Applied Mathematics Letters 20 (2007) 532–538 www.elsevier.com/locate/aml
A new generalized and sharp version of Jordan’s inequality and its applications to the improvement of the Yang Le inequality, II Shanhe Wu a , Lokenath Debnath b,∗ a Department of Mathematics, Longyan College, Longyan Fujian 364012, People’s Republic of China b Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539, USA
Received 15 May 2006; accepted 20 May 2006
Abstract This paper deals with a new generalized and sharp version of Jordan’s inequality which is a unified generalization of some known results. An application of our results to the improvement of the Yang Le inequality is provided in this paper. c 2006 Elsevier Ltd. All rights reserved. Keywords: Jordan’s inequality; Yang Le inequality; Sharpness; Generalization; Best coefficient
1. Introduction The Jordan’s inequality (see Mitrinovi´c and Vasi´c [1]) 2 sin x ≤ < 1, π x
0
π 2
(1)
has important applications in many areas of pure and applied mathematics. This simple inequality has motivated a large number of research papers concerning its new proofs, various generalizations, sharpness and applications (e.g., ¨ see Zhu [2,3], Ozban [4], Debnath and Zhao [5], Yuefeng [6], Wu [7], Mercer et al. [8]). In a recent paper Wu and Debnath [9] established the following sharp lower and upper bounds for the function ( sinx x ) as an improvement of Jordan’s inequality max {N1 (θ, x), N2 (θ, x)} ≤ where N1 (θ, x) =
1 sin θ + θ 2
sin x ≤ min {M1 (θ, x), M2 (θ, x)} , 0 < x ≤ θ ≤ π, x
sin θ − cos θ θ
x2 sin θ x 2 3 2 cos θ 1− 2 + + − 1− , θ 2 3 3 θ θ
∗ Corresponding author. Tel.: +1 956 381 3459; fax: +1 956 384 5091.
E-mail addresses:
[email protected] (S. Wu),
[email protected] (L. Debnath). c 2006 Elsevier Ltd. All rights reserved. 0893-9659/$ - see front matter doi:10.1016/j.aml.2006.05.022
(2)
S. Wu, L. Debnath / Applied Mathematics Letters 20 (2007) 532–538
533
2 sin θ x2 3 1 x2 sin θ 1− 2 , − cos θ 1− 2 − θ sin θ + cos θ − θ 8 3 θ θ θ 2 x 2 sin θ 1 sin θ x sin θ 3 1 1− , M1 (θ, x) = + − cos θ 1− 2 − θ sin θ + cos θ − θ 2 θ 2 3 θ θ θ 2 x2 1 sin θ sin θ sin θ 3 2 cos θ x2 + − cos θ 1− 2 + + − M2 (θ, x) = 1− 2 . θ 2 θ θ 2 3 3 θ θ sin θ 1 N2 (θ, x) = + θ 2
Motivated by the above inequality, we consider further improvement of Jordan’s inequality. In this paper, we give a new generalized and sharp version of Jordan’s inequality by introducing exponential parameters, our result is a further generalization of inequality (2) as well as a unified generalization of several results of previous papers [2–5]. Finally, we provide an application of our results to the improvement of the Yang Le inequality. 