e t h a t t h e g r a p h s G;, m G' = G; i s isomorphic with H i=l
i = 1,2,
...,m
are p a i r w i s e d i s j o i n t , m G" = U G;. Moreover i= 1
and s o i s
and t h e lemma i s proved. o
G(2) = G ' fB G"
The above o b s e r v a t i o n h a s some immediate c o r o l l a r i e s . COROLLARY 1. Let
be a graph w i t h a Hamilton decomposition ( t h a t i s ,
G
Then any proper even l i s t
a decomposition i n t o edge-disjoint Hamilton c y c l e s ) . of b i p a r t i t e 2-factors packs Proof.
A 2-factor i n
w e may assume t h a t Let
G. 2
1,2,
=
... @
Gm
...,m .
2n
G(2)
and
i s t h e proper l i s t of such m , Hm) v e r t i c e s , where of c o u r s e n is t h e o r d e r o f
b e a Hamilton d e c o m p o s i t i o n o f
By t h e lemma,
... H3 Gm (2)
G(2) = G1(2) Q G2(2) @
whence
is a 2 - r e g u l a r s p a n n i n g subgraph of
G(2)
g r a p h s on
G1 CH G2 @
Cn , i
.
L = (H1,H1,H2,H 2 , . . . , H
2-regular b i p a r t i t e Gi
G(2)
Gi(2) = H I = H'
1
ct)
ct)
H" tt, 1
Hy
Hi
t h a t is,
G ,
where
d HY
H!
rr
HY
Hi
rr
... W Hm' tt, H C .
W
The f o l l o w i n g r e s u l t i s immediate.
Ang proper even l i s t o f b i p a r t i t e 2-factors packs
COROLLARY 2.
KZn
where
-
F
denotes t h e complete graph on
Any proper even l i s t of 2-factors packs
COROLLARY 3 .
Proof, K2n+1
both
K 4 n i 2 - F = K 2n+lC2)
Now and
and
K4n+2
2n v e r t i c e s minus a 1-factor
K4n,4n
=
K4n, 4n
K2n,2n(2)
.
-
F.
'
*
Moreover,
have Hamilton d e c o m p o s i t i o n s . o
K2n, 2n
A l i t t l e less o b v i o u s , b u t s t i l l immediate from t h e lemma i s t h e n e x t r e s u l t .
Every proper even List o f even c y c l e s without a 4n-cycZe
PROPOSITION 1.
- F where
K2n+2
packs
2
<
mi
~
dnd
2n+l
for
Ho H3 H1 W is,
Ho
...,M,,M,)
2mi
=
is a 1-factor.
I n f a c t w e s h a l l p r o v e s l i g h t l y more.
Proof.
L = (M1,M1,M2,M2,
IV(Mi)I
F
b e t h e s t a n d a r d Hamilton d e c o m p o s i t i o n of
has v e r t e x s e t
U {O,l,.
{m}
. . ,2n-1)
{ [ O , ~ ] , [ a , n ] , [ n , n + l ] l U{[i,2n-i],[i,2n-i+1] modulo
2n
and
Ho
and
.
... Hn-l
o b t a i n e d from
Namely t h a t any e v e n l i s t
of b i p a r t i t e 2 - r e g u l a r g r a p h s Mi w i t h m m 1 4 m . = 1 21E(Mi)I = (4n$2) - 2 n - 1 , where mi # 2n i=l i=l i = 1,2,.. , m , packs K4n+2 - F . To see t h i s , l e t
by a d d i n g m+i
=
-.
anti-clockwise r o t a t i o n of
i
,...,n-11
with
*
Hi
t o e a c h v e r t e x where a d d i t i o n i s p e r f o r m e d
I n o t h e r words, i
and edge s e t
: i = 1,2
H = K 2n+1
H.
s t e p s i n Figure 4.
is o b t a i n e d from
Ho
by a n
That
230
R. Haggkvisl 0
' *n-*2 n
Figure 4
We o r i e n t
Hi
such t h a t
Assume now t h a t t h e l a s t
2k
t h e rest have o r d e r a t most from
H
T = [V1,V2,
2n-1
...,V ( Z n f l ) (n-k-1)
direction, that is,
m
, 0 , 1 , .. .
H1 i n t h e forward d i r e c t i o n .
Hn-k-l the required property. in
T
segment of
S
Case 2. {n,n+l,n-1,.
5
.,
x1
=
p
x
P
=
T
and t r a v e r s e
Ho
i n t h e forward
m
The t o u r
again, then continue T
has
.
Hn-k-l
followed by a
There i s no l o s s of g e n e r a l i t y
Ho
ending i n
followed by a
p = 2q
.
