= k . .. p¼ > > > ð2l þ kÞS > : n; P
0qq G
;
P T CP ¼ I
ð41Þ
where G is the diagonal matrix containing the non-zero eigenvalues and q the number of rigid body modes. We proceed with a variable change in the eigenvectors base: #q f ¼ P#t ¼ P . # And we note: P ¼ ½ P 1 P 2 , Bi ¼ BP i , pi ¼ P Ti p for i ¼ 1; 2. We substitute this in Eq. (40) to obtain:
P T CP#00t þ P T BT n0 P T AP#t ¼ P T pN #00q þ BT1 n0 ¼ p1 N 00
# G# þ
BT2 n0
ð42Þ
¼ p2 N
ð43Þ
We make also the variable change into the Eq. (39) to fully transform our system with the new variables:
Kn00 Jn B1 #0q B2 #0 ¼ 0
ð44Þ
We integrate the Eq. (42) between 0 and x:
#0q ¼ #0q0 BT1 ðn n0 Þ þ p1 Nx
ð45Þ i
We also transform the generalized effort vector c = {K }16i6n associated to f:
17
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
Ct ¼ ( )
Cq C
¼ P T c ¼ #0t þ P T DT n
#0q0 ¼ Cq0 DT1 n0 C ¼ #0 þ DT2 n
( )
#0q ¼ Cq0 Q T1 n0 þ p1 Nx BT1 n
ð47Þ
C ¼ #0 þ DT2 n
where Q1 = Q P1 = (D B)P1 = D1 B1. If we substitute the expression of #0q obtained in (47) into the Eq. (44) we obtain:
Kn00 J B1 BT1 n B2 #0 ¼ B1 Cq0 Q T1 n0 þ p1 Nx
ð48Þ
Thus, the system to solve is transformed into a new equivalent one: 00
0
Kn B2 # J q n ¼ B1 ðCq0
Q T1 n0
þ p1 NxÞ
ð49Þ
#00 þ BT2 n0 G# ¼ p2 N
where J q ¼ J As for the matrix A, the symmetric matrix Jq will contain some zero eigenvalues that correspond this time to the flexural modes, and in order to solve our system we also need to extract these modes and separate them from the other warping modes, thus we have to solve the GEP Jqz = aKz, with K the gramian matrix attached to the warping functions base, thus it’s a definite positive matrix, and as previously stated, this means that a P 0. After solving the eigenvalue problem, we obtain the eigenvectors matrix R verifying:
0ll S
;
G ¼ G BT21 B21 ; 8 9 < B12 Cq0 Q T11 ul0 Q T12 u0 þ p1 Nx = f1 ¼ fx ¼ : ; f2 p2 N BT21 hx /¼
u #
;
T¼
I 0
0 I
;
U¼
0
B22
BT22
0
;
V¼
S
0
0 G
Thus, from (54) and (57) we can write the final system to solve:
u00 B22 #0 S u ¼ f 1 ) T/00 þ U/0 V/ ¼ f x #00 þ BT22 u0 G # ¼ f 2
ð60Þ
ð50Þ
B1 BT1 .
RT J q R ¼
We note:
ð46Þ
RT KR ¼ I
ð51Þ
where S is the diagonal matrix containing the non-zero eigenvalues and l the number of the flexural modes, that will be equal in general to l = 2q/3. ul . We proceed to a second variable change: n ¼ Rut ¼ R
u
And we note: R ¼ ½ R1 and j ¼ 1; 2.
R2 , Bij ¼
RTj Bi ,
Q ij ¼
RTj Q i
for i ¼ 1; 2
We replace in the Eq. (49) to obtain:
RT KRu00t RT J q Rut RT B2 #0 ¼ RT B1 Cq0 Q T1 n0 þ p1 Nx u00l B21 #0 ¼ B11 Cq0 Q T1 n0 þ p1 Nx u00 S u B22 #0 ¼ B12 Cq0 Q T1 n0 þ p1 Nx
ð52Þ ð53Þ ð54Þ
We integrate the Eq. (53) from 0 to x:
u0l ¼ B21 # þ hx
ð55Þ
We resume here all the equations that form our new system, that we will solve exactly, equivalent to the initial system in (39) and (40):
8 0 u ¼ ð2lNþkÞS p1 #q p2 # > > > > < 0 #q ¼ Cq0 Q T11 ul0 Q T12 u0 BT11 ul BT12 u þ p1 Nx 0 > > > ul ¼ B21 # þ hx > : 00 T/ þ U/0 V/ ¼ f x
ð61Þ
We note k = m + n q l the dimension of the last second order differential equation system in Eq. (61). Now that we have uncoupled the rigid body motion and flexural modes from the other modes, we detail the solution of the differential equation system (62) without the second member:
T/00 þ U/0 V/ ¼ 0 T@ 2x /
þ U@ x / V/ ¼ 0 )
T@ 2x
ð62Þ
þ U@ x V / ¼ 0
ð63Þ
where @ x is the derivate about x operator. To solve the system we will need then to solve its characteristic equation:
detðT x2 þ U x VÞ ¼ detðTÞx2k þ lower order term ¼ 0
ð64Þ
Tis a positive definite matrix, thus det (T) > 0, this implies that the roots of the Eq. (64) with their multiplicity will be equal to 2 k. Solving this equation corresponds in fact to solving a special class of eigenvalue problem called the quadratic eigenvalue problem QEP, see [9], where we need to find ðx; zÞ 2 Ckþ1 verifying:
GðxÞ ¼ ðT x2 þ U x VÞz ¼ 0
2 where hx ¼ u0l0 B21 #0 þ B11 Cq0 Q T11 ul0 Q T12 u0 x þ p1 N x2 .
By replacing (55) in the Eq. (50) after making the variable change, we have:
#00 G# þ BT22 u0 þ BT21 u0l ¼ p2 N #00 G BT21 B21 # þ BT22 u0 ¼ p2 N BT21 hx
ð56Þ ð57Þ
We transform the generalized effort vector m = {Mj}16j6m associated to n: !t ¼
!l !
T
T
0
0 t
T
0 t
T
T
¼ R m ¼ R ðKn þ Q fÞ ¼ u þ R Q f ¼ u þ R Q 1 #q þ R Q 2 #
u0l0 ¼ !l0 Q 11 #q0 Q 21 #0 u0l ¼ B21 # þ hx ) ) 0 ! ¼ u þ Q 12 #q þ Q 22 # ! ¼ u0 þ Q 12 #q þ Q 22 # wherehx becomes: hx ¼ !l0 D21 #0 Q 11 #q0 þ B11 2 Q T12 u0 x þ p1 N x2 .
