A mixed finite element method for a time-fractional fourth-order partial differential equation

A mixed finite element method for a time-fractional fourth-order partial differential equation

Applied Mathematics and Computation 243 (2014) 703–717 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

2MB Sizes 0 Downloads 63 Views

Applied Mathematics and Computation 243 (2014) 703–717

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

A mixed finite element method for a time-fractional fourth-order partial differential equation q Yang Liu ⇑, Zhichao Fang, Hong Li *, Siriguleng He School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China

a r t i c l e

i n f o

Keywords: Time-fractional fourth-order PDE Mixed finite element method Caputo-fractional derivative Finite difference scheme Stability A priori error estimates

a b s t r a c t In this paper, a numerical theory based on the mixed finite element method for a timefractional fourth-order partial differential equation (PDE) is presented and analyzed. An auxiliary variable r ¼ Du is introduced, then the fourth-order equation can be split into the coupled system of two second-order equations. The time Caputo-fractional derivative is discretized by a finite difference method and the spatial direction is approximated by the mixed finite element method. The stabilities based on a priori analysis for two variables are discussed and some a priori error estimates in L2 -norm for the scalar unknown u and the variable r ¼ Du, are derived, respectively. Moreover, an a priori error result in H1 -norm for the scalar unknown u also is proved. For verifying the theoretical analysis, a numerical test is made by using Matlab procedure. Ó 2014 Elsevier Inc. All rights reserved.

1. Introduction Fractional partial differential equations (FPDEs), whose theoretical analysis and numerical methods have been paid close attention by more and more math researchers, include many types based on the fractional derivative in different directions, such as space FPDEs, time FPDEs and space–time FPDEs. So far, we have found a large number of numerical methods for hunting for the numerical solutions of FPDEs. These methods include finite difference methods [1,4–6,2,9,10,12– 14,16,22,23,30], spectral methods [8], finite element methods [3,11,17–21,24], mixed finite element method [7], finite volume element method [9], DG method [15] and so forth. In recent years, finite element methods for helping people to obtain the numerical solutions for FPDEs have been increasingly concerned by most people. In the recent literatures, we find that the study of mixed finite element methods for FPDEs is very limited. So far, only a paper [7] has been studied and analyzed for a mixed finite element method of time-FPDE with second-order space derivative. However the theoretical analysis of the (mixed) finite element methods for solving the fractional fourth-order PDEs have not been mentioned and reported. In this article, our goal is to give some detailed numerical analysis of a mixed finite element method for studying the following time-FPDE with fourth-order derivative term

@ a uðx; tÞ  Du þ D2 u ¼ f ðx; tÞ; ðx; tÞ 2 X  J; @t a

ð1:1Þ

q Foundation item: Supported by the National Natural Science Fund (11301258, 11361035), the Natural Science Fund of Inner Mongolia Autonomous Region (2012MS0108, 2012MS0106), the Scientific Research Projection of Higher Schools of Inner Mongolia (NJZZ12011, NJZY13199, and NJZY14013). ⇑ Corresponding authors. E-mail addresses: [email protected] (Y. Liu), [email protected] (H. Li).

http://dx.doi.org/10.1016/j.amc.2014.06.023 0096-3003/Ó 2014 Elsevier Inc. All rights reserved.

704

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

with boundary condition

uðx; tÞ ¼ Duðx; tÞ ¼ 0; ðx; tÞ 2 @ X  J;

ð1:2Þ

and initial condition

uðx; 0Þ ¼ u0 ðxÞ; x 2 X;

ð1:3Þ

d

where X  R ðd 6 2Þ and J ¼ ð0; T  are a bounded convex polygonal domain with Lipschitz continuous boundary @ X and the a uðx;tÞ time interval with 0 < T < 1, respectively. f ðx; tÞ and u0 ðxÞ are given known functions and @ @t is defined by the following a Caputo fractional derivative

@ a uðx; tÞ 1 ¼ @t a Cð1  aÞ

Z 0

t

@uðx; sÞ ds ; 0 < a < 1: @ s ðt  sÞa

ð1:4Þ

Here, we approximate the Caputo fractional derivative by a finite difference method, formulate the mixed weak formulation and fully discrete scheme, prove the stability of the fully discrete scheme and derive the theoretical analysis of some a priori error results in detail. The remaining parts of the article is as follow. In Section 2, we introduce a finite difference method for approximating the Caputo time-fractional derivative, and then discuss the detailed proof of the truncation error. In Section 3, we formulate a fully discrete mixed scheme for the fractional fourth-order PDE (1.1) and derive the stable results for two important variables in detail. Moreover, we prove some a priori error estimates in L2 and H1 -norms. In Section 4, we show some numerical results to illustrate the rationality and effectiveness of our method. In Section 5, we make a brief summary about the presented method and the future development. Throughout this paper, we will denote C > 0 as a generic constant free of the space–time step parameters h and d. At the 2 same time, we define the natural inner product in L2 ðXÞ or ðL2 ðXÞÞ by ð; Þ with the corresponding norm k  k. The other notations and definitions of Sobolev spaces can be easily followed in Ref. [29]. 2. Approximation of time-fractional derivative For the discretization for time-fractional derivative, let 0 ¼ t 0 < t 1 < t 2 <    < t M ¼ T be a given partition of the time interval ½0; T with step length d ¼ T=M and nodes t n ¼ nd, for some positive integer M. For a smooth function / on ½0; T, define /n ¼ /ðtn Þ. Lemma 2.1. Assuming that u 2 C 2 ð½0; TÞ, then the time fractional derivative 0
@ a uðx;tÞ @t a

at t ¼ t nþ1 can be approximated by, for

i u1  u0 @ a uðx; tnþ1 Þ d1a h ¼ ðn þ 1Þ1a  ðnÞ1a a @t Cð2  aÞ d n h 1a i kþ1  4uk þ uk1 X d 1a 1a 3u þ ðn  k þ 1Þ  ðn  kÞ þ Enþ1 0 ; Cð2  aÞ k¼1 2d where Enþ1 ¼ E01 þ Enþ1 0 2 ,

Z

t1

"

#  2 t1 þ t 0 @ uðx; t12 Þ ds 2 2 þ Oðð s  t ; 1 Þ Þ þ Oðd Þ 2 2 ðt nþ1  sÞa @t 2

E01 ¼

1 Cð1  aÞ

Enþ1 2

" # n Z tkþ1 X 1 @ 2 uðx; tkþ1 Þ ds 2 2 ¼ ðs  t kþ1 Þ þ Oððs  tkþ1 Þ Þ þ Oðd Þ : Cð1  aÞ k¼1 tk ðt nþ1  sÞa @t2

s

t0

ð2:1Þ

ð2:2Þ

and

ð2:3Þ

Proof. Writing the integral (1.4) into two parts, we get

@ a uðx; tnþ1 Þ 1 ¼ @t a Cð1  aÞ

Z

t1

t0

n Z t kþ1 X @uðx; sÞ ds 1 @uðx; sÞ ds : ¼I þ II: aþ @ s ðtnþ1  sÞ @ s ðtnþ1  sÞa Cð1  aÞ k¼1 tk

ð2:4Þ

Then discretizing parts I and II by the similar approximated schemes to [8,7], respectively, we get the discrete formula (2.1) with truncation errors (2.2) and (2.3). h

705

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

Lemma 2.2. With u 2 C 2 ð½0; TÞ, the truncation error Enþ1 is bounded by 0

! M D d2a C a d2 MD d þ Cd2 1a : þ ln T ¼CðaÞðd2a þ d2 þ ln dÞ; þ Cð3  aÞ Cð1  aÞ Cð2  aÞ

jEnþ1 0 j 6

where M 4 ¼ sup t2½0;T

o n 2 @ uðx;tÞ  @t2  ;

ð2:5Þ

l0 ¼ 0; ln ¼ 1; for any n P 1.