2. Generalization and sharpness of Jordan’s inequality Theorem 1. Let 0 < x ≤ θ, θ ∈ (0, π2 ], and let τ ≥ 2, τ ≤ λ ≤ 2τ . Then we have the inequality 1 sin θ xλ xτ 2 1 sin θ sin θ 1 − λ + 2 (1 + λ) 1− τ + − cos θ − cos θ − θ sin θ θ λ θ θ 2τ θ θ λ sin θ 1 sin θ x 1 sin θ xτ 2 sin x sin θ 1− λ + 1− 1− τ ≤ + − cos θ − − cos θ ≤ , (3) x θ λ θ θ θ λ θ θ where the equality holds if and only if x = θ . Furthermore, 2τ1 2 (1 + λ) sinθ θ − cos θ − θ sin θ and 1 − sinθ θ − 1 sin θ λ θ − cos θ are the best coefficients in (3). Further, the inequality (3) is reversed for 1 ≤ τ ≤ 5/3, λ ≤ τ and λ = 0 (or λ ≥ 2τ ). In order to prove the Theorem 1, we will use the following lemma (see Anderson et al. [10] and [11]). Lemma 1. Let f , g : [a, b] → R be two continuous functions which are differentiable on (a, b). Further, let g = 0 on (a, b). If ( f /g ) is increasing (or decreasing) on (a, b), then the functions f (x) − f (b) g (x) − g (b)
and
f (x) − f (a) g (x) − g (a)
are also increasing (or decreasing) on (a, b). Proof of Theorem 1. When x = θ , (3) becomes an identity. We suppose 0 < x < θ ≤ π2 below. λ τ 2 Let f 1 (x) = sinx x − sinθ θ − λ1 sinθ θ − cos θ 1 − θx λ , f 2 (x) = 1 − θx τ , f 3 (x) = x −τ cos x − x −τ −1 sin x + θ1λ sinθ θ − cos θ x λ−τ , f 4 (x) = 2τ θ −2τ (x τ − θ τ ), f5 (x) = (τ + 1) sin x − (τ + 1)x cos x −
2 −2τ 2τ +1 , f (x) = (τ − 1) sin x − x cos x, f (x) = 2τ 2 (2τ + 1)θ −2τ x 2τ −1 , and let x 2 sin x, f 6 (x) 7 8 = 2τ θ x λ−τ sin θ 2τ −λ x λ−2τ . Then, we have F(x) = 2τ 2 − cos θ θ θ sin x sin θ 1 sin θ xλ − − − cos θ 1 − λ f 1 (x) − f 1 (θ ) x θ λ θ f 1 (x) θ = = , xτ 2 f 2 (x) f 2 (x) − f 2 (θ ) 1 − θτ x −τ cos x − x −τ −1 sin x + θ1λ sinθ θ − cos θ x λ−τ f 1 (x) f 3 (x) − f 3 (θ ) = = , −2τ τ τ f 2 (x) 2τ θ f 4 (x) − f 4 (θ ) (x − θ ) f 3 (x) λ − τ sin θ (τ + 1) sin x − (τ + 1)x cos x − x 2 sin x − cos θ θ 2τ −λ x λ−2τ + = f 4 (x) θ 2τ 2 θ −2τ x 2τ +1 2τ 2 f 5 (x) − f 5 (0) = + F(x), f 6 (x) − f 6 (0)
534
S. Wu, L. Debnath / Applied Mathematics Letters 20 (2007) 532–538
f 5 (x) (τ − 1) sin x − x cos x f 7 (x) − f 7 (0) = 2 , = −2τ 2τ −1 f 6 (x) f 8 (x) − f 8 (0) 2τ (2τ + 1)θ x f 7 (x) (τ − 2) cos x + x sin x = 2 = H (x). f 8 (x) 2τ (2τ + 1)(2τ − 1)θ −2τ x 2τ −2 Differentiating H (x) and F(x) with respect to x gives (5 − 3τ )x sin x − 2(τ − 1)(τ − 2) cos x + x 2 cos x , 2τ 2 (2τ + 1)(2τ − 1)θ −2τ x 2τ −1 (λ − τ )(λ − 2τ ) sin θ − cos θ θ 2τ −λ x λ−2τ −1 . F (x) = 2τ 2 θ
H (x) =
Case (I). When τ ≥ 2 and τ ≤ λ ≤ 2τ . By the well-known inequality (see Mitrinovic and Vasic [1]): π sin x − cos x > 0, x ∈ 0, , x 2 we find −3(τ − 2)x sin x − 2(τ − 1)(τ − 2) cos x − sinx x − cos x x 2 < 0, H (x) = 2τ 2 (2τ + 1)(2τ − 1)θ −2τ x 2τ −1 and (λ − τ )(λ − 2τ ) F (x) = 2τ 2
sin θ − cos θ θ 2τ −λ x λ−2τ −1 ≤ 0 θ
for 0 < x < θ ≤
π . 2
These show that H (x) and F(x) are decreasing on (0, θ ). Further, applying Lemma 1, we can deduce in order from the above relation chains that In view of the fact that f 1 (x) = f (x) = f 2 (x)
sin x x
f 7 (x) f 5 (x) f 3 (x) f 1 (x) f 1 (x) , , , , f 8 (x) f 6 (x) f 4 (x) f 2 (x) f 2 (x)
−
sin θ θ
−
1 λ
sin θ θ
1−
− cos θ xτ 2
are all decreasing on (0, θ ).
