CEMENT and CONCRETERESEARCH. Vol. 4, pp. 915-923, 1974. Pergamon Press, Inc Printed in the United States.
A NEW APPROACH TO THE STUDY OF THE INFLUENCE OF CEMENT FINENESS ON THE STRENGTH OF CEMENT MORTARS M. H r a s t e D e p a r t m e n t of C h e m i c a l E n g i n e e r i n g , F a c u l t y of T e c h n o l o g y , U n i v e r s i t y of Z a g r e b
A. Bezjak D e p a r t m e n t of C h e m i s t r y , F a c u l t y of P h a r m a c y and B i o c h e m i s t r y , U n i v e r s i t y of Z a g r e b
(Communicated by Z. Sauman) (Received July 30, 1974) ABSTRACT A study is reported on the possibility to determine the influence of particle sizes of c e m e n t on the strength of c e m e n t m o r t a r s by taking into consideration all the particles in a set, under the p r e s u m p t i o n that apart of the independent effect of every particle in the course of hydration there is a simultaneous and intermediate effect of all the particles on the s a m e physical property. The m e t h o d has been applied to c e m e n t of identical chemical and phase composition but different particle size distributions.
Es w i r d ~iber U n t e r s u c h u n g e n b e r i c h t e t , die s i c h m i t d e r Mbglichkeit einer Einflussbestimmung der Teilchengr6ssen auf die F e s t i g k e i t yon Z e m e n t m b r t e l n b e f a s s e n , wobei a l l e Teilchen e i n e r Gruppe imbegriffen sind, unter der Annahme; d a s s a b g e s e h e n yon d e r unabhfingigen Einwirkung j e d e s T e i l c h e n s im Laufe des H y d r a t a t i o n s p r o z e s s e s , auch e i n e s i m u l t a n e g e g e n s e i t i g e Einwirkung a l l e r T e i l c h e n auf d i e s e l b e physikalische Eigenschaft besteht. D i e s e s V e r f a h r e n w u r d e an e i n e m Z e m e n t m i t i d e n t i s c h e r c h e m i s c h e r und P h a s e n z u s a m m e n s e t z u n g , j e d o c h mit v e r s c h i e d e n e n K o r n g r b s s e v e r t e i l u n g e n durchgef~ihrt.
915
916
Vol. 4, No. 6 M. Hraste, A. Bezjak
Introduction It has been customary
s o f a r to
fineness
on the strength
particle
size fractions
the influence Xumerous
exerted
authors
the size between The most
of cement
(1-17)
interpretation
is impossible
to p r o d u c e
cannot be correct.
versus specific
to a c e r t a i n
surface
area
particles
of
to the hydrated
particles.
deficiency .Thus,
it
defined particle
on the influence
of such exclu-
On the other hand the specific
can be characteristic
strength
particles.
the one that explains
with strictly
based
or by
m o s t to t h e f i n a l s t r e n g t h s .
is obviously
a cement
area
cement
imply one or another
so an explanation
area
surface
that cement
by the effect attributed
approaches
surface
have proved
of cement
by the effect of separate
and that of the specific
All the other
sive fractions
mortars
5 a n d 30 }ira c o n t r i b u t e
correct
only,
the influence
by the content of hydrated
t h e g a i n in s t r e n g t h
sizes
express
for the relationship
degree
only.
this relation
fineness
In t h e c a s e o f i n c r e a s e d
is explicable
only by the particle
size distribution. The contribution was therefore Supposing
of definite examined
sizes
within the entire
that the strength
ned by the particle
particle
(S) d e p e n d s
size distribution
to t h e g a i n o f s t r e n g t h set of all particles.
o n a f u n c t i o n H(x) d e t e r m i -
F(x) and the estimated
basic
function [-ICx)(16,18) then
S.fH(x,dx--fF(x) II (x)dx The equation strength entire
is solved
linear
and the content of particles
distribution.However,
effect of definite valid to a certain a better
by applying
insight
the independent
particle
relation
of a definite
the supposition sizes
extent only.