Then
V(S) =
II
{m}
.,n+q-l,n-q+l)
u
In t h i s case a l l v e r t i c e s a r e d i s t i n c t
x~~ and t h e r e f o r e i s odd, s a y S
,
G.
m .
i s even, s a y
a l l v e r t i c e s are d i s t i n c t and
'
S = [ x ~ , x ~ , . . . , x ~be ~ ]a segment of l e n g t h
...,n+q+2,n-q+l}. p
'(2n+l)(n-k-l) = 1 ' r + i 5 (2n+l) (n-k-1) in
x ~ = ~ I}m l U t n , n + l , n - l , n + 2 , n - 2 , . .
Assume
' ' Hn-k has an
I t i s s t r a i g h t - f o r w a r d t o check t h a t
(2n+l) (n-k-1))
. . ,n+q-1,n-q+l,n+q}
,
*
(2n-l)-cycle
u n t i l we r e a c h
c o n s i s t s of a segment of
Assume
{ 1 , 2 , 0 , 3,2n-1,
except t h a t
rti
So assume t h a t
H1.
Case 1.
u
m
where
-
and t h a t
and s o o n u n t i l f i n a l l y we have t r a v e r s e d
Indeed, l e t
(since
U txp-1,xp-2,..
U
'
. .. ,veil
which does n o t c o n s i s t of a segment of Ho
t o assume t h a t segment of
[vi ,vi+l,
Begin a t
i n t h e forward d i r e c t i o n of
4n+2
Hn-l , H n 4 9 We s h a l l see t h a t G
G.
induces a p a t h o r a
has t h e following description.
have o r d e r
i 2 n-1.
Delete t h e e d g e s of
w i t h t h e p r o p e r t y t h a t any segment of l e n g t h a t most
L
e n t r i e s i n the list 4n-2.
and c o n s i d e r t h e remaining graph
eulerian tour
2n-1
i s i n t h e forward d i r e c t i o n ,
(m,i)
S
is a cycle i n p = 2q+l
.
Then
G
of l e n g t h
V(S) =
{m}
U {1,2,0,3,2n-1,.
. . ,n-q,n+q+2} .
i s a path i n
of l e n g t h
G
2n-1.
2n-1.
I: In t h i s case
23 1
Cycle Decompositioas It i s now e a s y t o see t h a t where e a c h
G l , G 2 , - * * , Gm-k Gi
h a s a decomposition i n t o g r a p h s
G
is a path o r cycle with
Gi
m
be t h e graph induced by t h e edges of t h e T-segment
v
j where
c
pj =
G1 @ G2 d
i=l
mi
.. . @ Gm
ensures t h a t
po = 1 .
and where
H(2)
GWi
Hence
H = G d H1I-k
for i = 1,2,
= Hn-i-l
i s packed by
since
L
(Mi,Mi)
@
e d g e s - simply l e t
i
Pi-1
,v
Hn-k+l
...,k .
packs
Pi-1
+l,..,,v
' * '
@
@
pi
Hn-l =
The lemma now
Gi(2)
.
An analogous r e s u l t now f o l l o w s .
PROPOSITION 2.
811-6,
lengths
8n-4
L = (M1,M1,M2,M2,
1
=
811-2
or
packs
K4n,4n *
As i n t h e proof of P r o p o s i t i o n 1 w e show t h a t any even l i s t
Proof.
IV(Mi)
Any proper even l i s t o f even c y c l e s Without c y c l e s of
2mi
...,Mm ,M m )
of b i p a r t i t e 2 - r e g u l a r graphs m Z 4mi = 1 (E(Mi) = 1611' where 2 i=l i=l m
and
...,m-k,
i = 1,2,
and
Ho Q HI d
Indeed, l e t
m
i
=
I
4n
.. . @ Hn-l
I
for
i = O,l,. . . , n - 1 .
y2i+l.
reach
x1
Now t r a v e r s e
Hn-k-l
t h a t any segment 411-4
from
is traversed,
v . , v i+l,...,vr+i
i s a p a t h o r a (4n-4)-cycle
,...,x~~
and
4n,4n
*
Y ~ , Y ~ , . . . , Y ~and ~
( w i t h i n d i c e s reduced modulo
x1
L e t t h e forward
i s t r a v e r s e d from
x
i n t h e forward d i r e c t i o n u n t i l w e
H1
G.
1
i n t h e forward d i r e c t i o n and s o on
Again we n o t e t h a t with
in
... @ Hn-k-l.
T
r+i 5 4nk(n-k-l)
has t h e property of l e n g t h a t most
The v e r i f i c a t i o n i s l e f t t o t h e
I t i s now c l e a r from t h e proof of C o r o l l a r y 3 t h a t
reader.
H(2) 1 K $2.