1−
xλ θλ
θτ
is decreasing on (0, θ ), this result together with 1 sin θ sin θ lim f (x) = 1 − − − cos θ , θ λ θ x→0+
lim f (x) =
x→θ −
1 2τ 2
sin θ − cos θ − θ sin θ , (1 + λ) θ
gives the following inequality 1 sin θ 1 sin θ sin θ − cos θ − θ sin θ < f (x) < 1 − − − cos θ + λ) (1 θ θ λ θ 2τ 2 This yields inequality (3) and shows that 2τ1 2 (1 + λ) sinθ θ − cos θ − θ sin θ and 1 − are the best coefficients in (3). Case (II). When 1 ≤ τ ≤ 5/3, λ ≤ τ and λ = 0 (or λ ≥ 2τ ), we have H (x) =
3( 53 − τ )x sin x + 2( 53 − τ )(τ − 1) cos x + 23 (τ − 1) cos x + x 2 cos x 2τ 2 (2τ + 1)(2τ − 1)θ −2τ x 2τ −1
and (λ − τ )(λ − 2τ ) F (x) = 2τ 2
sin θ − cos θ θ 2τ −λ x λ−2τ −1 ≥ 0 θ
for x ∈ (0, θ ). sin θ θ
−
1 λ
sin θ θ
− cos θ
> 0,
for 0 < x < θ ≤
π , 2
this means that H (x) and F(x) are increasing on (0, θ ). Making use of Lemma 1, we deduce in order from the above relation chains that
f 7 (x) f 5 (x) f 3 (x) f 1 (x) f 1 (x) , , , , f 8 (x) f 6 (x) f 4 (x) f 2 (x) f 2 (x)
are all increasing on (0, θ ). Consequently, we conclude that
S. Wu, L. Debnath / Applied Mathematics Letters 20 (2007) 532–538
limx→0+ 1−
f 1 (x) f 2 (x)
<
f 1 (x) f 2 (x)
1 sin θ − θ λ
< limx→θ − sin θ − cos θ θ
535
f 1 (x) f 2 (x)
for 0 < x < θ . Consequently, f 1 (x) 1 sin θ < < 2 (1 + λ) − cos θ − θ sin θ , f 2 (x) 2τ θ
which leads to the reversed inequality of (3). This completes the proof of Theorem 1.