between
the
size within the
of the independent
within the set of all particles It has therefore
into this relationship effect of every
/l/
particle
been concluded
can be obtained, in t h e c o u r s e
if apart
is that of
of the hydra-
Vol. 4, No. 6
917 MORTARS, FINENESS, SIEVE ANALYSIS, STRENGTH
tion process.we
s u p p o s e t h a t t h e r e e x i s t s an i n t e r m e d i a t e
of a l l t h e p a r t i c l e s the
selfsame
on t h e s a m e p h y s i c a l p r o p e r t y
part
supposition is upheld by the probability that by their
effect the particles
of a c e r t a i n s i z e c a n i n c r e a s e
c o n t r i b u t i o n of i n d i v i d u a l p a r t i c l e
c o n n e c t e d w i t h a l l the p a r t i c l e
The i n t e r m e d i a t e
the
of h y d r a t i o n a p a r t i c l e
is not
s i z e s of t h e s e t , but s u r r o u n d e d
sizes only. However,
take by approximation
or decrease
s i z e s to the f o r m a t i o n of s t r e n g t h .
It i s o b v i o u s t h a t d u r i n g t h e p r o c e s s
particular
in t h e c o u r s e of
process. Theoretical
The p r o p o s e d
effect
by
t h e s e t b e i n g a l a r g e one~ w e c a n
t h a t all s i z e s a f f e c t a l l t h e o t h e r s i z e s .
i n f l u e n c e of two e f f e c t s is m a t h e m a t i c a l l y
solved
by the convolution theorem. In t h i s c a s e t h e s t r e n g t h ,
t o o , d e p e n d s on a f u n c t i o n H(x) w h i c h
i n c l u d e s t h e e f f e c t of e v e r y s i n g l e p a r t i c l e f u n c t i o n f(x) a s w e l l a s t h e i n t e r m e d i a t e represented
size expressed
b y the
e f f e c t s of all t h e p a r t i c l e s
b y t h e f u n c t i o n gCx), i . e . :
S ~fH (x)dx.fff
/2/
(y) g ( x - y ) d y d x
The f o r c i n g f u n c t i o n s a r e a d a p t e d to t h e a c t u a l s t a t e b y t a k i n g into account the particle estimated
size distribution
b a s i c f u n c t i o n s [-I(x) a n d ~ ( x ) ~ t h u s :
S,, f
H{x)dx=ffFcy)
It i s not p o s s i b l e to d e t e r m i n e single particle
n (y)F(x-y) ~(x-y)dydx
the intermediate
because a mathematical
a d a p t a b l e to all t h e d i s t r i b u t i o n s that matter
F(x) a n d t h e c o r r e s p o n d i n g
e f f e c t of e v e r y
expression
sufficiently
cannot be formulated
not even a mathematical
expression
/ 3/
and for
for the estimated
918
Vol. z$, No. 6
M. Hraste, A. Bezjak
basic functions [(x) andS(x) , so w e can only e x a m i n e the effect of particle fractions grouped into classes consisting of definite particle sizes~ viz."
S,,y_.~ Y~.
< a - < F ( x - y ) > < b > y x-y
if
y
>
x-y
>,, E
/ 4/
xy
xy
To s i m p l i f y
the manner
of notation we change to:
/6/
S-Y~ >-~ A j, K
where:
and < F ( K ) > --weight per cent of particles in classes of definite sizes
Aj,K =
coefficient of m e a n
value denoting the m a x i m u m
effect in the contribution of single classes of definite sizes to the formation of strength J - I,N K,, J,X N,, t o t a l n u m b e r Considering
the fact that cement
size distributions coefficients
of classes.
can be measured,
of the mean
the least
square
mination
of properties
but with different
mortar
value Aj,K.
method,
proceeding
of cement
particle
strengths
it is possible
as well as particle to c a l c u l a t e
the
They have been calculated from
mortars
bv
the experimental
deter-
made
cement,
size distributions.
of the same
Thus obtained
coef-
Vol. 4, No. 6
919 MORTARS, FINENESS, SIEVE ANALYSIS, STRENGTH
f i c i e n t s a r e v a l i d f o r the r e s p e c t i v e identical hydration process.