GðxÞz ¼ 0 ) z GðxÞz ¼ tðzÞx2 þ uðzÞx v ðzÞ ¼ 0
ð65Þ
The solution of the second order equation z G(x)z = 0 will be written in the following form:
x¼ ð59Þ
Cq0 Q T11
Proof. We introduce some notations: t(z) = z⁄Tz, u(z) = z⁄Uz, where ⁄ define the conjugate transpose of a matrix. For (x,z) an Eigen-pair, we can write:
v(z) = z⁄Vz,
⁄
ð58Þ
Proposition 1. If T and V are definite positive matrices, then the eigenvalues of the QEP G(x)z = 0 will be finite and non-null.
ul0
uðzÞ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uðzÞ2 þ 4tðzÞv ðzÞ 2tðzÞ
ð66Þ
Tis a definite positive matrix thus t(z) > 0, it implies that x will have finite values. V is also a definite positive matrix then t(z)v(z) > 0, qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi thus uðzÞ2 þ 4tðzÞv ðzÞ – juðzÞj ) x – 0. h
18
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
Proposition 2. For T and U real symmetric matrices and V a real skew-symmetric matrix, then the eigenvalues of the QEP will have Hamiltonian properties, which mean that they are symmetric about the real and imaginary axis of the complex plane.
Proof. See Appendix A.3. h To complete the solution of our system, we write its particular solution:
/px ¼
Z
ð67Þ
T, U and V are real matrices, thus from Eq. (67): G(x)T = G(x). From these two relations verified by G we can deduce that if x , x and x are also eigenvalues of the is an eigenvalue then x problem. h The solution of a QEP is performed with the aid of a linearization, which transforms the problem to a classical generalized eigenvalue problem:
0
I
V
U
w
y
I 0 w ¼x 0 T y
/x ¼ ReSx a
where a 2 R2k is a vector of arbitrary constants that will be expressed later in function of the boundary conditions. Knowing that the eigenvalues verify Hamiltonian properties, we can re-arrange the matrix S and R in the following way:
S1
6 6 6 6 S¼6 6 6 6 4
S 1 S2 0 S2 0
6 6 6 6 þ i6 6 6 6 4
3
S1
7 6 7 6 7 6 7 6 7¼6 7 6 7 6 7 6 5 4
0
2
2
7 7 7 7 7 7 7 7 5
0 S 1 S 2r 0 S 2r
3 7 7 7 7 7 ¼ S r þ iS i 7 7 7 5
0 0 S 2i 0
U1
U2
eSt Lft dt
ð74Þ
0
RL ¼ 0;
TRSL ¼ I
ð75Þ
And: f1 fx ¼ f 8 2 9 > > < = B12 Cq0 Q T11 ul0 Q T12 u0 þ p1 Nx ¼ 2 T T T > x : p2 N B21 !l0 D21 #0 Q 11 #q0 þ B11 Cq0 Q 11 ul0 Q 12 u0 x þ p1 N 2 > ; ð76Þ
fx ¼
8 <
B12 Cq0 Q T11 ul0 Q T12 u0
9 =
: ; p2 N BT21 ð!l0 D21 #0 Q 11 #q0 Þ |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl ffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} g1
( þ
B12 p1 N
)
BT21 B11 Cq0 Q T11 ul0 Q T12 u0 |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
x
0 1 x2 2 BT21 B11 p1 N |fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl} g3
g2
ð77Þ f x ¼ g 1 þ g 2 x g 3 x2
Proposition 4. For a differential equation system: T/00 + U/0 V/ P = fx, if the second member fx has the following form: f x ¼ ni¼0 f i xi , then the particular solution /p of the system can be written as follows: n X /p ¼ RS i1 LfxðiÞ
ð78Þ
i¼0 ðiÞ
ð70Þ
where f x denote the ith derivate of fx about x. Proof. See Appendix A.4. h Thus, the particular solution of our system is:
S 2i R ¼ U1
x
where R and L are respectively the right and left eigenvectors, verifying the following relations:
ð69Þ
3
Z
ð68Þ
where w = z, y = xz. After the resolution of this problem we obtain 2k eigenvalues verifying the properties of propostion 1 and 2, assembled in the diagonal matrix S, and Rk2k there corresponding eigenvectors matrix. Thus the solution of the system can be written in the following form:
2
ReSðxtÞ Lft dt ¼ ReSx
0
Proof. Gverifies the following relations:
2 Ux V ¼ Gðx Þ GðxÞ ¼ GðxÞT ¼ T x
x
U2 ¼ Rr þ iRi
ð71Þ
/px ¼ V 1 f x V 1 UV 1 ðg 2 2g 3 xÞ þ 2ðV 1 TV 1 2
where Sr, Si, Rr and Ri are real matrices, and i is the complex number verifying i2 = 1. Proposition 3. The solution of the differential equation system in (62) can be written in a real form as follows:
/x ¼ ðRr Y x þ Ri Z x ÞeSr x a
ð72Þ
where
2 6 6 6 Yx ¼ 6 6 6 4
I
3
0 I X sx 0 X cx
2
6 7 6 7 6 7 6 7; Z x ¼ 6 7 6 7 6 5 6 4
X cx ¼ cosðS 2i xÞ; X sx ¼ sinðS 2i xÞ
I 0 I X cx 0
þ V 1 ðUV 1 Þ Þg 3 We can write the total solution of the system:
/x ¼ W x a þ G1 #q0 þ G2 #0 þ ðG3 þ G4 xÞ Cq0 Q T11 ul0 Q T12 u0 þ G5 !l0 þ ðG6 þ G7 x þ G8 x2 ÞN
ð80Þ
3
where
7 7 7 7 7; 7 7 7 5
W x ¼ ðRr Y x þ Ri Z x ÞeSr x
X sx ð73Þ
ð79Þ
G1 ¼ V 1
0 BT21 Q 11
G3 ¼ V 1 UV 1
;
G2 ¼ V 1
0
BT21 B11
B12 0
0 BT21 D21 ;
;
G4 ¼ V 1
0 BT21 B11
19
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
0 G5 ¼ V 1 T ; B21 2 1 G6 ¼ V ðTV 1 þ ðUV 1 Þ Þ G7 ¼ V 1 UV 1
0
/1x ¼
BT21 B11 p1
0 BT21 B11 p1 B12 p1 0
UV 1
B12 p1
0
0
¼
p2
0 1 ; G8 ¼ V 1 T 2 B21 B11 p1
/2x ¼ ¼
Z
x
Z0 x
/t dt ¼ E1;gx g0L þ E1;Nx N0L ; E1;gx Z x Egt dt; E1;Nx ¼ ENt dt
0
0
Z
Z0 x
/1t dt ¼ E2;gx g0L þ E2;Nx N0L ; E2;gx Z x E1;gt dt; E2;Nx ¼ E1;Nt dt
0
We express the limit conditions at the two extremities of the beam, in x = 0 and L:
/0 G1 #q0 G2 #0 G3 Cq0 Q T11 ul0 Q T12 u0 G5 !l0 G6 N ¼ W 0 a
ð81Þ
G5 !l0 ðG6 þ G7 L þ G8 L2 ÞN ¼ W L a
ð82Þ
/L G1 #q0 G2 #0 ðG3 þ G4 LÞ Cq0 Q T11 ul0 Q T12 u0
We assemble (81) and (82) to obtain the expression of the vector a:
" a¼ "
I
0 8 > > > > > > > > > > > > > <
W0 WL
0 G1
G2
I
G2
G1 /0 /L #q0
G3
G5
ðG3 þ G4 LÞ G5 9 > > > > > > > > > > > > > =
#
G6 ðG6 þ G7 L þ G8 L2 Þ
For the calculation of the integrals and derivative of /x, see Appendix A.5. By using the solution of the system, we obtain # that we can replace in the third equation of (61) to obtain u0l and by integrating we obtain ul in function of the boundary conditions:
u0l ¼ B21 # þ hx
x
#dt
ð91Þ
0
ul ¼ ul0 þ h1x þ B21 A# ðE1;gx g0L þ E1;Nx N0L Þ ) ul ¼ F gx g0L þ F Nx N0L Rx where A# ¼ ½ 0 I , h1x ¼ 0 ht dt ¼ ð!l0 D21 #0 Q 11 #q0 Þx þ B 2 3 11 Cq0 Q T11 ul0 Q T12 u0 x2 þ p1 N x6 .