Proof. Now we estimate the truncation error E01 . Firstly, we only need to consider the following term. Using the Taylor formula, we have

Z

t1



s

t0

  Z t1 Z t1 t1 þ t0 ds t1 þ t0 ds 1a ¼  ðt  s Þ d s þ t  nþ1 nþ1 a 2 2 ðt nþ1  sÞa t0 t 0 ðt nþ1  sÞ   1 2n þ 1 ¼ d2a ðn2a  ðn þ 1Þ2a Þ þ ððn þ 1Þ1a  n1a Þ 2a 2ð1  aÞ   a 1 2a 2a ¼d ððn þ 1Þ  n2a Þ þ ðnðn þ 1Þ1a  ðn þ 1Þn1a Þ 2ð1  aÞ 2ð1  aÞð2  aÞ " ! !#  1a  1a a 1 1 1 ¼ d2a n þ n 1þ  ðn þ 1Þ n1a ðn þ 1Þ 1 þ n 2ð1  aÞ n 2ð1  aÞð2  aÞ       a 1 1 n ¼ d2a ðn þ 1Þ 1 þ ð1  aÞ þ O 2 n n 2ð1  aÞð2  aÞ     1 1 1 nð1 þ ð1  aÞ þ O 2 Þ  ðn þ 1Þ n1a þ 2ð1  aÞ n n        a 1 1 1 Oð1Þd2a na ¼ d2a 2aþO : þ n1a ¼ a þ O n 2ð1  aÞ n 2ð1  aÞð2  aÞ ð1  aÞð2  aÞ ð2:6Þ

By the simple calculation for (2.2), we have

Z t1 h   i @ 2 uðx; t1 Þ Oð1Þd2a na 1 ds 2 O ðs  t1 Þ2 þ Oðd2 Þ þ a 2 2 C ð3  a Þ C ð1  a Þ ðt @t t0 nþ1  sÞ h i  a  Oððth  t 1 Þ2 Þ þ Oðd2 Þ na  @ 2 uðx; t1 Þ Oð1Þd2a na n 2 2 ¼ n þ ðn þ 1Þ 2 nþ1 Cð3  aÞ Cð2  aÞ @t h i " # 2 2  a 2 Oððth  t 1 Þ Þ þ Oðd Þ n @ uðx; t1 Þ Oð1Þd2a na ð1  aÞ 2 2 ; þ ¼ Cð3  aÞ Cð2  aÞ 1 þ a 1n þ Oðn12 Þ @t2

E01 ¼

ð2:7Þ

where t 0 < t h < t1 . Noting that ðnÞa 6 1, we get

jE01 j 6

M D d2a C a d2 ; þ Cð3  aÞ Cð1  aÞ

ð2:8Þ

Secondly, we now start to estimate the error bounds for jEnþ1 2 j. By using the integral calculation, we easily obtain

jEnþ1 2 j 6

n M D d þ Cd2 X Cð1  aÞ k¼1

Z

t kþ1

tk

ds MD d2a þ Cd3a 1a M D d þ Cd2 1a n 6 T : a ¼ Cð2  aÞ Cð2  aÞ ðt nþ1  sÞ

ð2:9Þ

Combining (2.8) and (2.9), we get 0 nþ1 jEnþ1 0 j 6 jE1 j þ ln jE2 j 6

where

MD d2a C a d2 M D d þ Cd2 1a T ¼ CðaÞðd2a þ d2 þ ln dÞ; þ þ ln Cð3  aÞ Cð1  aÞ Cð2  aÞ

l0 ¼ 0; ln ¼ 1; for any n P 1. h

3. Mixed method and the analysis of stability 3.1. Weak formulation and semi-discrete scheme Introducing an auxiliary variable

r ¼ Du, we first rewrite Eq. (1.1) into the following coupled system

ð2:10Þ

706

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

@ a uðx; tÞ  Du þ Dr ¼ f ðx; tÞ; @t a

ð3:1Þ

and

r  Du ¼ 0:

ð3:2Þ

By using Green’s formula, we get the following mixed weak formulation of (3.1) and (3.2): find fu; rg : ½0; T # such that

H10

 H10

 a  @ uðx; tÞ ; v þ ðru; rv Þ  ðrr; rv Þ ¼ ðf ; v Þ; 8v 2 H10 ; a @t

ð3:3Þ

ðr; wÞ þ ðru; rwÞ ¼ 0; 8w 2 H10 :

ð3:4Þ

and

We now define the finite element space V h as

V h ¼ fv h 2 H10 ðXÞ \ C 0 ðXÞjv h je 2 Pm ðeÞ; 8e 2 Kh g;

ð3:5Þ

where Kh is a quasiuniform partition of the domain X. Then the corresponding semi-discrete mixed finite element scheme of (3.3) and (3.4) is to find fuh ; rh g : ½0; T # V h  V h such that

 a  @ uh ðx; tÞ ; v h þ ðruh ; rv h Þ  ðrrh ; rv h Þ ¼ ðf ; v h Þ; 8v h 2 V h ; a @t

ð3:6Þ

ðrh ; wh Þ þ ðruh ; rwh Þ ¼ 0; 8wh 2 V h :

ð3:7Þ

and

Remark 3.1 (i) So far, we have not found any related studies on the mixed finite element method for solving fractional fourth-order PDEs. In this article, we derive some detailed theoretical process on a mixed finite element method for solving the fractional fourth-order PDEs (1.1). (ii) We can also get another mixed weak formulation

 a  @ uðx; tÞ ; v  ðr; v Þ  ðrr; rv Þ ¼ ðf ; v Þ; 8v 2 H10 ; a @t

ð3:8Þ

ðr; wÞ þ ðru; rwÞ ¼ 0; 8w 2 H10 :

ð3:9Þ

and

(iii) For the system (3.8) and (3.9), we can get some similar results by the similar analysis to that based on the system (3.3) and (3.4), so we omit the corresponding discussions in this article. 3.2. The analysis of stability for discrete scheme In this subsection, we will give the analysis of stability for the case 0 < a < 1. For the convenience of theoretical analysis, we now denote

(

Gak ¼ ðk þ 1Þ

1a

k

1a

and dt ukþ1 ¼

u1 u0 d

;

3ukþ1 4uk þuk1 2d

k¼0 ; k P 1:

Based on the discrete formula (2.1), the system (3.3) and (3.4) can be rewritten as the following equivalent weak formulation

d1a

n X 1 Gank ðdt ukþ1 ; v Þ þ ðrunþ1 ; rv Þ  ðrrnþ1 ; rv Þ ¼ ðf nþ1 þ Enþ1 0 ; v Þ; 8v 2 H 0 ;

Cð2  aÞ k¼0

ð3:10Þ

and

ðrnþ1 ; wÞ þ ðrunþ1 ; rwÞ ¼ 0; 8w 2 H10 : Now, a fully discrete finite element procedure is to determine 1a

d

n X

Cð2  aÞ k¼0

ð3:11Þ ðunþ1 h ;

r

nþ1 h Þ

2 V h  V h ; ðn ¼ 0; 1; . . . ; M  1Þ such that

nþ1 nþ1 nþ1 Gank ðdt ukþ1 ; v h Þ; 8v h 2 V h ; h ; v h Þ þ ðruh ; rv h Þ  ðrrh ; rv h Þ ¼ ðf