phase composition
It s h o u l d b e n o t e d t h a t t h e o b t a i n e d
coefficients are closely connected with the manner measurements
a n d the
have been carried
in w h i c h t h e
out a n d it is t h e r e f o r e
to s t a t e the c o n d i t i o n u n d e r w h i c h the p h y s i c a l p r o p e r t i e s
imperative have
been ascertained. The r e l i a b i l i t y f a c t o r R d e f i n e d b v the e x p r e s s i o n accuracy
of t h e a n a l y s i s :
/7/
s h o w s the
n IAj l
i-1 R"
/7/ n
IS.l 1
i,,l where:
n,, n u m b e r of samples A. =elementary deviation, i.e. the difference between i
the experimentally obtained and the calculated value S. (computed by m e a n s of the coefficients 1
Aj, K ) S. = e x p e r i m e n t a l l y 1
determined
physical property
for
the i-th sample.
Experimental
part
The c e m e n t u s e d f o r t h i s w o r k h a d t h e f o l o w i n g c h e m i c a l a n d phase composition:
loss on ignition SiO2
0,4 % 20,3 %
Fe203
2,9 %
AI203
5,9 9/0
Cao
64,4 %
MgO
2,1%
C3S ;~-C2S
56 %
24 %
C3A
9 %
ferrite phase
5 %
920
Vol. 4, No. 6 M. Hraste, A. Bezjak SO 3
2,4 %
Na20
0,6 %
K20
0,8 %
The p h a s e c o m p o s i t i o n w a s d e t e r m i n e d
by X - r a y d i f f r a c t i o n
analysis. By g r i n d i n g the c l i n k e r to d i f f e r e n t f i n e n e s s we o b t a i n e d s a m p l e s on w h i c h the p a r t i c l e s i z e d i s t r i b u t i o n s and s t r e n g t h s w e r e d e t e r m i n e d . The p a r t i c l e s i z e d i s t r i b u t i o n w a s a s c e r t a i n e d by s i e v e a n a l y s i s a c c o r d i n g to DIN 4188 a n d by the s e d i m e n t a t i o n m e t h o d on Bachmann-Sartorius
b a l a n c e . The s t r e n g t h s w e r e t e s t e d in a c c o r -
d a n c e with Y u g o s l a v s t a n d a r d B . C 8 . 0 2 2 - 63 p r e s c r i b i n g
compres-
s i v e and b e n d i n g s t r e n g t h s . F o r the r e q u i r e d classes
c a l c u l a t i o n s the p a r t i c l e s
c o m p r i z i n g the following s i z e s :
3 ( 1 0 - 3 0 }lm), 4 ( 3 0 - 7 0 }lm) a n d
w e r e g r o u p e d into
1(0-5 ~ m ) ,
5(>70 ~m), i.e.
2 ( 5 - 1 0 }~m),
N , , 5 . The l i m i t s
w e r e s e l e c t e d in a c c o r d a n c e w i t h the p r e v i o u s l y a c q u i r e d e x p e r i e n c e . Results and discussion Measurement
v a l u e s f o r the p a r t i c l e s i z e d i s t r i b u t i o n s and s t r e n g t h s
a r e p r e s e n t e d in T a b l e s
1 a n d 2.
To d e t e r m i n e the v a l u e s of c o e f f i c i e n t s A. as p r e s e n t e d in Table 3 ],K i . e . to find out t h e c o n t r i b u t i o n to s t r e n g t h s of d i f f e r e n t c l a s s e s of definite p a r t i c l e s i z e s by their i n t e r m e d i a t e lated the i n t e r m e d i a t e
e f f e c t , we h a v e c a l c u -
e f f e c t of all the c l a s s e s .
M a t h e m a t i c a l l y this
c o n s i s t e d in s o l v i n g a s y s t e m of 35 l i n e a r e q u a t i o n s with 15 u n k n o w n s (N-5).