BT12 Au /x #q ¼ #q0 þ Cq0 Q T11 ul0 Q T12 u0 x
ð92Þ
BT11 ðul0 x þ h2x þ BT21 A# ðE2;gx g0L þ E2;Nx N0L ÞÞ B12 Au ðE1;gx g0L þ E1;Nx N0L Þ ) #q ¼ H gx g0L þ H Nx N0L
ð83Þ
/x ¼ ðG2/ þ G3/ þ G4/ x þ W x ðH 0 þ H 2/ þ H 3/ ÞÞ/0 þ W x H L /L þ ðG1 þ W x H 1 Þ#q0 þ ðG3 þ G4 x þ W x H 3 Þ Cq0 Q T11 ul0 þ ðG5 þ W x H 4 Þ!l0 þ ðG6
Rx Au ¼ ½ I 0 , h2x ¼ 0 h1t dt ¼ ð!l0 D21 #0 Q 2 3 x4 . 11#q0 Þ x2 þ B11 Cq0 Q T11 ul0 Q T12 u0 x6 þ p1 N 24 where
The resolution is completed by performing a simple variable change to obtain the original vectors n and f. To derive the rigidity matrix, we will as in Ferradi et al. [4], assemble all the equilibrium equations that we will express at the two extremities of the beam, in x = 0 and x = L. From (47) and (59) we have:
( ð84Þ ð85Þ
! ¼ u0 þ Q 12 #q þ Q 22 # C ¼ #0 þ DT21 ul þ DT22 u
) þ
!
¼ E1;gx g0L þ E1;Nx N0L C
0 Q 12 0 0 Q 22 0
0
DT21
DT22
0
gx ð93Þ
This system is expressed at the two extremities of the beam, at x = 0 and x = L, so we obtain 2k equations:
8 9 8 9 N> > > > u > > > > > > = = < Cq > < > g0 #q N0 where: gx ¼ , g0L ¼ , Nx ¼ !l , N0L ¼ gL u> NL > > > > > > ! > ; > : l> > > / : ; C Egx ¼ 0 G1 þ W x H 1 ðG3 þ G4 x þ W x H 3 ÞQ T11 G23 þ G4/ x þ W x H 023 0 0 0 W x H L ð86Þ
ENx ¼ ðG6 þ G7 x þ G8 x2 þ W x H 5 Þ G3 þ G4 x þ W x H 3 G5 þ W x H 4 0 0 0 0 0 ð87Þ
And: H023 = H0 + H2/ + H3/, G23 = G2/ + G3/ We note:
Z
#0q ¼ Cq0 Q T11 ul0 Q T12 u0 BT11 ðul0 þ h1x þ B21 A# /1x Þ
u0 , G2/ ¼ ½ 0 G2 , And by noting: H 2/ /0 ¼ ½ 0 H 2 #0 T T H 3/ ¼ H 3 Q 12 0 , Gi/ ¼ Gi Q 12 0 , i ¼ 3; 4 We can re-express our solution in the following form:
/x ¼ Egx g0L þ ENx N0L
ð90Þ
#0q ¼ Cq0 Q T11 ul0 Q T12 u0 BT11 ul BT12 u
Thus, we can express the vector a in function of the boundary values:
þ G7 x þ G8 x2 þ W x H 5 ÞN
dEgx dENx ; E1;Nx ¼ dx dx
With u and ul obtained, we can replace then in the second equation of (61) to obtain #0q and by integrating we obtain #q in function of the boundary conditions:
#0 > > > > > > T T > > C Q u > q0 11 l0 Q 12 u0 > > > > > > > > > > > ! > > l0 > > > > : ; N
a ¼ H 0 /0 þ H L /L þ H 1 #q0 þ H 2 #0 þ H 3 Cq0 Q T11 ul0 Q T12 u0 þ H 4 !l0 þ H 5 N
ð89Þ
0
/1x ¼ /0x ¼ E1;gx g0L þ E1;Nx N0L ; E1;gx ¼
ul ¼ ul0 þ h1x þ B21
#1
ð88Þ
x
8 9 >
< !0 > = E 1;N0 N0L C0 !L > > E1;NL : ; CL 0 31 2 0 Q 12 0 0 Q 22 0
T T B E1;g0 7C 60 0 D D 0 B 7C 6 21 22 þ6 ¼B 7Cg @ E1;gL 4 0 Q 12 0 0 Q 22 5A 0L 0 0 0 DT21 DT22 0
20
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
Table 1 The transversal modes with their corresponding warping modes for the beam models used in the listed figures. Beam model (type of cross section)
Transversal modes
Corresponding warping modes
Fig. 5
A (1D)
Fig. 6
A (2D)
1 2–3 1 2–3 1 2–3
5 1 4 1 2 1
1 2–10 1 2–12 1 2–20 1 2–3
2 1 2 1 2 1 2 1
1 2–3 1 2–20
2 1 2 1
1 2–3 1 2–6 1 2–10
2 1 2 1 2 1
1 2 3
5 1 4
1 2 3 4–6 1 2–3
5 1 4 1 2 1
B (2D) Fig. 7
A (2D) B (2D) C (2D) D (2D)
Fig. 8
A (2D) B (2D)
Fig. 12
A (2D) B (2D) C (2D)
Fig. 14
A (2D); B (1D)
Fig. 15
A (2D)
B (2D)
Fig. 18
Cq ¼ #0q þ DT11 ul þ DT12 u 0 l
)
Cq !l #
!l ¼ u þ Q 11 #q þ Q 21 # " 0 0 DT11 DT12 0 þ gx 0 Q 11 0 0 Q 21 dF
¼
CqL !lL
H 1;NL F 1;NL
Transversal modes
Corresponding warping modes
A (1D)
1 2–3 1 2–6 1 2–10 1 2–10
2 1 2 1 2 1 2 1
1 2 3 1 2 3
4 1 4 4 1 4
1 2 3 1 2 3
4 1 4 4 1 4
C (1D) D (2D) Fig. 19
A (1D)
B (2D)
Fig. 20
A (1D)
B (2D)
By expressing #q and ul at x = L, we obtain the remaining q + l equations:
H NL F NL
H gL 0 0 0 0 0 0 I 0 0 0 N0L ¼ g0L F gL 0 0 0 0 0 0 0 I 0 0 ð97Þ
And finally from the integration of the first equation in (61) and the equilibrium equation dN ¼ 0, we add the two following Eqs. (98) and dx (99):
H 1;gx H 1;Nx N0L g0L þ F 1;gx F 1;Nx ð95Þ
Z L Z L N0 L p1 #q dx p2 #dx ð2l þ kÞS 0 0 N0 L uL u0 ¼ p1 ðH 1;gx g0L þ H 1;Nx N0L Þ ð2l þ kÞS p2 A# ðE1;gx g0L þ E1;Nx N0L Þ
uL u0 ¼
) uL u0 þ ðH T1;gx p1 þ ET1;gx AT# p2 Þ g0L N0 L ¼ H T1;Nx p1 þ ET1;Nx AT# p2 N0L ð2l þ kÞS
ð98Þ
NL N0 ¼ 0 dH
where F 1;gx ¼ dxgx , F 1;Nx ¼ dFdxNx , H 1;gx ¼ dxgx , H 1;Nx ¼ dHdxNx . We express (95) only at x = L, to obtain q + l equations:
Beam model (type of cross section)
B (1D)
We also have from (47) and (59) the expression of the generalized efforts vectors Cq and !l, that we will express in function of the boundary values:
(
Table 2 The transversal modes with their corresponding warping modes for the beam models used in the listed figures.