We give here some direct consequences from Theorem 1. Putting τ = λ and τ = 1 in Theorem 1 respectively, we obtain Corollary 1. If 0 < x ≤ θ, θ ∈ (0, π2 ] and λ ≥ 2. Then max {N1 (λ, θ, x), N2 (λ, θ, x)} ≤ where
sin x ≤ min{M1 (λ, θ, x), M2 (λ, θ, x)}, x
(4)
x 2 xλ 1 sin θ sin θ 1− 1− λ + 1− − − cos θ , θ θ λ θ θ 2 1 sin θ xλ xλ sin θ 1 sin θ N2 (λ, θ, x) = + − cos θ 1 − λ + 2 (1 + λ) − cos θ − θ sin θ 1 − λ , θ λ θ θ 2λ θ θ x 2 1 sin θ xλ sin θ 1 sin θ 1− λ + + − cos θ − cos θ − θ sin θ 1 − M1 (λ, θ, x) = , (1 + λ) θ λ θ θ 2 θ θ 2 sin θ 1 sin θ xλ 1 sin θ xλ sin θ M2 (λ, θ, x) = + − cos θ 1− λ + 1− − − cos θ 1− λ . θ λ θ θ θ λ θ θ 1 sin θ + N1 (λ, θ, x) = θ λ
sin θ − cos θ θ
In particular, taking λ = 2 in Corollary 1 gives inequality (2). Putting θ = π2 in Theorem 1, we get the following generalized and sharp version of Jordan’s inequality Corollary 2. If 0 < x ≤
π 2,τ
≥ 2 and τ ≤ λ ≤ 2τ . Then
2 2 4λ + 4 − π 2 τ 2 + π − 2τ x τ (π λ − 2λ x λ ) + λ+1 2 2τ +1 π λπ 4τ π 2 sin x λπ − 2λ − 2 τ 2 2 π − 2τ x τ . ≤ (π λ − 2λ x λ ) + ≤ + x π λπ λ+1 λπ 2τ +1 Inequality (5) is reversed for 1 ≤ τ ≤ 5/3, λ ≤ τ and λ = 0 (or λ ≥ 2τ ).
(5)
Specially, putting (τ, λ) = (2, 2) and (τ, λ) = (1, 2) in Corollary 2 respectively yields the main results of previous ¨ papers due to Zhu [2,3] and Ozban, [4], that is Corollary 3. If 0 < x ≤
π 2,
then
1 2 1 12 − π 2 2 sin x π −3 2 2 + 3 (π 2 − 4x 2) + ≤ + 3 (π 2 − 4x 2) + (π − 4x 2)2 ≤ (π − 4x 2)2 , π π 16π 5 x π π π5 π 2 sin x π 2 1 2 1 2 4(π − 3) 12 − π 2 x− x− + 3 (π 2 − 4x 2) + ≤ + 3 (π 2 − 4x 2 ) + ≤ . 3 3 π 2 x π 2 π π π π
(6) (7)
3. Application to the improvement of the Yang Le inequality It is well-known that the Yang Le inequality plays an important role in the theory of distribution of values of functions (see Yang [12]). This inequality is stated below: If A1 > 0, A2 > 0, A1 + A2 ≤ π and 0 ≤ μ ≤ 1. Then cos2 μA1 + cos2 μA2 − 2 cos μπ cos μA1 cos μA2 ≥ sin2 μπ.
(8)
Considerable attention has been given to the Yang Le inequality by many authors, and it has been generalized and extended in different directions (see [2–5]). We give here a new improvement of the Yang Le inequality.
536
S. Wu, L. Debnath / Applied Mathematics Letters 20 (2007) 532–538
Theorem 2. Let Ai ≥ 0 (i = 1, 2, . . . , n, n ≥ 2), with max{K 1 (λ, θ ), K 2 (λ, θ )} ≤ (n − 1)
n
n i=1
Ai ≤ θ, θ ∈ [0, π], and let λ ≥ 2. Then
cos2 Ak − 2 cos θ
cos Ai cos A j
1≤i< j ≤n
k=1
≤ min{Q 1 (λ, θ ), Q 2 (λ, θ )}, where K 1 (λ, K 2 (λ, Q 1 (λ, Q 2 (λ,
θλ n θ) = λ+1− λ 2 π θλ n θ) = λ+1− λ 2 π θλ n θ) = λ+1− λ 2 π θλ n θ) = λ+1− λ 2 π
(9)
2 λπ − 2λ − 2 θ 2 2θ θ + , 1− cos 2 π λπ 2 2 2 2θ 4λ + 4 − π 2 θλ θ + , 1− λ cos 8λ π λπ 2 2 4λ + 4λ2 − λπ 2 θ 2 2θ + , 1− 8 π λπ 2 2 2θ θλ λπ − 2λ − 2 1− λ + . 2 π λπ
We first state the following lemma (see Wu and Debnath [9]): Lemma 2. Let A ≥ 0, B ≥ 0 and let A + B ≤ θ , θ ∈ [0, π]. Then sin2 θ ≤ cos2 A + cos2 B − 2 cos θ cos A cos B ≤ 4 sin2
θ . 2
(10)
Proof of Theorem 2. When θ = 0, (9) is an identity. We suppose 0 < θ ≤ π below. Let Hi j = cos2 Ai + cos2 A j − 2 cos θ cos Ai cos A j . It follows from Lemma 2 that sin2 θ ≤ Hi j ≤ 4 sin2
θ 2
(1 ≤ i < j ≤ n).