The s y s t e m w a s s o l v e d b y the l e a s t s q u a r e m e t h o d on the
c o m p u t e r CAE 930. It s h o u l d be e m p h a s i z e d t h a t t h e m e n t i o n e d c o e f f i c i e n t s a r e v a l i d f o r c o n t i n u a l d i s t r i b u t i o n s o n l y w h e n an i n t e r m e d i a t e particles
e f f e c t of all the
is p o s s i b l e a n d o n l y f o r c e m e n t s of a d e f i n e d c h e m i c a l
Vol. 4, No. 6
921 MORTARS, FINENESS, SIEVE ANALYSIS, STRENGTH FABLE
1
Results for Particle Size Distributions Weiqht p e r cent of p a r t i c l e s in s e p a r a t e c l a s s e s Sample 1
2 3 4 3 6 7 8 9 10 1I 12 I3 14 13 16 17 I8 IQ 20 21 22 23 24 25 26 2"¢ 28 29 30 31 32 33 34 33
0-5 ~m 3.0 3.3 4,5 3.5 6.5 7,0 7,5 7,5 I1,0 II.0 12,5 13,0 15,5 13,5 15,5 13,0 17,0 14,5 16,5 9.3 9,0 I0,5 12,0 16,5 3,3 7.0 7,5 6,0 8,0 8,0 7,5 10,0 9,0 II,0 10,0
3-10 ~m 10-30 ~m 30-70 pm )70 ~m 4,0 %0 I0.0 10.5 13.5 1~,5 13.0 18.5 19.5 20.0 1%5 23,3 18,0 21,0 20,0 21,0 15.3 16,0 17,0 I0,3 12,0 15.5 17,5 17,5 I0.0 i3.0 I6,0 14,5 17,0 17,3 26,0 18,0 lq,O 17,5 1%5
20,5 26,0 27.5 31.0 33,0 36,5 35,5 36,0 34,3 34,5 35,0 32,0 33,0 30,5 31,5 31,0 30,3 29,5 28,3 32.0 36,0 37,0 3815 34,5 32,5 36,0 32,5 35,5 36,0 34,0 30,0 38.0 36•0 36,5 37,0
TABLE
17,5 22.5 25,0 27.0 27.0 26.5 26.5 25.5 23,5 23.5 22.0 20,0 20,0 18,5 19,0 lq,O 19.3 18,0 16,5 23,5 30,0 24.5 20,0 20,0 I3,0 32,0 21,5 24.5 22,0 24.0 21,5 22,5 lq,O 20.0 21,0
53.0 3%0 33,0 26.0 20.0 13,5 13,3 12,5 11,3 11.0 11,0 11,5 13,5 14,3 14,0 16,0 17,3 22,0 21,3 21,5 13,0 1215 I2,0 11,5 39,0 22,0 22,3 19,5 17,0 16,5 15,0 11,5 17,0 13,0 12,5
2
Results f o r S t r e n g t h s Strengths Sample
l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 38
(kp/cm 2)
3 days
bending 7 days
28 days
compressive 3 days 7 days 28 days
10.8 24,5 27,3 37,3 44,4 49,8 43,8 46,2 52,2 58.0 54.7 57.9 34.2 60,2 60,3 56,9 56,3 53,7 60,6 31,9 35,6 37,3 38.4 39,1 2%4 43,1 47)1 41~I 53,8 57,5 57,3 53,6 89,6 $9,9 60,4
18,6 33,0 38,5 48,7 55,5 59,2 56,2 55,3 59,9 61,6 64,9 66,6 61,6 64.0 66.0 64,9 64,3 66,8 62,5 42,7 51,3 46,g 48,1 49,9 40,1 53,6 60.3 52,2 60.3 65,8 64,3 64,1 67,7 67,2 69,5
34,5 51,6 51,2 63,8 68,3 68,1 72,3 71,6 73,6 74,8 72,8 86,4 76.4 69,9 71,7 69,6 70,5 77,3 67,7 56,1 66,1 63,5 64,7 70,9 57,4 68,0 " 70+8 72,2 72,5 76,7 87,4 81,0 84,3 7513 76,9