"
H 1;gL 0 0 N0L ¼ g0L þ F 1;gL 0 Q 11
ð99Þ Rx
#
DT11
DT12
0
0
0
Q 21
gL
ð96Þ
Rx
Rx
where F ¼ 0 F gt dt, F 1;Nx ¼ 0 F Nt dt, H 1;gx ¼ 0 H gt dt, R x 1;gx H 1;Nx ¼ 0 H Nt dt. Thus, by assembling all these equations we obtain a system of 2(m + n+1) equations, written in the following form:
K N N0L ¼ K g g0L ) N0L ¼ K 1 N K g g0L |fflfflffl{zfflfflffl} Kr
Fig. 3. A view of the shell model of the beam andits cross section.
ð100Þ
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
Kr is then the rigidity matrix of the beam element, derived from the exact solution of the equilibrium equation. This matrix was implemented in Pythagore™ software.
21
An important remark concern the case of quasi-incompressible materials (t ´ 0.5 ) k ´ +1), where a special attention must be given to the transversal modes we are using in our kinematics to avoid incompressible locking. In the expression of the stress tensor in Eq. (23), we have the apparition of the stress dnj i i , thus when k ´ +1 we need rr ¼ k trðeÞ ¼ k du þ f div w þ X j dx dx to be able represent tr(e) = 0, and this can be assured by associating to every warping mode Xj, a transversal deformation mode wj⁄, constructed in a way to compensate the warping mode, and thus to satisfy tr(e) = 0 when it’s needed. These newly determined transversal modes will be called ‘incompressible deformation modes’ and will verify the relation div wj⁄ = Xj. We have also noticed that even for 0 < t < 0.5 (for example t = 0.3 for steel) the error in the results cannot be negligible if we do not consider the ‘incompressible deformation modes’, thus we have chosen in all our examples to take t = 0 to avoid any discrepancy, noting that this subject will be treated in detail in upcoming work.
Fig. 4. Beam cross section with the centred applied load.
Fig. 5. Comparison of the normal stresses between the shell and the beam model, at x = 0.05 m and at mid-depth of the upper slab (Ty = 1 MN).
Fig. 6. Comparison of the shear stress xz between the shell and the beam models, at x = 0.95 m and at mid-depth of the upper slab (Ty = 1 MN).
22
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
8 9 N > > > > > > > > > w1y T y þ w1z T z > > > > > > > > > > > . > > . > > > > . < =
5. The generalized effort vector We have the displacement vector of an arbitrary point P of the section: 8 9 u> 8 9 > > > m > X > > > > 1 > > > > > f > > > > u þ X n j j> > > > > > > > > > > 8 9 > . > > > > 2 3 j¼1 > > > . > > > > 1 0 . . . 0 X1 . . . Xm > . > > > < up > = > < X < > = = n 1 n 60 w ... w 0 ... 0 7 n i i dp ¼ v p ¼ ) dp ¼ 4 wy f 5 f y y > > > : > ; > > > > > > > i¼1 > wp n1 > > > > > 0 w1z . . . wnz 0 . . . 0 > > > > > n > > > > X |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} > > > > > .. > > > i i > > > > F wz f > > > > : > ; > . > > > i¼1 : > ; nm |fflfflfflffl{zfflfflfflffl}
8 9 >
ð102Þ
6. Numerical examples
d
ð101Þ
where d is the vector representing the generalized coordinates. If we apply at the point P a force represented by its vector fp, we will have the following equivalent generalized stress resultants:
In all the examples presented in this section, we will perform three types of comparisons, one concerns the comparison of the displacement at the section where the load is applied and where the effect of the higher transversal modes will be important, the second concerns the normal stress at x = 0.05 m the vicinity of the fixed end, where the effect of restrained warping is the most
Fig. 7. Comparison of the displacement between the shell and the beam models, at x = 10 m and at mid-depth of the upper slab (Ty = 1 MN).
Fig. 8. Comparison of the vertical displacement along the beam length between the shell and the beam models.
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
important and the effect of the higher warping modes are non-negligible and the third concerns the shear stress in the upper slab at x = 0.95 m. For all the figures representing the numerical results, the Tables 1 and 2 give the transversal modes used for each beam model in the figure and the number of corresponding warping modes used for each transversal mode and gives also the type of cross section used in the beam models, 1D if the cross section is discretized with 1D (or beam) element and 2D if it’s discretized with triangular element.