ð3:12Þ

707

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

and nþ1 ðrnþ1 h ; wh Þ þ ðruh ; rwh Þ ¼ 0; 8wh 2 V h :

ð3:13Þ

In the next process, we firstly consider the stability for scheme (3.12) and (3.13). Theorem 3.2. For the scheme (3.12) and (3.13), the following stable inequality for unh 2 V h holds, for sufficiently small d

kunh k 6 Cðku0h k þ ka ðdÞmax kf k kÞ;

ð3:14Þ

06k6n

: where ka ðdÞ¼2da Cð2  aÞ; f 2 L2 ðXÞ and C > 0 is a constant free of two mesh parameters d and h. Proof. We take

v h ¼ unþ1 ; h

wh ¼ rnþ1 in (3.12) and (3.13), respectively, and add the two equations to get h

n d1a X nþ1 2 nþ1 2 nþ1 Ga ðd ukþ1 ; unþ1 ; unþ1 h Þ þ kruh k þ krh k ¼ ðf h Þ: Cð2  aÞ k¼0 nk t h

ð3:15Þ

Now we handle the first term on the left hand side of equality (3.15). We easily get the following equality by the simple verification n n1 d1a X d1a d1a X Gank ðdt uhkþ1 ; unþ1 Gan ðdt u1h ; unþ1 Ga ðd unkþ1 ; unþ1 h Þ ¼ h Þþ h Þ Cð2  aÞ k¼0 Cð2  aÞ Cð2  aÞ k¼0 k t h

¼

da

Cð2  aÞ

Gan ðu1h  u0h ; unþ1 h Þþ

n1 X da Ga ð3uhnkþ1  4unk þ unk1 ; unþ1 h h h Þ: 2Cð2  aÞ k¼0 k

Noting that Ga0 ¼ 1, it follows that n1 X

Gak 3unkþ1  4unk þ uhnk1 ; unþ1 ¼ h h h

n2 X

3

k¼0

a

Gkþ1 unk h

k¼1

¼

2 3kunþ1 h k



n1 n X X nþ1  4 Gak unk þ Gak1 unk h h ; uh k¼0

a n

a

þ 3G1  4G0

uh ; unþ1 h

ð3:16Þ

!

k¼1



n1 X nþ1 þ ð3Gakþ1  4Gak þ Gak1 Þunk h ; uh

!



 3Gan u1h ; unþ1 h

k¼1



þ Gn1 u0h ; unþ1 : h a

ð3:17Þ

: Apply a combination for (3.17), (3.16) and (3.15), multiply (3.15) by ka ðdÞ¼2da Cð2  aÞ and use Cauchy–Schwarz inequality to arrive at 2 nþ1 2 nþ1 2 nþ1 3kunþ1 ;unþ1 h k þ ka ðdÞðkruh k þ krh k Þ ¼ ka ðdÞðf h Þ

n1 X nþ1 ð3Gakþ1  4Gak þ Gak1 Þunk h ;uh

!

k¼1

a 1 nþ1 a a 0 nþ1 þ ð4Ga0  3Ga1 Þðunh ; unþ1 h Þ þ Gn ðuh ;uh Þ þ ð2Gn  Gn1 Þðuh ;uh Þ

6

n1 X a a a a a 1 n 0 j3Gakþ1  4Gak þ Gak1 jkunk h k þ j4G0  3G1 jkuh k þ j2Gn  Gn1 jkuh k þ Gn kuh k k¼1

þka ðdÞkf nþ1 k kunþ1 h k: 2 unþ1 h k

Remove the second positive term ka ðdÞðkr

nþ1 u 6 h

nþ1 2 k Þ, h

þ kr

ð3:18Þ

then divide kunþ1 h k in inequality (3.18) to obtain

! n1  X  3Ga  4Ga þ Ga kunk k þ j4Ga  3Ga jkun k þ j2Ga  Ga jku0 k þ Ga ku1 k þ ka ðdÞkf nþ1 k : h h h h kþ1 k k1 0 1 n n1 n

ð3:19Þ

k¼1

We apply triangle inequality j3Gakþ1  4Gak þ Gak1 j 6 3jGakþ1  Gak j þ jGak  Gak1 j; j2Gan  Gan1 j 6 jGan1  Gan j þ Gan and note that inequality 1 > Gak1 > Gak > Gakþ1 > 0 in (3.19) to get

kunþ1 h k 6

! n1 n1 X X 1 a a a a a a 1 nk n 0 nþ1 3 ðGak  Gakþ1 Þkunk k þ ðG  G Þku k þ ð4G  3G Þku k þ G ku k þ G ku k þ k ðdÞkf k : a h h h h h k1 k 0 1 n1 n 3 k¼1 k¼1

ð3:20Þ ku1h k

ku0h k.

Now we derive the relationship between and When n ¼ 0 in (3.12) and (3.13), we take (3.12) and (3.13), respectively, and add the two equations to get

da ðu1  u0h ; u1h Þ þ kr1h k2 þ kru1h k2 ¼ ðf 1 ; u1h Þ: Cð2  aÞ h

vh ¼

u1h

and wh ¼ r1h in

ð3:21Þ

708

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

Multiply (3.21) by da Cð2  aÞ and use Cauchy–Schwarz inequality to get

  ku1h k2 þ da Cð2  aÞ kr1h k2 þ kru1h k2 6 ðku0h k þ da Cð2  aÞkf 1 kÞku1h k:

ð3:22Þ

By the simple calculation, we easily get

ku1h k 6 ku0h k þ da Cð2  aÞkf 1 k:

ð3:23Þ

Make a combination for (3.23) and (3.20) to get

! n1 n1 X X 1 a a a a a a a a nk nk n 0 nþ1 1 3 ðGk  Gkþ1 Þkuh k þ ðGk1  Gk Þkuh k þ ð4G0  3G1 Þkuh k þ ðGn1 þ Gn Þkuh k þ ka ðdÞkf k þ ka ðdÞkf k : 3 2 k¼1 k¼1

1 kunþ1 h k6

ð3:24Þ From (3.24), we can prove that 0 k kunþ1 h k 6 Cðkuh k þ ka ðdÞ max kf kÞ:

ð3:25Þ

06k6nþ1

In the following discussion, we use mathematical induction to prove the inequality (3.25). When n ¼ 1 in (3.12) and (3.13), we take v h ¼ u2h in (3.12) and (3.13) and sum the two equations to derive

da da Ga1 ðu1h  u0h ; u2h Þ þ ð3u2h  4u1h þ u0h ; u2h Þ þ kr2h k2 þ kru2h k2 ¼ ðf 2 ; u2h Þ: Cð2  aÞ 2Cð2  aÞ

ð3:26Þ

Multiply (3.26) by ka ðdÞ and use Cauchy–Schwarz inequality to get

3ku2h k2 6 ka ðdÞðf 2 ; u2h Þ þ 2ðu1h ; u2h Þ þ ðu0h ; u2h Þ 6 ðka ðdÞkf 2 k þ 2ku1h k þ ku0h kÞku2h k: Divide

ku2h k

ð3:27Þ

in (3.27) and substitute (3.23) into (3.27) to get

ku2h k 6

 