60 106 129 146 174 226 195 213 256 271 293 314 298 312 326 331 316 311 289 126 148 156 16I 198 III 189 210 163 231 269 283 263 283 313 323
89 161 184 233 278 305 29l 306 346 374 364 398 368 393 405 389 388 409 384 206 258 223 221 264 159 239 310 256 324 368 374 375 386 411 419
150 225 254 333 369 403 424 434 455 470 t28 482 451 470 509 488 471 451 445 300 331 353 371 390 253 394 401 363 433 433 466 467 476 490 510
922
Vol. 4, No. 6 M. Hraste, A. Bezjak
TABLE
3
Values for Coefficients A j,
K
Flg,ndi no st r~mqth I daxs J.K
v d,l~s Aj, K
J,K
1, i 0,387 2. 1 I), 348 I, ] O, 1134 1, I 3, 132 4. I ),003 1,2 O, O4 1 4.5 O, 022 3,~ O,Oll 3,5 -0,007 3, ; -0,007 2, ; -0.025 3, I -O.0% 2,2 -O,13b 2, t - 0 . lq5 1.3 -0. tII R-O,06
2~ ,l,tv Aj. K
2. 3
0.35o 1, t 0.30o 1.5 O. 0ST I. I O,0"5 l. I O.02 q 3, I O, 0 2 t 2,5 O. 015 3,5 0,(333 ;,5 -O,O05 1,5 -0,007 1,2 -O,OI~ /, I -0.052 2,2 -O, (1'~5 2,1 -0,23~ 1,3 -O,2~2 R-O,052 C ompressl', 7 days
A5. K
2. ! O, 375 ], I (/.275 I. / (3, I l 2 ;. 1 ),O'~,~ I, 1 O,0')l 2.2 O, {12 I l. 5 0,005 5.5 4 ] , O00 2,3 -1,O35 I. I -0,013 I, I -;1,03(3 4, 5 -0,055 3,~ -O, 1 ~-I 1,2 -0.25o 2. t -},325 Ro0,Ot3
e strenqth
3 da~s J,K Aj, K
J.K
1, I 3,337 2,3 2 , 138 1,1 0,822 1,~ o,6al I, I l), I0~ 1,2 0,3t] I, ~ O. 2q 5 3, ) O,2lq 2,5 O,O07 5.5 -0.015 3,3 -0,232 2.2 -0,712 3. ; +0,876 2.4 -t,370 3,~ -2,~') I R.0,Oql
2,3 3,IIR I, ; 3,0~2 1,3 0,863 1,1 0,7q0 t. t 0 , ll~ t,5 0,051 3,5 -O,OI$ 3.5 -0,033 2.5 -0,073 1,2 -0,2~1 3.] -0.281 3, I -0,3t2 2,2 10,85 } 2,1 -2.1ql 1,3 -2,655 R-0,073
and p h a s e c o m p o s i t i o n .
I,>
Aj l K
28 d i y a J,K
Aj. K
2.1 !. t 1,5 1, i 3.3 I, I 1.5 l, I t,2 3,5 I.~ 2,5
2.283 1, ~,36 0,830 0,~04 O.17O (~, I60 0.0'15 0,OI] -O.OIt -0,0o7 -(),270 -[), 4¢~5
2.2
-O,-C?2
2. t -1,234 !. ~ -1,6}7 R-O,051
The n e g a t i v e s i g n s a r e not to be i n t e r p r e t e d
as denoting groups which decrease
the s t r e n g t h but r a t h e r a s t h o s e
c o n t r i b u t i n g l e s s to the e n t i r e s t r e n g t h and t h e y a r e in fact the r e s u l t of m a t h e m a t i c a l
operations.
from inevitable errors
in the d e t e r m i n a t i o n of the p a r t i c l e s i z e
distribution.