6.1. Box girder We consider in the following examples a 10 m length cantilever beam, with E = 40 GPa and t = 0, loaded at its free end. The comparisons will be performed between a shell model of the cantilever beam using the well-known MITC- 4 shell element described in [10], and a model with just one element of the new beam finite
23
element, using different numbers of transversal modes. All comparisons have been performed with Pythagore™ Software. The boundary conditions of the considered example are: No displacement at the beam’s bearing: u = 0, nj = 0, fi = 0 for all warping and transversal modes. i dn At the free end: dxj ¼ 0, df ¼ 0. dx For the beam cross section we choose a box girder represented in Fig. 3. Some numerical values for the matrices in p. 12 are given in Appendix A.7. The beam cross section will be discretized in two manners, the first one with 7024 2D triangular elements, and the second one as a thin walled section with 6 1D elements. For the representation of the warping and transversal modes see Appendix A.6. For the shell model of the beam, to obtain accurate results we use a refined meshing, where the dimension of the small square element is 0.1 m, the model will then comport 6000 shell element, 6060 nodes and 36 360 degree of freedom. To measure the effect of
Fig. 9. representation of the generalized coordinates associated with the higher transversal modes (4–20) along the beam’s length, for the beam model C in Fig. 7.
Fig. 10. Comparison of the results obtained from the shell model with different mesh size.
24
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
the meshing refinement and its necessity for the shell model of the beam, we will compare the different results obtained from shell models with different meshing.
Fig. 11. Beam cross section with the excentred applied load.
We consider as a first load case a centred force Ty = 1 MN at the upper slab of the box cross section and at the free end of the cantilever beam, see Fig. 4. The Fig. 5 illustrate the fact that in this example the shear lag effect near the fixed end is correctly predicted by using five warping modes for the vertical displacement mode. Fig. 6 shows that we have a precise representation of shear stress distribution with only three transversal modes (rigid body motion) and four warping modes associated to the vertical displacement mode. In Fig. 7, we can see that the beam model B (12 transversal modes) gives satisfactory results that still can be refined by using more transversal modes, and this is performed with the beam model C (20 transversal modes). We can see also from Fig. 7 that at the connections between the upper slab and the two webs (z = 0.5 m and z = 0.5 m), the vertical displacement is exactly the one corresponding to a rigid body motion, and this is valid for the shell and all the beam models. Figs. 8 and 9 shows that the effect of the higher order transversal modes become more and more important when we approach the loading zone, Fig. 8 shows also that we obtain a precise description of the vertical
Fig. 12. Comparison of the displacement between the shell and the beam models, at x = 10 m and at mid-depth of the upper slab (Ty = 1 MN).
Fig. 13. representation of the generalized coordinates associated to the higher transversal modes (4–10) along the beam’s length, for the beam model B in Fig. 12.
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
25
Fig. 14. Comparison of the normal stresses between the shell and the beam model, at x = 0.05 m and at mid-depth of the upper slab (Ty = 1 MN).
Fig. 15. Comparison of the shear stress xz between the shell and the beam models, at x = 0.95 m and at mid-depth of the upper slab (Ty = 1 MN).
Fig. 16. A view of the beam cross section.
displacement distribution along the beam, especially near the loading zone. From Fig. 10, we deduce that the refined shell model of the beam, with a mesh size equal to 0.1 m, is necessary to obtain
Fig. 17. A view of the brick model of the beam.
accurate prediction of the vertical displacement at the loading cross section. This model has 6000 shell elements, 6060 nodes, with a total of 36 360 d.o.f., and compared to the beam model B with one beam element and twelve transversal modes, with a total of 50 d.o.f., it shows the advantage of using such enriched beam
26
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
element, even if it necessitate some preliminary cross section treatment to obtain the transversal and warping modes characteristics, because this step will be done only once and we can after perform as many calculation as we want with different loadings and configurations with the same reduced number of degree of freedom. We can see also that solving the equilibrium equations exactly, allows us to obtain accurate results without using a refined meshing of our beam element, and this is showed in the numerical examples where only one beam element is needed. As a second load case, we apply the same vertical force Ty = 1MN at the upper slab but eccentric from the centre of gravity and torsion (z = 0.5 m), see Fig. 11. From Fig. 12, we obtain satisfactory result with only six transversal modes, and always with just one beam element, which corresponds to a model with a total of 28 d.o.f. Fig. 13 shows that only the fifth and the sixth transversal modes give a substantial
contribution to represent the beam behaviour; this is in accordance with the results of Fig. 12, where there is no difference in the displacement distribution obtained with a beam model enriched with 6 or 10 transversal modes. Figs. 14 and 15 compare the stress distribution between shell and beam models, the results clearly show the effectiveness of the enriched beam model. 6.2. Double T cross section In this example we consider a 12 m beam clamped at its both end and loaded with an eccentric (z = 2 m) vertical force of 10MN in its middle (x = 6 m), see Figs. 16 and 17, the material characteristics will be the same as the previous example. We will use two beam finite elements to discretize the whole beam. To test the performance of our beam element, we will perform a comparison with
Fig. 18. Comparison of the displacement between the brick, shell and the beam models, at x = 6 m and at mid-depth of the upper slab (Ty = 10 MN).
Fig. 19. Comparison of the normal stresses between the brick, shell and beam model, at x = 0.05 m and at mid-depth of the upper slab (Ty = 10 MN).
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
27
Fig. 20. Comparison of the shear stress xz between the brick shell and beam models, at x = 0.95 m and at mid-depth of the upper slab (Ty = 10 MN).
Fig. 21. representation of the generalized coordinates associated to the higher transversal modes (4–10) along the beam’s length, for the beam model C in Fig. 18.
a shell (MITC-4 element) and a brick (SOLID186 in Ansys™) model of the beam (Fig. 17). Figs. 18–20 illustrate the comparison between a brick & shell models of the beam with our beam finite element models, showing the efficiency and the accuracy of our formulation. We note from Figs. 19 and 20 that the beam models B, with a cross section meshed with 2D triangular element is more close to the brick model. The beam models A, with a cross section meshed with 1D elements can be more closely compared to the shell model. In Fig. 21 we have the distribution in the beam length of the higher transversal modes coordinates. 7. Conclusion In this work, we have presented a new beam finite element based on a new enhanced kinematics, enriched with transversal
and warping eigenmodes, capable of representing the deformation and the displacement field of the beam in a very accurate way. A complete description of the method to derive these modes for an arbitrary section form is given. Theoretically we can determine as many warping modes as we want to enrich our kinematics, but we have observed that the number of modes that we can derive accurately is limited, due to the numerical errors accumulated in every new iteration of the iterative equilibrium process. The additional transversal and warping modes give rise to new equilibrium equations associated with the newly introduced d.o.f. corresponding to each mode, forming a system of differential equations that can be assimilated to a one obtained from a gyroscopic system in an unstable state. An exact solution of these equations is performed, leading to the formulation of the rigidity matrix of a mesh free element. However we must note a limitation to this formulation: we need to calculate the exponential of a scalar
28
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
(corresponding to an eigenvalue of the equation system) multiplied by the beam’s length, if this product is great enough, its exponential cannot be calculated in the range of a classical machine precision, a solution would be to discretize sufficiently the beam to reduce the length of the beam elements, or to eliminate the corresponding mode associated to this eigenvalue.