1 1 ðka ðdÞkf 2 k þ 2ku1h k þ ku0h kÞ 6 3ku0h k þ ka ðdÞðkf 2 k þ kf 1 kÞ ¼ C ku0h k þ ka ðdÞmax kf k k : 06k61 3 3

ð3:28Þ

It is not hard to see from (3.28) that (3.25) holds for the case n ¼ 1. We now assume that

  kunh k 6 C ku0h k þ ka ðdÞmax kf k k ;

ð3:29Þ

06k6n

holds for the cases n ¼ 1; 2; . . . ; j, then we prove that (3.25) holds based on the induction hypothesis (3.29). We now consider (3.24) with the simple calculation to get for the case n ¼ j þ 1

kujþ1 h k 6

    1 ð½3ðGa1  Gaj Þ þ ðGa0  Gaj1 ÞC ku0h k þ ka ðdÞ max kf k k þ ð4Ga0  3Ga1 ÞC ku0h k þ ka ðdÞmaxkf k k 06k6j1 06k6j 3   1 a a þ Gj1 þ Gj ku0h k þ ka ðdÞkf jþ1 k þ ka ðdÞkf 1 kÞ: 2

ð3:30Þ

By the simplification for (3.30), we have for n ¼ j þ 1

  0 k kujþ1 h k 6 C kuh k þ ka ðdÞ max kf k :

ð3:31Þ

06k6jþ1

Based on (3.28) and (3.31), we easily see that the conclusion (3.25) of Theorem 3.2 holds. In the next theorem, we will mainly discuss the stability of variable rnh . h Theorem 3.3. For the scheme (3.12) and (3.13), the following stable inequality for

  pffiffiffiffiffiffiffiffiffiffiffi krnh k þ krunh k 6 C kr0h k þ kru0h k þ ka ðdÞ max kf k k ;

rnh 2 V h holds, for sufficiently small d

06k6n

ð3:32Þ

where ka ðdÞ is defined as Theorem 3.2 and C is a positive constant free of space–time step h and d. Proof. In order to analyze the stable result for following

rnh , we have to handle the scheme (3.13). Now we rewrite (3.13) as the

n n d1a X d1a X Gank ðdt rkþ1 Ga ðd rukþ1 ; rwh Þ ¼ 0: h ; wh Þ þ Cð2  aÞ k¼0 Cð2  aÞ k¼0 nk t h

Set wh ¼ rnþ1 in (3.33) and h

v h ¼ Cdð2aaÞ 1

Pn

a  kþ1 k¼0 Gnkdt uh

in (3.12) and take the sum of the two equations to arrive at

ð3:33Þ

709

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

2 d1a X n n

 d1a X a  kþ1 kþ1 nþ1  G du þ Ga ðd rkþ1 ; rnþ1 h Þ þ ðdt ruh ; ruh Þ Cð2  aÞ k¼0 nk t h Cð2  aÞ k¼0 nk t h ¼

n X

d1a

Cð2  aÞ k¼0

nþ1 Gank ðdt ukþ1 Þ; h ;f

ð3:34Þ

Use Cauchy–Schwarz inequality and Young inequality to get n

 1 nþ1 2 d1a X kþ1 nþ1  Ga ðd rkþ1 ; rnþ1 kf k : h Þ þ ðdt ruh ; ruh Þ 6 2 Cð2  aÞ k¼0 nk t h

ð3:35Þ

Using the similar process of calculation to (3.20), we have 2 jk!nþ1 h kj 6

! n1 n1 X 2 X nk n 0 1 a a a a a a jk!nþ1 3 ðGak  Gakþ1 Þjk!nk kj þ ðG  G Þjk ! kj þ ð4G  3G Þjk ! kj þ G jk ! kj þ G jk ! kj k1 k 0 1 n1 n h h h h h h kj 3 k¼1 k¼1 1 þ ka ðdÞkf nþ1 k2 ; 3 ð3:36Þ

: j h kj¼k

j hk

ujh k.

where jk! r þ kr Applying the inequalities we have

2 jk!nþ1 h kj 6 C 3

1 2

P

k j¼1 aj

2

6

Pk

2 j¼1 aj

6

P k

j¼1 aj

2

;2

Pk

j;m¼1;j–m aj am

6

P

k j¼1 aj

2

; aj P 0; ðj; m ¼ 0; 1; 2; . . . ; k),

n1 n1 X X pffiffiffiffiffiffiffiffiffiffiffi nþ1 n 0 1 a a a a ka ðdÞkf k ðGak  Gakþ1 Þjk!nk ðGak1  Gak Þjk!nk h kj þ h kj þ ð4G0  3G1 Þjk!h kj þ Gn1 jk!h kj þ Gn jk!h kj þ k¼1

!2

k¼1

1 nþ1 2 þ jk!h kj 2 ð3:37Þ

By the simple calculation for (3.37), we easily get jk!

nþ1 h kj 6 C

! n1 n1 X X pffiffiffiffiffiffiffiffiffiffiffi nþ1 nk nk n 0 1 a a a a a a a a 3 ðGk  Gkþ1 Þjk!h kj þ ðGk1  Gk Þjk!h kj þ ð4G0  3G1 Þjk!h kj þ Gn1 jk!h kj þ Gn jk!h kj þ ka ðdÞkf k : k¼1

k¼1

ð3:38Þ

In the next consideration, we use a similar process of proof to (3.25) based on mathematical induction to get 0 jk!nþ1 h kj 6 Cðjk!h kj þ

pffiffiffiffiffiffiffiffiffiffiffi ka ðdÞ max kf k kÞ:

ð3:39Þ

06k6n

Noting that the notation for jk!jh kj, we get the stability on

rnh . h

3.3. Fully discrete error analysis In this subsection, we will give some fully discrete analysis of a priori error estimates for the case 0 < a < 1. Now a Ritzprojection associated with our equations is introduced to help us to analyze the convergence of the method. Lemma 3.4. Define a Ritz-projection operator {h : H10 ðXÞ ! V h by

ðrðu  {h uÞ; rwh Þ ¼ 0; 8wh 2 V h ;

ð3:40Þ

and holds

ku  {h uk þ hku  {h uk1 6 Ch

mþ1

kukmþ1 ; 8u 2 H10 ðXÞ \ Hmþ1 ðXÞ;

P

R

1 2

ð3:41Þ

where the norms is defined by kzkk ¼ ½ 06jbj6k X jDb zj2 dx with the degree k of the polynomial. The contents of Lemma 3.4 can be found in many literatures, such as Refs. [29,28]. In the next analysis, we will discuss the proof of fully discrete a priori error estimates based on the Ritz-projection Lemma 3.4 in detail. To simplify the process of writing in the proof, we now rewrite the errors as

uðtn Þ  unh ¼ ðuðt n Þ  {h un Þ þ ð{h un  unh Þ ¼ fn þ /n ;

rðtn Þ  rnh ¼ ðrðtn Þ  {h rn Þ þ ð{h rn  rnh Þ ¼ pn þ vn :

710

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

Theorem 3.5. Supposing that un 2 H10 ðXÞ \ Hmþ1 ðXÞ; unh 2 V h and u0h ¼ {h uð0Þ, then the error estimate for u in L2 -norm holds with a parameter 0 < a < 1

kuðt n Þ  unh k 6

Cðu; aÞT a mþ1 mþ1 ðln d þ d2 þ d2a þ ð1 þ da Þh Þ þ CðuÞh ; 1a

ð3:42Þ

and when a ! 1 mþ1

kuðt n Þ  unh k 6 CðuÞðln d þ d2 þ d þ ð1 þ d1 Þh

Þ;