It is v e r y l i k e l y that t h e y d e r i v e
If the s a m e c a l c u l a t i o n w a s a p p l i e d to the r e s u l t s
o b t a i n e d by R i t z m a n n (16) w h o p r e p a r e d d i s p e r s i o n
systems
from
particle size fractions with strictly defined limits,
the n e g a t i v e
s i g n did not p r a c t i c a l l y a p p e a r . The v a l u e s of the c a l c u l a t e d . c o e f f i c i e n t s i n d i c a t e that the i n t e r m e d i a t e e f f e c t of p a r t i c l e s
up to 5 p m with t h o s e of 30 to 70 jam,
a s w e l l a s the e f f e c t of p a r t i c l e s b e t w e e n 5 and 10 Jam and t h o s e of 10 to 30 p m c o n t r i b u t e m o s t to the c o m p r e s s i v e s t r e n g t h s a f t e r 3 and 7 d a y s .
and bending
A s f o r the c o m p r e s s i v e
and b e n d i n g
Vol. 4, No. 6
923
MORTARS, FINENESS, SIEVE ANALYSIS, STRENGTH strengths
a f t e r 28 d a y s the m o s t i m p o r t a n t
effects between particles obtained results
of 5 - 1 0 Jam w i t h t h o s e of 1 0 - 3 0 jam. The
a r e in g o o d a g r e e m e n t
knowledge and can therefore n a t i o n of the m e c h a n i s m
a r e the i n t e r m e d i a t e
w i t h the p r e s e n t
b e t a k e n a s a c o n t r i b u t i o n to t h e e x p l a -
of c e m e n t h a r d e n i n g .
It s h o u l d b e s p e c i a l l y n o t e d t h a t f r o m t h e a s c e r t a i n e d A
J,K ensure
we c a n c a l c u l a t e t h e p a r t i c l e the best or the required
this matter
s t a t e of
a r e in p r o g r e s s .
in the c h e m i c a l a n d p h a s e
size distribution
strength.
coefficients which would
F u r t h e r i n v e s t i g a t i o n on
It is o b v i o u s , h o w e v e r ,
that a change
composition can bring about a change
in the c o e f f i c i e n t s of t h e m e a n v a l u e s s o t h a t a g e n e r a l a p p l i c a t i o n of the p r i n c i p l e is not v e r y s i m p l e • References: 1. H. K~ihl, Z e m e n t ,
18; 1932 ( 1 9 2 9 )
2. A. B. H e l b i g , Z e m e n t ,
1__~9, 237 ( 1 9 3 0 )
3• A. B. H e l b i g • Z e m e n t ,
20, 7 5 ( 1 9 3 1 )
4. H. Kiihl, Z e m e n t ,
2__00, 169 ( 1 9 3 1 )
5. A. E i g e r , T o n i n d . Z t g . , 6
X
C
55~ 1389 ( 1 9 3 5 )
R o c k w o o d , Rock P r o d u c t s ,
7. J . W u h r e r ,
Zement-Kalk-Gips,
52 3,
132 ( 1 9 4 9 ) 148 ( 1 9 5 0 )
8. E. W. S c r i p t u r e S. W. B e n e d i c t , F. J . L i w a n o w i c z , J . A m . Conc.
Inst.,
2__~3~205 ( 1 9 5 1 )
9. A. Rio~ F. V. B a l l a s s i ,
L' Ind. I t a l . del C e m e n t o ~ 2___44,87 ( 1 9 5 1 )
10. K• A i c h i n g e r ,
A• J o r d a n ,
11. N• P. S t e j e r t ,
Cement(URSS)
Zement-Kalk-Gips, , No•3(1954)
12• W• C z e r n i n ~ Z e m e n t - K a l k - G i p s ,
_71160 ( 1 9 5 4 )
13. H. B o e r n e r ,
9~ 153 ( 1 9 5 6 )
Zement-Kalk-Gips,
14. K• B o m k e , Z e m e n t - K a l k - G i p s ~ 15• B• B e k e , Z e m e n t - K a l k - G i p s ~
6--, 87 ( 1 9 5 3 )
S p e c i a l edition~ N o . 6 ~
100
1__~3~ 419 ( 1 9 6 0 )
16• H• R i t z m a n n ~ Z e m e n t - K a l k - G i p s ,
2__J_1, 390 (1968)
17. B. Beke~ L• O p o c z k y ~ E p i t 6 a n y a g ~ 2_~1~ 281 ( 1 9 6 9 ) 18. A. B e z j a k ,
~I. H r a s t e ,
Kern• lnd• ( Z a g r e b ) , 1___99,287 ( 1 9 7 0 )