2
@up d f df ¼0)X 2¼0) ¼ cst dx @x dx df We consider then that l dx ¼ 1J , with J a constant. We can then write:
@X @2X @ @ ss ¼ w t J ss ) 2 ¼ ðw tÞ J @s @s @s @s
ða:4Þ
We write the equilibrium equation of the beam: Appendix A A.1. Stiffness matrices for the triangular and the 1D element For the 1D element, we use the stiffness matrix of a planar Euler–Bernoulli element, expressed by:
2 ES 6 6 6 6 6 Kb ¼ 6 6 6 6 6 4
0
0
12EI l3
6EI l2 4EI l
l
ESl
0
0
12EI l3 6EI l2
0 ES l
sym
0 12EI l3
0
3
@ rxx @ rxx @ ss þ div s ¼ þ ¼0 @x @x @s @ ss k J ¼ div w @s l
ða:5Þ
After replacing this in the Eq. (a.2), we obtain:
@2X @ k ¼ ðw tÞ þ div w @s @s2 l
7 7 7 7 7 7 7 0 7 7 6EI 7 l2 5 6EI l2 2EI l
ða:1Þ
4EI l
where S = t2 is the surface, t the thin walled profile thickness, 1 its length and I = t4/12 its inertia. For the triangular element, we use the rigidity matrix in planar stress, expressed by:
ða:6Þ
By integrating this equation twice, we obtain X as a function of its limit values in the extremities of the thin walled profile. After assembling the equations expressing X for each thin profile constituting the section, we obtain a system of equations that can be solved to an additive constant, thus to solve the problem uniquely R we add the condition A XdA ¼ 0. A.3. Proof of Proposition 3 We replace the obtained solution ReSxa in the equation system:
Et Kt ¼ 4Dð1 tÞ 2 2 3 2 a1 þ ab1 ða þ tÞa1 b1 a1 a2 þ ab1 b2 ta1 b2 þ aa2 b1 a1 a3 þ ab1 b3 ta1 b3 þ aa3 b1 6 7 2 6 b1 þ aa21 ta2 b1 þ ka1 b2 b1 b2 þ aa1 a2 ta3 b1 þ aa1 b3 a1 a3 þ ab1 b3 7 6 7 6 7 2 2 6 a2 þ ab2 ðt þ aÞa2 b2 a2 a3 þ ab2 b3 ta2 b3 þ aa3 b2 7 7 ¼6 6 7 2 6 b2 þ aa22 t a3 b2 þ aa2 b3 a2 a3 þ ab2 b3 7 6 7 2 6 7 sym a23 þ ab3 ðt þ aÞa3 b3 5 4 2
b3 þ aa23
where D is the triangular element surface, t its thickness and
a = (1 t)/2. And for (x1,y1), (x2,y2), (x3,y3) the triangular element nodes coordinate we have:
ðTRS 2 þ URS VRÞeSx a ¼ 0
ða:7Þ
This relation is valid for an arbitrary vector a, thus:
TRS 2 þ URS VR ¼ 0
ða:8Þ
By developing this relation we obtain:
T Rr S 2r S 2i 2Ri S i S r þ UðRr S r Ri S i Þ VRr þ i T Ri S 2r S 2i þ 2Rr S i S r þUðRr S i þ Ri S r Þ VRi Þ ¼ 0
ða:9Þ
a1 ¼ y2 y3 ; a2 ¼ y3 y1 ; a3 ¼ y1 y2
Thus, we have the following two formulas:
b1 ¼ x3 x2 ; b2 ¼ x1 x3 ; b3 ¼ x2 x1
T Rr S 2r S 2i 2Ri S i S r þ UðRr S r Ri S i Þ VRr ¼ 0 T Ri S 2r S 2i þ 2Rr S i S r þ UðRr S i þ Ri S r Þ VRi ¼ 0
A.2. Derivation of the warping functions for thin walled profiles For thin walled profiles we make two approximations: The tangential shear stress in the cross section is tangential to the thin walled profile. The tangential shear stress is constant in the thin walled profile thickness. The expression of the tangential shear stress vector is given by:
s ¼ lðw $XÞ
df dx
the
first
and
second
ða:11Þ derivate
of
/0x ¼ ðRr S r Y þ Rr S i Z þ Ri S r Z Ri S i YÞeSr x a /00x ¼ Rr S 2r S 2i Y þ 2Rr S i S r Z þ Ri S 2r S 2i Z 2Ri S i S r Y eSr x a We replace the expressions of the derivatives in the equation system (62) to obtain:
T/00x þ U/0x V/x ¼ T Rr S 2r S 2i 2Ri S i S r þUðRr S r Ri S i Þ VRr ÞeSr x Ya þ T Ri S 2r S 2i þ 2Rr S i S r
ss ¼ s t ss ¼ lðw t $X tÞ
We calculate now /x ¼ ðRr Y þ Ri ZÞeSr x a:
ða:10Þ
df @X ss ) ¼ w ) t df dx @s l dx
ða:3Þ
where t is the tangential vector to the thin walled profile, and
$X t ¼ @@sX. For a section free to warp, we have as already written:
þUðRr S i þ Ri S r Þ VRi ÞeSr x Za
ða:12Þ
Thus, from the Eqs. (a.10) and (a.11) that we replace in (a.12), we obtain T/00x þ U/0x V/x ¼ 0, which verify that /x ¼ ðRr Y þ Ri ZÞ eSr x a is a solution of the system.
29
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
2
A.4. Proof of Proposition 4 n
We suppose that the second member f is of the form fx = fnx , we suppose then that the particular solution will be given by: n n X X ðiÞ /p ¼ RS i1 Lf x ¼ RS i1 Lf n xni i¼0
i¼0
n! ðn iÞ!
ða:13Þ
i¼0
7 7 7 5
S 2r x
X sx e
0
2 Rx W 1x
n! ðn iÞ!