ð3:43Þ

where both Cðu; aÞ (with a) and CðuÞ depend on the norm kukmþ1 . Proof. Subtract (3.12) from (3.10) and apply the Ritz-projection (3.40) to obtain the error equations n n d1a X d1a X Gank ðdt /kþ1 ; v h Þ þ ðr/nþ1 ; rv h Þ  ðrvnþ1 ; rv h Þ ¼  Ga ðd fkþ1 ; v h Þ þ ðEnþ1 0 ; v h Þ; 8v h 2 V h ; Cð2  aÞ k¼0 Cð2  aÞ k¼0 nk t

ð3:44Þ

ðvnþ1 ; wh Þ þ ðr/nþ1 ; rwh Þ ¼ ðpnþ1 ; wh Þ; 8wh 2 V h :

ð3:45Þ

and

For the first term on the left hand side of (3.44), we take a similar process to (3.16) to get n n1 X d1a X da da Gank ðdt /kþ1 ; v h Þ ¼ Gan ð/1  /0 ; v h Þ þ Ga ð3/nkþ1  4/nk þ /nk1 ; v h Þ: Cð2  aÞ k¼0 Cð2  aÞ 2Cð2  aÞ k¼0 k

ð3:46Þ

We add (3.44) and (3.45), substitute (3.46), take ðv h ; wh Þ ¼ ð/nþ1 ; vnþ1 Þ and multiply by ka ðdÞ ¼ 2da Cð2  aÞ to arrive at n1 X Gak ð3/nkþ1  4/nk þ /nk1 ; /nþ1 Þ þ ka ðdÞðkvnþ1 k2 þ kr/nþ1 k2 Þ k¼0 n X nþ1 ¼ 2d Gank ðdt fkþ1 ; /nþ1 Þ  2Gan ð/1  /0 ; /nþ1 Þ þ ka ðdÞðEnþ1 Þ  ka ðpnþ1 ; vnþ1 Þ: 0 ;/

ð3:47Þ

k¼0

Now we deal with the first term on the left hand side of (3.47). Noting that Ga0 ¼ 1, we use the similar process to (3.17) to arrive at n1 X Gak ð3/nkþ1  4/nk þ /nk1 ; /nþ1 ¼ 3k/nþ1 k2 þ ð3Ga1  4Ga0 Þð/n ; /nþ1 Þ k¼0

þ

! n1 X ð3Gakþ1 4Gak þ Gak1 Þ/nk ; /nþ1 3Gan ð/1 ; /nþ1 Þ k¼1

þ Gan1 ð/0 ; /nþ1 Þ:

ð3:48Þ

By substituting (3.48) into (3.47), we obtain n X nþ1 3k/nþ1 k2 þ ka ðdÞðkvnþ1 k2 þ kr/nþ1 k2 Þ ¼ 2d Gank ðdt fkþ1 ; /nþ1 Þ þ ka ðdÞðEnþ1 Þ 0 ;/ k¼0

 ð3Ga1  4Ga0 Þð/n ; /nþ1 Þ 

n1 X

! ð3Gakþ1  4Gak þ Gak1 Þ/nk ; /nþ1

k¼1

þ Gan ð/1 ; /nþ1 Þ þ ð2Gan  Gan1 Þð/0 ; /nþ1 Þ  ka ðpnþ1 ; vnþ1 Þ:

ð3:49Þ

For the next proof, we have to deal with the first term on the right hand side of (3.49). Now we use the similar proof to (3.46) and (3.48) to obtain n n1 X X 2d Gank ðdt fkþ1 ; /nþ1 Þ ¼ 2Gan ðf1  f0 ; /nþ1 Þ  Gak ð3fnkþ1  4fnk þ fnk1 ; /nþ1 Þ k¼0

k¼0 n1 X ð3Gakþ1  4Gak þ Gak1 Þfnk ; /nþ1 ¼ 3ðfnþ1 ; /nþ1 Þ 

!  ð3Ga1  4Ga0 Þðfn ; /nþ1 Þ

k¼1

þ Gan ðf1 ; /nþ1 Þ þ ð2Gan  Gan1 Þðf0 ; /nþ1 Þ:

ð3:50Þ

Applying (3.41), Cauchy–Schwarz inequality and the inequality

j3Gakþ1  4Gak þ Gak1 j 6 3jGakþ1  Gak j þ jGak  Gak1 j ¼ 3ðGak  Gakþ1 Þ þ ðGak1  Gak Þ;

ð3:51Þ

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

711

we have n n1 X X 2d Gank ðdt fkþ1 ; /nþ1 Þ ¼ ð3kfnþ1 k þ j3Gakþ1  4Gak þ Gak1 jkfnk k þ ð4Ga0  3Ga1 Þkfn k þ Gan kf1 k k¼0

k¼1

þ Gan1 kf0 kÞk/nþ1 k 6 CðuÞð3 þ 3ðGa1  Gan Þ þ ðGa0  Gan1 Þ þ ð4Ga0  3Ga1 Þ þ Gan þ Gan1 Þh

mþ1

k/nþ1 k ¼ Cðu; aÞh

mþ1

k/nþ1 k:

ð3:52Þ

Substitute (3.52) into (3.49) and use Cauchy–Schwarz inequality to get

3k/nþ1 k2 þ ka ðdÞðkvnþ1 k2 þ kr/nþ1 k2 Þ 6 ðj4Ga0  3Ga1 jk/n k n1 X

þ

j3Gakþ1  4Gak þ Gak1 jk/nk k þ Gan k/1 k þ ðjGan1  Gan j þ Gan Þk/0 k

k¼1

!

þ ka ðdÞkEnþ1 0 k þ Cðu; aÞh

mþ1

k/nþ1 k þ ka kpnþ1 kkvnþ1 k:

ð3:53Þ

Noting that the following inequalities

1 2 2 2 ða þ bÞ 6 ka þ b ; 2

ac þ bd 6 aðc þ dÞ þ bðc þ dÞ ¼ ða þ bÞðc þ dÞ;

ð3:54Þ

for any a; b; c; d > 0; k 2 N þ , we have

pffiffiffiffiffiffiffiffiffiffiffi 2 1 ðk/nþ1 k þ ka ðdÞkvnþ1 kÞ 6 ðj4Ga0  3Ga1 jk/n k 2 n1 X j3Gakþ1  4Gak þ Gak1 jk/nk k þ Gan k/1 k þ ðjGan1  Gan j þ Gan Þk/0 k þ k¼1

þ

ka ðdÞkEnþ1 0 k

þ Cðu; aÞh

mþ1

! pffiffiffiffiffi pffiffiffiffiffi nþ1 þ ka kp k ðk/nþ1 k þ ka kvnþ1 kÞ:

ð3:55Þ

Use inequality (3.51) and the inequality 1 > Gak1 > Gak > Gakþ1 > 0 to get

k/nþ1 k 6 2ðð4Ga0  3Ga1 Þk/n k þ ½3ðGan1  Gan Þ þ Ga0  Ga1 þ 4

n1 X ðGak1  Gak Þk/nk k þ Gan k/1 k þ Gan1 k/0 k k¼2

þ ka ðdÞkEnþ1 0 k þ Cðu; aÞh

mþ1

Þ:

ð3:56Þ

Based on (3.56), we can derive

k/nþ1 k 6

Cðu; aÞ mþ1 ðln d1þa þ d2þa þ d2 þ h Þ: Gan

ð3:57Þ

In the following analysis and discussion, we use mathematical induction to discuss the conclusion (3.57). When n ¼ 0 in (3.44) and (3.45), taking v h ¼ /1 and wh ¼ v1 in (3.44) and (3.45), respectively, and summing the two equations, we use Cauchy–Schwarz inequality to obtain by the simplification

k/1 k2  k/0 k2 1 1 þ k/  /0 k2 þ da Cð2  aÞðkv1 k2 þ kr/1 k2 Þ 2 2 ¼ ðf1  f0 ; /1 Þ þ da Cð2  aÞðE10 ; /1 Þ  da Cð2  aÞðp1 ; v1 Þ 6 ðkf1 k þ kf0 k þ CðaÞðd2þa þ d2 ÞCð2  aÞÞk/1 k þ da Cð2  aÞkp1 kkv1 k:

ð3:58Þ

Noting that /0 ¼ 0 and using two important inequalities (3.54), we use the similar discussion to (3.55) to obtain

k/1 k 6 Cðu; aÞðh

mþ1

þ d2þa þ d2 Þ:

ð3:59Þ

Based on the case n ¼ 0, we now discuss the case n ¼ 1, which is the first step of mathematical induction. Under the condition of n ¼ 1, setting v h ¼ /2 in (3.44) and wh ¼ v2 in (3.45), and taking the sum of the two equations, we arrive at

1 ðk/2 k2 þ k2/2  /1 k2 þ k/2  2/1 þ /0 k2 Þ þ ka ðdÞðkv2 k2 þ kr/2 k2 Þ 2 1 ¼ ðk/1 k2 þ k2/1  /0 k2 Þ  Ga1 ð/1  /0 ; /2 Þ  Ga1 ðf1  f0 ; /2 Þ þ ka ðdÞðE20 ; /2 Þ  ka ðdÞðp2 ; v2 Þ: 2 By an application of Cauchy–Schwarz inequality and Young inequality, we can get

ð3:60Þ

712

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

k/2 k2 þ k2/2  /1 k2 þ k/2  2/1 þ /0 k2 6 CðaÞðk/1 k2 þ k/0 k2 þ kf1 k2 þ kf0 k2 þ ka ðdÞkp2 k2 þ ln d2þ2a þ d4þ2a þ d4 Þ:

ð3:61Þ

Combining (3.59) and (3.41), we arrive at

k/2 k 6 Cðu; aÞðh ¼

mþ1

þ ln d1þa þ d2þa þ d2 Þ ¼ ð21a  1Þ

Cðu; aÞ mþ1 ðh þ ln d1þa þ d2þa þ d2 Þ Ga1

Cðu; aÞ mþ1 ðh þ ln d1þa þ d2þa þ d2 Þ; Ga1

ð3:62Þ

which is to tell that (3.57) holds for the first case n ¼ 1. We firstly assume that (3.57) holds, for 1 6 n 6 j

k/jþ1 k 6

Cðu; aÞ mþ1 ðln d1þa þ d2þa þ d2 þ h Þ: Gaj

ð3:63Þ

Now, we consider the case n ¼ j þ 1. By (3.56) and the induction hypothesis (3.63), we arrive at n1 X 1 mþ1 ðjþ1Þþ1 k/ðjþ1Þþ1 k 6 ðð4Ga0  3Ga1 Þk/jþ1 k þ ½3ðGan1  Gan Þ þ Ga0  Ga1 þ 4 ðGak1  Gak Þk/ðjþ1Þk k þ Gan k/1 k þ Gan1 k/0 k þ ka ðdÞkE0 k þ Cðu; aÞh Þ 3 k¼2

6 Cðu; aÞðð4Ga0  3Ga1 Þ

Noting that

1 Gajk

ðjþ1Þþ1

k/

1 1 mþ1 þ ½3ðGan1  Gan Þ þ Ga0  Ga1 þ 4ðGa1  Gan1 Þ a þ Gan þ 2Þðln d1þa þ d2þa þ d2 þ h Þ: Gaj Gjk

ð3:64Þ

< G1a < Ga1 and 0 < Gajþ1 < Gaj < 1, we have j

jþ1

mþ1

k 6 Cðu; aÞð4Ga0  3Ga1 þ 3ðGan1  Gan Þ þ Ga0  Ga1 þ 4ðGa1  Gan1 Þ þ Gan þ 2Þðln d1þa þ d2þa þ d2 þ h 6

Cðu; aÞ mþ1 ðln d1þa þ d2þa þ d2 þ h Þ: Gajþ1

Þ

1 Gajþ1 ð3:65Þ

that is to say that (3.57) holds for n ¼ j þ 1. By using induction based on (3.62) and (3.65), we announce that (3.57) holds for any n P 1. a In order to get the final result based on (3.65), we have to give the estimate for ðnþ1Þ . We now consider Taylor formula to Gan get

ðn þ 1Þa ðn þ 1Þa 1 1 ¼ ¼ a a ¼ a2 2 Gn ðn þ 1Þ1a  n1a ðn þ 1Þ  nð1 þ 1nÞ ðn þ 1Þ  nð1 þ a 1n þ aða2!1Þ ð1 þ h 1nÞ ð1nÞ Þ ¼

1 1aþ

að1aÞ 2!

ð1 þ

a2 h 1nÞ 1nÞ

<

1 ; 1a

ð3:66Þ

where 0 < h < 1 and 0 < a < 1. Noting that the result of (3.66) and ðn þ 1Þd 6 Md ¼ T, we have

Cðu; aÞ Cðu; aÞðn þ 1Þa Cðu; aÞT a da ¼ ðn þ 1Þa da da 6 : a a 1a Gn Gn

ð3:67Þ

Combining (3.57) and (3.67), we get

k/nþ1 k 6

Cðu; aÞT a mþ1 ðln d þ d2 þ d2a þ da h Þ: 1a

ð3:68Þ

By a combination for (3.41) and (3.68) with triangle inequality, we get the error result (3.42) of theorem. Now we briefly discuss the case a ! 1. We note that the error result (3.42) in this case has no meaning since the aÞT a coefficient Cðu; 1a ! 1 as a ! 1. So, we have to seek another error estimate’s form. Considering the fact nd 6 T ðn ¼ 1; 2; . . . ; MÞ, we can get the error result

k/n k 6 CðuÞndðln d þ d2 þ d þ d1 h

mþ1

Þ:

ð3:69Þ

Now we can use induction to derive the proof. The detail process is similar to the above proof, so we do not derive that again. Combining (3.69) and (3.41) with triangle inequality, we can arrive at the estimate (3.43). In the next analysis, our aim is to focus on deriving a priori error estimates in L2 -norm for variable r. At the same time, we also analyze the error result in H1 -norm for u. h Theorem 3.6. With un ; rn 2 H10 ðXÞ \ Hmþ1 ðXÞ; unh ; estimates with 0 < a < 1

rnh 2 V h ; u0h ¼ {h uð0Þ and r0h ¼ {h rð0Þ, one has the following a priori error