Ho
again, then continue along
until finally
for
Consider t h e f o l l o w i n g e u l e r i a n t o u r
] of G = H @ H1 @ T = [ v v 0 1' 2 * * '"4nk(n-k-l) d i r e c t i o n of Hi be t h e one where t h e edge
to
5 411-4
...
..
for
Imi
with
i = m-k+l, m packs K4n,4n = K2n,2n(2) b e t h e s t a n d a r d Hamilton decomposition o f
H = K 2n,2n *' t h a t i s , H . h a s v e r t i c e s x1,x2 edges [ x j ,yj+2i] , [ x j ,yj+2i+l] : j = 1,2,. ,2n
2n)}
Mi
L
packs
*
REMARKS AND WILD CONJECTURES
C o r o l l a r i e s 2 and 3 a r e of i n t e r e s t i n c o n n e c t i o n w i t h t h e famous Oberwolf a c h problem (see [ l ] ) which a s k s f o r t h e d e t e r m i n a t i o n of t h o s e 2 - f a c t o r s which decompose
K2n+l.
The r e l a t e d near-Oberwolfach problem [ 2 ] a s k s f o r t h o s e
2 - f a c t o r s which decompose K2n - F ; above we showed t h a t a l l b i p a r t i t e ones do
so i f K2n,2n,
n
i s odd.
Similarly, i f
n
i s e v e n , t h e n a l l 2 - f a c t o r s decompose
whence t h e b i p a r t i t e analogue of t h e Oberwolfach problem i s completely
solved i n h a l f t h e cases.
R. Haggkvist
232
P r o p o s i t i o n s 1 and 2 s u p p o r t t h e c o n j e c t u r e s t h a t any p r o p e r l i s t of c y c l e s p a c k s K - F a n d K 2 n , 2 n , r e s p e c t i v e l y . F o r a s u r v e y on t h e s u b j e c t o f c y c l e 2n d e c o m p o s i t i o n s s e e D. S o t t e a n [ 3 ] . The a r e a is f u l l of c o n j e c t u r e s and r a t h e r empty on g e n e r a l r e s u l t s , a l t h o u g h s p e c i f i c d e c o m p o s i t i o n s c a n b e found i n t h e literature.
I t i s t e m p t i n g t o p u t f o r w a r d two w i l d c o n j e c t u r e s which b o t h a r e
t o t a l l y o u t of r ea c h a t p r e s e n t , b u t where n a t u r a l s p e c i a l c a s e s probabl y can be t r e a t e d . C o n j e c t u r e 1:
Every p r o p e r l i s t o f c y c l e s p a c k s graph on
Conjecture 2:
n
where
G
is an e u l e r i a n 3n
G
4 .
v e r t i c e s e a c h o f d e g r e e more t h a n
Any p r o p e r l i s t o f 2 - f a c t o r s p a c k s 12m g r a p h on n < __ v e r t i c e s .
G
where
G
is a n 2 m - r e g u l a r
5
Any c o u n t e r e x a m p l e s t o t h e above c o n j e c t u r e s would b e most welcome, o r f o r t h a t m a t t e r t o t h e b i p a r t i t e a n a lo g u e s where bipartition
(S,T) w i t h
Note t h a t t h e
4C3
G
now is assumed t o b e b i p a r t i t e w i t h
I S 1 = IT1 = n .
d o e s n o t decompose
K12
- F
(see [2])
and t h e r e
e x i s t s a n e u l e r i a n g r a p h ( f o u n d by Kon Graham) w i t h minimum d e g r e e edges without triangle-decomposition
( s e e Nash-Williams
-
and
3k
[4]).
REFERENCES [ l ] P. H e l l , A. K o t z i g and A. ROSA, Some r e s u l t s on t h e O b e r w o l f a c h p r o b l e m , A e q u a t i o n e s Math. 1 2 ( 1 9 7 5 ) , 1-5.
[ 2 ] C. Huang, A . K o t z i g and A. Ross, On a v a r i a t i o n o f t h e O b e r w o l f a c h p r o b l e m , D i s c r e t e Math. 27 ( 1 9 7 9 ) , 261-278. [ 3 ] Dominique S o t t e g n , D e c o m p o s i t i o n s d e g r a p h e s e t h y p e r g r a p h e s , t h e s e s L ' u n i v e r s i t ; Paris-Sud (1980).
[ 4 ] C. S t . J . A . N a s h - W i l l i a m s , P r o b l e m p. 1 1 7 9 , C o m b i n a t o r i a l M a t h e m a t i c s a n d i t s A p p l i c a t i o n s 111, e d . Erd:s (1970).
e t a l , C o l l o q u i a Math. SOC. J . B o l y a i 4