0
eS1 x
ða:17Þ
X cx eS2r x
The first integral of Wx will be expressed by:
We calculate the expression of V/p ; U/0p and T/00p : n X V/p ¼ VRS i1 Lf n xni
eS1 x
6 6 W x ¼ Rri 6 4
3
6 6 ¼ Rri 6 6 4
0
eS1 t dt
3 Rx 0
0
eS1 t dt
Rx 0
0
X st eS2r t dt
Rx 0
n X
n! VRS i1 Lf n xni ¼ VRS 1 Lf n xn VRS 2 Lf n nxn1 ðn iÞ! i¼2 U/0p
n1 X ¼ URS i1 Lf n xni1 i¼0
n! ðn i 1Þ!
n X ¼ URS 1 Lf n nxn1 URS i Lf n xni i¼2 n2 X T/00p ¼ TRSi1 Lf n xni2 i¼0 n X
TRSiþ1 Lf n xni
¼
i¼2
X ct eS2r t dt ða:18Þ
Rx
S 2r t
We need to calculate: 0 X ct e dt and easily by using the complex number:
Z n! ðn iÞ!
7 7 7 7 5
x
X ct eS2r t dt þ i
0
Z 0
x
X st eS2r t dt ¼
Z
Rx 0
S 2r t
X st e
dt. This is performed
x
eðS2r þiS2i Þt dt
0 1
¼ ðS 2r þ iS 2i Þ ðeðS2r þiS2i Þx IÞ 1 ðS 2r iS 2i ÞððX cx ¼ S 22r þ S 22i
n! ðn i 2Þ!
þ iX sx ÞeS2r x IÞ
n! ðn iÞ!
¼ ðððA2r X cx þ A2i X sx ÞeS2r x A2r Þ þ iððA2r X sx A2i X cx ÞeS2r x þ A2i ÞÞ
Thus: where A2r Thus:
T/00p þ U/0p V/p ¼ VRS 1 Lf n xn ðURS VRÞS 2 Lf n nxn1 n X n! ðTRS2 þ URS VRÞS i1 Lf n xni ðn iÞ! i¼2
Z
1 1 ¼ S 22r þ S 22i S 2r ; A2r ¼ S 22r þ S 22i S 2i .
x
X ct eS2r t dt ¼ ðA2r X cx þ A2i X sx ÞeS2r x A2r
ða:19Þ
X st eS2r t dt ¼ ðA2r X sx A2i X cx ÞeS2r x þ A2i
ða:20Þ
0
ða:14Þ
Z
x
0
By using the following relations deduced from the Eq. (75):
TRS 2 þ URS VR ¼ 0; ðURS VRÞS 2 L ¼ TRL ¼ 0; RS 1 L ¼ V 1 We verify that: T/00p þ U/0p V/p ¼ f n xn , thus /p is a particular solution system, and by the superposition principle, its straightforward that for a second member in the differential equation system of the P P ðiÞ form f x ¼ ni¼0 f i xi the particular solution is /p ¼ ni¼0 RS i1 Lf x . A.5
With (a.19) and (a.20) we can then determine W1x easily. In the same way, for the calculation of W2x we will need to calRx Rx culate ððA2r X ct þ A2i X st ÞeS2r t A2r Þdt and ððA2r X sx A2i X cx Þ 0 0 S 2r x e þ A2i Þdt, this can be done by using the expressions in (a.19) and (a.20). Thus:
Z
x
ððA2r X ct þ A2i X st ÞeS2r t A2r Þdt
0
¼ A2r ððA2r X cx þ A2i X sx ÞeS2r x A2r Þ þ A2i ððA2r X sx In the calculation of the integrals and the derivative of /x expressed in the relations (85)–(87), the only difficulty is the calculation of the integrals and derivative of W x ¼ ðRr Y x þ Ri Z x ÞeSr x used in its expression. Thus, we want to calculate the expression of W1x, W2x, W3x and W1x:
W 1x ¼
Z
x
W t dt;
W 2x ¼
Z
0
¼
Z
x
W 1t dt;
W 3x
A2i X cx ÞeS2r x þ A2i Þ A2r x ¼ A22r A22i X cx þ 2A2r A2i X sx eS2r x A2r x þ A22i A22r Z
W 2t dt;
W 1x ¼
ðA2r X st A2i X ct ÞeS2r t þ A2i dt
0
0
¼ A2r ððA2r X sx A2i X cx ÞeS2r x þ A2i Þ A2i ððA2r X cx
x
0
x
ða:21Þ
W 0x
ða:15Þ
þ A2i X sx ÞeS2r x A2r Þ þ A2i x ¼ A22r A22i X sx 2A2i A2r X cx eS2r x þ A2i x þ 2A2i A2r
We have the expression of Wx:
ða:22Þ
Sr x
W x ¼ ðRr Y x þ Ri Z x Þe 0 2 S1 x e 0 B 6 eS1 x B 6 ¼ BR r 6 @ 4 X sx eS 2r x 0
2 6 If we note Q ¼ 6 4
0
6 6 þ Ri 6 4 X cx eS 2r x
0 0
0
2
0 I
3
eS 1 x e 0
31
0
S 1 x
7C 7C 7C 5A
X cx eS2r x X sx eS2r x
ða:16Þ
7 7 and Rri = Rr + RiQ then we can I5 0
express Wx in the following form:
Finally for the third integral, it will be expressed with the aid of the two following integrals:
Z 0
x
A22r A22i X ct þ 2A2r A2i X st eS2r t A2r t þ A22i A22r dt
¼
x2 A32r þ A22i A2r X cx A32i þ A2i A22r X sx eS2r x A2r 2 þ A22i A22r x A32r A22i A2r ða:23Þ
30
Z
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
A22r A22i X st 2A2i A2r X ct eS2r t þ A2i t þ 2A2i A2r dt 0 ¼ A32r 3A22i A2r X sx þ A32i 3A2i A22r X cx eS2r x þ A2i x
x2 þ 2A2i A2r x þ 3A2i A22r A32i 2
A.6 Rigid body motion modes:
ða:24Þ
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
31
Higher transversal modes:
A.7
the numerical values of the matrices introduced in page 12. The authors are also disposed to provide to the interested reader, more numerical values for different cross section form and for any number of distortion modes with their associated warping modes.