713

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

krðt n Þ  rnh k 6 kuðt n Þ  unh k1 6

3a mþ1 Cðu; r; aÞT a mþ1 mþ1 ðln d þ d2 þ d2a þ d 2 h þ h Þ þ CðrÞh ; 1a

ð3:70Þ

3a mþ1 Cðu; r; aÞT a mþ1 m ðln d þ d2 þ d2a þ d 2 h þ h Þ þ CðuÞh ; 1a

ð3:71Þ

and when a ! 1 3

krðt n Þ  rnh k 6 Cðu; rÞTðln d þ d2 þ d þ d2 h 3

mþ1

kuðt n Þ  unh k1 6 Cðu; rÞTðln d þ d2 þ d þ d2 h

mþ1

þh

mþ1

þh

mþ1

Þ þ CðrÞh

mþ1

ð3:72Þ

;

m

Þ þ CðuÞh :

ð3:73Þ

where Cðu; r; aÞ (with a) and Cðu; rÞ are dependent on the norms kukmþ1 and krkmþ1 ; CðrÞ only depends on krkmþ1 and CðuÞ is described as the statement in Theorem 3.5. Proof. For the need of proof, we have to rewrite (3.13) as n n n d1a X d1a X d1a X Gank ðdt vkþ1 ; wh Þ þ Gank ðrdt /kþ1 ; rwh Þ ¼  Ga ðd pkþ1 ; wh Þ: Cð2  aÞ k¼0 Cð2  aÞ k¼0 Cð2  aÞ k¼0 nk t 1a

We add (3.74) and (3.12), take wh ¼ vnþ1 and v h ¼ Cdð2aÞ ity to get

Pn

a  kþ1 , k¼0 Gnkdt /

ð3:74Þ

multiply by ka ðdÞ and use Cauchy–Schwarz inequal-

2 d1a X n n X ka ðdÞ Gankdt /kþ1 þ 2d Gank ½ðdt vkþ1 ; vnþ1 Þ þ ðrdt /kþ1 ; r/kþ1 Þ Cð2  aÞ k¼0 k¼0 ! n n n X a X d1a X a  kþ1 nþ1 kþ1   2d Gank ðdt pkþ1 ; vnþ1 Þ Gnkdt / ¼ 2d Gnkdt f þ ka ðdÞE0 ; Cð2  aÞ k¼0 k¼0 k¼0 ! X d1a X n n n X Ga d /kþ1 þ k2d Gankdt pkþ1 kkvnþ1 k: 6 2d Gankdt fkþ1 þ ka ðdÞkEnþ1 0 k k¼0 Cð2  aÞ k¼0 nk t k¼0

ð3:75Þ

Using Young inequality and the first inequality in (3.54), we have

2 d1a X n n X 1 ka ðdÞ Gankdt /kþ1 þ 2d Gank ½ðdt vkþ1 ; vnþ1 Þ þ ðrdt /kþ1 ; r/kþ1 Þ Cð2  aÞ k¼0 2 k¼0 2 2 X n n 2 1 X a  kþ1 2 d k þ 2d G p 6 ðka ðdÞÞ1 2d Gankdt fkþ1 þ ka ðdÞkEnþ1 þ e vnþ1 : nk t 0 k¼0 4e k¼0

ð3:76Þ

2

u

1 0 1

−1 −2 1

0.8 0.6 0.8

0.6

0.4 0.4

0.2

0.2 0

0

Fig. 1. Surface for exact solution u.

714

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

Table 1 The errors and convergence orders for u and

a

M

pffiffiffi

r with P1 element and space–time mesh d ¼ h= 2 ¼ 1=M. Order

L2 -norm u

Order

H1 -norm u

L2 -norm

Order

r

0.3

16 32 64

6.7904e002 1.7450e002 4.3932e003

1.9603 1.9899

1.6779e+000 8.3477e001 4.1677e001

1.0072 1.0021

2.9915e+000 7.5426e001 1.8901e001

1.9877 1.9966

0.5

16 32 64

6.7903e002 1.7450e002 4.3932e003

1.9603 1.9899

1.6779e+000 8.3477e001 4.1677e001

1.0072 1.0021

2.9915e+000 7.5424e001 1.8900e001

1.9878 1.9966

0.7

16 32 64

6.7902e002 1.7450e002 4.3930e003

1.9603 1.9898

1.6779e+000 8.3477e001 4.1677e001

1.0072 1.0021

2.9914e+000 7.5421e001 1.8899e001

1.9878 1.9967

0.9

16 32 64

6.7900e002 1.7448e002 4.3924e003

1.9603 1.9900

1.6779e+000 8.3476e001 4.1677e001

1.0072 1.0021

2.9912e+000 7.5413e001 1.8895e001

1.9879 1.9968

2

u

h

1 0 1

−1 −2 1

0.8 0.6 0.8

0.6

0.4 0.4

0.2

0.2 0

0

Fig. 2. Surface for numerical solution uh .

Now we discuss the results for any n P 0. Firstly, taking n ¼ 0 and

e ¼ 12 in (3.76), we have

2 da 1 1 a 1 a a 1 1 2 0 1 0 1 0 2 1 0 1 ka ðdÞ G ð/  / Þ Cð2  aÞ 0 þ 2G0 ½ðv  v ; v Þ þ ðr/  r/ ; r/ Þ 6 ðka ðdÞÞ k2G0 ðf  f Þk þ ka ðdÞkE0 k 2 1 1 þ k2Ga0 ðp1  p0 Þk2 þ kv1 k2 : 2 2 Noting that Ga0 ¼ 1;

ð3:77Þ

v0 ¼ 0; /0 ¼ 0 and (3.41), we have by the simple simplification

2 da 1 3 1 0 1 2 þ 2 r/1 2 6 CðuÞðka ðdÞÞ1 h2þ2m þ CðaÞka ðdÞðd42a þ d4 Þ þ CðrÞh2þ2m : ka ðdÞ  / Þ ð/ Cð2  aÞ þ2 v 2

ð3:78Þ

From (3.78), we easily find that

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi da Cð2  aÞ

1 da 1þm 1 a2 1þm þ d2 þ d2þa þ h Þ: ð/1  /0 Þ þ v þ r/ 6 Cðu; r; aÞðd h Cð2  aÞ

For the n P 1 in (3.76), we use mathematical induction and a similar discussion to Theorem 3.5 to get

ð3:79Þ

715

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

200

σ

100 0 1

−100 −200 1

0.8 0.6 0.8

0.4

0.6

0.4

0.2

0.2 0

0

Fig. 3. Surface for exact solution

r.

200

σh

100 0 1

−100 −200 1

0.8 0.6 0.8

0.6

0.4 0.4

0.2

0.2 0

Fig. 4. Surface for numerical solution

0 rh .

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi n 1a X 3a 1þm Cðu; r; aÞT a d 1þm a  kþ1 a d Cð2  aÞ Gnk dt / þ kvn k þ kr/n k 6 ðln d þ d2 þ d2a þ d 2 h þ h Þ: Cð2  aÞ k¼0 1a

ð3:80Þ

Combining (3.80) and (3.41) with triangle inequality, we get the estimates (3.70) and (3.71) for the case 0 < a < 1. For the case a ! 1, use a similar analysis as that in Theorem 3.5 to get the error estimates (3.72) and (3.73). h Remark 3.7. From the error results in Theorems 3.5 and 3.6, we can see that the results of convergence in the spatial direction is affected by the inverse of the time mesh d. However the time step’s inverse would not affect the global accuracy, mþ1 because h can be much smaller than d for sufficiently regular solutions on the spatial variable. The similar discussions can be found in the Remark 4.2 of Lin and Xu Ref. [8].

716

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

4. Some numerical results In this section, we provide a numerical test to confirm the theoretical analysis of our method. Here, we choose h i 2 2t 2a 2 4 Cð3aÞ þ ð8p þ 64p Þðt þ 1Þ sinð2pxÞ sinð2pyÞ; 8ðx; yÞ 2 ½0; 1  ½0; 1; t 2 ½0; 1 and initial value function

function f ðx; tÞ ¼

u0 ðx; y; 0Þ ¼ sinð2pxÞ sinð2pyÞ. We now get the exact solution

uðx; y; tÞ ¼ ðt2 þ 1Þ sinð2pxÞ sinð2pyÞ;

ð4:1Þ

r ¼ Du ¼ 8p2 ðt2 þ 1Þ sinð2pxÞ sinð2pyÞ:

ð4:2Þ

and

We now take the finite element space V h as the linear space with continuous piecewise linear functions, and divide the qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 2 1 2ffi pffiffiffi 1 2 2 spatial domain ½0; 1  ½0; 1 into uniform triangulations with mesh size h ¼ hx þ hy ¼ þ N ¼ 2 N. For formulating N fully discrete procedure, we now consider the discrete time step d ¼ M1 for the time interval ½0; 1. For the convenience of calculation, we now take M ¼ N ¼ 16; 32; 64, respectively, then compute some a priori errors and orders of convergence of u in both L2 and H1 -norms for different a ¼ 0:3; 0:5; 0:7; 0:9. From the results of convergence in Table 1, we can see that the rates of convergence of u in L2 and H1 -norms are close to 2 and 1, respectively, which are in mþ1 accord with the spatial convergence order Oðh Þ with index m ¼ 1. Moreover, the error in L2 -norm for the variable r is also computed and the rate of convergence is close to 2. In Fig. 1, the surface of the exact solution u is shown. With the chosen pffiffiffi pffiffiffi space–time steps h ¼ 2d ¼ 2=16, the surface of the numerical solution uh is displayed at time t ¼ 1 in Fig. 2. It not hard to see that the numerical uh can approximate well the exact solution u. The similar comparison between rh and r is also made in Figs. 3 and 4. Based on the results of errors and rates of convergence, we know our method is feasible and effective. 5. Some remarks and extensions So far, we have not found any reports on the (mixed) finite element method for solving the fractional fourth-order PDE (1.1). In this article, our aim is propose a mixed finite element method for the fractional fourth-order PDE with the case 0 < a < 1. Based on a finite difference method for time fractional derivative, we give a fully discrete mixed finite element scheme, and then analyze the detailed proofs’ process for both the stabilities in L2 -norm and some a priori error results in L2 and H1 -norms. Finally, we present a numerical example to show the feasibility of the studied method. For the case 1 < a < 2, we will give the numerical analysis and simulation based on the mixed finite element method in another work. In the near future, we will discuss a moving (mixed) finite element schemes based on the discussion in [19,21] and obtain the optimal convergence analysis of mixed finite element method for fractional fourth-order PDE by using a special interpolation operator in Ref. [25]. At the same time, we will apply some other (mixed) finite element methods [26,27] to analyze the fractional fourth-order PDE. Acknowledgments Authors thank the reviewers and editor for their valuable comments and suggestions. This work is supported by the National Natural Science Fund (11301258, 11361035), the Natural Science Fund of Inner Mongolia Autonomous Region (2012MS0108, 2012MS0106), the Scientific Research Projection of Higher Schools of Inner Mongolia (NJZZ12011, NJZY13199, and NJZY14013). Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.amc.2014.06.023. References [1] D. Baleanu, A.H. Bhrawy, T.M. Taha, Two efficient generalized Laguerre spectral algorithms for fractional initial value problems, Abstract Appl. Anal. 2013 (2013). Article ID 546502, 10 pages. [2] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Math. Comput. 56 (1) (2006) 80–90. [3] N. Zhang, W. Deng, Y. Wu, Finite difference/element method for a two-dimensional modified fractional diffusion equation, Adv. Appl. Math. Mech. 4 (2012) 496–518. [4] C. Tadjeran, M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys. 220 (2007) 813–823. [5] C. Tadjeran, M. Meerschaert, H. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006) 205–213. [6] C.M. Chen, F. Liu, K. Burrage, Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comput. 198 (2) (2008) 754–769.

Y. Liu et al. / Applied Mathematics and Computation 243 (2014) 703–717

717

[7] Y. Liu, H. Li, W. Gao, S. He, Z.C. Fang, A new mixed element method for a class of time-fractional partial differential equations, Sci. World J. 2014 (2014). Article ID 141467, 8 pages. [8] Y.M. Lin, C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2) (2007) 1533–1552. [9] P. Zhuang, F. Liu, I. Turner, Y.T. Gu, Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation, Appl. Math. Model. (2013). in press, http://dx.doi.org/10.1016/j.apm.2013.10.008. [10] C.M. Chen, F. Liu, V. Anh, I. Turner, Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation, Math. Comput. 81 (2012) 345–366. [11] H. Zhang, F. Liu, V. Anh, Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput. 217 (6) (2010) 2534–2545. [12] R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput. 212 (2) (2009) 435–445. [13] S.B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys. 216 (1) (2006) 264–274. [14] E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys. 228 (2009) 4038–4054. [15] L.L. Wei, Y.N. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model. 38 (4) (2014) 1511–1522. [16] C.P. Li, F.H. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcation Chaos 22 (2012). 28 pages. [17] C.P. Li, Z.G. Zhao, Y.Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl. 62 (3) (2011) 855–875. [18] Z.G. Zhao, C.P. Li, Fractional difference/finite element approximations for the time-space fractional telegraph equation, Appl. Math. Comput. 219 (6) (2012) 2975–2988. [19] J.T. Ma, J.Q. Liu, Z.Q. Zhou, Convergence analysis of moving finite element methods for space fractional differential equations, J. Comput. Appl. Math. 255 (2014) 661–670. [20] Y.J. Jiang, J.T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math. 235 (11) (2011) 3285– 3290. [21] Y.J. Jiang, J.T. Ma, Moving finite element methods for time fractional partial differential equations, Sci. China Math. 56 (6) (2013) 1287–1300. [22] G. Gao, Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys. 230 (2011) 586–595. [23] Y. Zhang, Z. Sun, H. Wu, Error estimate of Crank–Nicolson-type difference for subdiffusion equation, SIAM J. Numer. Anal. 49 (2011) 2302–2322. [24] N.J. Ford, J.Y. Xiao, Y.B. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal. 14 (3) (2011) 454–474. [25] J.C. Li, Optimal convergence analysis of mixed finite element methods for fourth-order elliptic and parabolic problems, Numer. Methods Partial Differ. Equ. 22 (2006) 884–896. [26] D.Y. Shi, S.P. Mao, S.C. Chen, On the anisotropic accuracy analysis of ACM’s nonconforming finite element, J. Comput. Math. 23 (6) (2005) 635–646. [27] Y. Liu, Z.C. Fang, H. Li, S. He, W. Gao, A coupling method based on new MFE and FE for fourth-order parabolic equation, J. Appl. Math. Comput. 43 (2013) 249–269. [28] Z.D. Luo, Mixed Finite Element Methods and Applications, Chinese Science Press, Beijing, China, 2006. [29] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, The Netherlands, 1978. [30] K.X. Wang, H. Wang, A fast characteristic finite difference method for fractional advection-diffusion equations, Adv. Water Resour. 34 (7) (2011) 810–816.