For the box girder section, we consider 10 transversal modes, with one warping mode associated to each one of them. We give
29 750 29 750 19 090 0 3070 5170 5 ; C ¼ 10 l 10 410 9090 5650 0 6600 4930 0 0 0 0 5 0 H ¼ 10 l 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5:70 0:05 0:04 0:06 0:11 0:05 0:05 0 0 0:05 16:49 0:22 0:05 0:08 0:25 0:09 0 0 0:04 0:22 64:68 0:11 0:16 0:43 0:38 0 0 0:06 0:05 0:11 227:39 0:68 0:41 0:47 0 0 0:11 0:08 0:16 0:68 320:32 1:45 1:56 0 0 0:05 0:25 0:43 0:41 1:45 432:29 3:93 0 0 0:05 0:09 0:38 0:47 1:56 3:93 529:50 0 0
0
0
0
0
0
0
0
8 9 0 > > > > > > > > > > 0 > > > > > > > > > > > > 0 > > > > > > > > > 3:43 > > > > > > > = 0 k105 < p¼ > 0:27 > > ð2l þ kÞS > > > > > > > > > 3:21 > > > > > > > > > > 73:75 > > > > > > > > > > 2:10 > > > > > > : ; 3:75
32
0 0 0 0 0 F ¼ 105 k 0 0 0 0 0
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12:13 0:10 0:09 0:10 0:11 0:10 0:11 0 0:10 35:13 0:25 0:11 0:19 0:37 0:19 0 0:09 0:25 138:22 0:24 0:32 0:54 0:79 0 0:10 0:11 0:24 484:53 0:99 0:89 0:99 0 0:11 0:19 0:32 0:99 685:20 3:01 3:28 0 0:10 0:37 0:54 0:89 3:01 924:40 5:97 0 0:11 0:19 0:79 0:99 3:28 5:97 1133:80
0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
14109:70 0 0 0 0 0 0 0 0 0 0 4982:74 0 0 0 0 0 0 0 0 0 0 228:73 1:18 204:43 231:24 0:04 0:89 43:12 52:20 0 0 1:18 0:85 1:28 1:84 0:06 0:14 0:21 0:41 0 0 204:43 1:28 237:41 362:59 0:05 0:53 34:59 80:86 K ¼ 105 ð2l þ kÞ 0 0 231:24 1:84 362:59 701:44 0:23 0:06 30:16 154:81 0 0 0:04 0:06 0:05 0:23 2:12 0:07 0:02 0:05 0 0 0:89 0:14 0:53 0:06 0:07 1:37 0:20 0:03 0 0 43:12 0:21 34:59 30:16 0:02 0:20 10:44 7:12 0 0 52:20 0:41 80:86 154:81 0:05 0:03 7:12 35:50 29750:00 0 1186:52 9:85 2136:78 6082:40 8:81 132:19 6168:80 3112:52 0 29750:00 0:63 4725:72 56:02 16:07 1543:38 4272:53 151:85 139:75 1186:52 0:63 13997:50 17:58 2227:67 2076:11 4:42 37:87 1495:99 209:45 9:85 4725:72 17:58 3811:80 16:23 10:50 248:05 664:51 17:18 22:32 56:02 2227:67 16:23 4263:84 1285:47 5:28 15:71 990:77 96:36 5 2136:78 J ¼ 10 l 16:07 2076:11 10:50 1285:47 10945:70 1:36 16:49 832:41 732:00 6082:40 8:81 1543:38 4:42 248:05 5:28 1:36 9083:50 238:16 9:36 5:56 132:19 4272:53 37:87 664:51 15:71 16:49 238:16 6166:33 2:10 37:52 6168:80 151:85 1495:99 17:18 990:77 832:41 9:36 2:10 7455:76 753:63 3112:52 139:75 209:45 22:32 96:36 732:00 5:56 37:52 753:63 5127:14 0:00 29750:00 0 0 0 0 0 0 0 0 29750:00 0 0 0 0 0 0 0 0 0 0:63 1186:52 13950:30 17:67 2313:21 1834:02 4:38 33:31 1249:04 333:72 4725:72 9:85 17:83 3060:96 8:11 6:03 2:97 14:11 4:71 0:70 56:02 2136:78 2312:94 7:90 4110:37 848:01 2:01 14:77 548:58 128:97 D ¼ 105 l 6082:40 1833:55 6:37 848:81 9700:45 1:56 11:41 427:51 94:34 16:07 1543:38 8:81 4:06 2:68 1:69 2:26 9002:08 16:18 0:47 0:90 4272:53 132:19 32:73 14:41 14:21 12:77 16:88 5550:64 7:83 3:80 151:85 6168:80 1249:90 4:69 547:69 429:27 0:69 8:31 6176:07 107:71 139:75 3112:52 333:54 1:05 126:75 95:57 0:51 3:19 109:54 4799:30 0 0 0 0 5 0 Q ¼ 10 l 0 0 0 0 0
0 0 0:06 10:67 0 0 5:20 0 0 0:02
0:05 1:71
0 0 0:29
0:01
0 0
0:94
0:00
0 0
0:02
2:13
0 0
1:02
0:02
0 0
0:28
0:01
0 0
0
0:39
0 0 0:03
1:06
24:94 85:70 0:05 17:64 29:83 0:53 1:68 3:49 0:06 0:74 25:44 16:90 0:02 4:13 6:25 0:17 0:16 1:99 0:06 0:27 9:77 4:16 6:07 0:02 0:59 24:04 1:99 0:01 18:41 0:97 0:03 0:01 0:01 0:65 13:51 0:01 0:15 0:28 0:03 0:01 17:33 3:08 0:98 0:05 0:11 3:46 15:21 0:85
0:12
1:07
M.K. Ferradi, X. Cespedes / Computers and Structures 131 (2014) 12–33
References [1] Bauchau OA. A beam theory for anisotropic materials. J Appl Mech 1985;52:416–22. [2] Sapountzakis EJ, Mokos VG. Warping shear stresses in nonuniform torsion by BEM. Comput Mech 2003;30:131–42. [3] Sapountzakis EJ, Mokos VG. 3-D beam element of variable composite cross section including warping effect. ECCOMAS, 2004. [4] Ferradi MK, Cespedes X, Arquier M. A higher order beam finite element with warping eigenmodes. Eng Struct 2013;46:748–62. [5] Silvestre N, Camotim D. Nonlinear generalized beam theory for cold-formed steel members. Int J Struct Stab Dyn 2003;3(04):461–90.
33
[6] Bebiano R, Silvestre N, Camotim D. GBTUL-a code for the buckling analysis of cold-formed steel members. In: Proceedings of 19th international specialty conference on recent research and developments in cold-formed steel design and construction, 2008. p. 14–5. [7] Jang GW, Kim MJ, Kim YY. Analysis of Thin-Walled Straight Beams with Generally-Shaped Closed Sections Using Numerically-Determined Sectional Deformation Functions. J Struct Eng 2012;1:438. [8] Vlassov VZ. Pieces longues en voiles minces. Paris: Eyrolles; 1962. [9] Tisseur F, Meerbergen K. The quadratic eigenvalue problem. SIAM Rev 2001;43(2):235–86. [10] Bathe K-J. Finite Element Procedures. Englewood Cliffs, NJ: Prentice-Hall; 1996.