Taking the sum of all inequalities in (11), we obtain
θ sin2 θ ≤ Hi j ≤ 4 sin2 . 2 1≤i< j ≤n 1≤i< j ≤n 1≤i< j ≤n A simple calculation of (12) leads to the following inequality: n
θ θ θ n n cos2 Ak − 2 cos θ cos Ai cos A j ≤ 4 4 sin2 . sin2 cos2 ≤ (n − 1) 2 2 2 2 2 k=1 1≤i< j ≤n
(11)
(12)
(13)
On the other hand, applying Corollary 1 together with 0 < θ2 ≤ π2 , gives sin θ2 π θ π θ π θ π θ max N1 λ, , , N2 λ, , ≤ θ ≤ min M1 λ, , , M2 λ, , . 2 2 2 2 2 2 2 2 2 This yields the following result 0 < max {N1 (λ, θ ), N2 (λ, θ )} ≤ sin where θ N1 (λ, θ ) = λπ
θ ≤ min {M1 (λ, θ ), M2 (λ, θ )} , 2
λπ − 2λ − 2 θλ θ 2 , λ+1− λ + 1− π 2 π
(14)
S. Wu, L. Debnath / Applied Mathematics Letters 20 (2007) 532–538
θ N2 (λ, θ ) = λπ M1 (λ, θ ) =
θ λπ
M2 (λ, θ ) =
θ λπ
537
λ 2
θλ 4λ + 4 − π 2 θ λ+1− λ + , 1− λ π 8λ π θλ 4λ + 4λ2 − λπ 2 θ 2 , λ+1− λ + 1− π 8 π 2 λπ − 2λ − 2 θλ θλ . λ+1− λ + 1− λ π 2 π
Combining inequalities (13) and (14) yields inequality (9). This completes the proof of Theorem 2. Note that when ni=1 Ai ≤ π and 0 ≤ μ ≤ 1, it implies ni=1 μAi ≤ μπ and μπ ∈ [0, π]. Now, using the Theorem 2 and substituting Ai → μAi (i = 1, 2, . . . , n) and θ → μπ in inequality (9) yields the following: Corollary 4. Let Ai > 0 (i = 1, 2, . . . , n, n ≥ 2), with ni=1 Ai ≤ π, and let 0 ≤ μ ≤ 1, λ ≥ 2. Then max {K 1 (λ, μ), K 2 (λ, μ)} ≤ (n − 1)
n
cos2 μAk − 2 cos μπ
cos μAi cos μA j
1≤i< j ≤n
k=1
≤ min {Q 1 (λ, μ), Q 2 (λ, μ)} , where
(15)
μπ 2 λπ − 2λ − 2 n λ 2 2μ K 1 (λ, μ) = cos , λ+1−μ + (1 − μ) 2 2 λ 2 2 μπ 4λ + 4 − π 2 n λ λ 2 2μ cos K 2 (λ, μ) = , 1−μ λ+1−μ + 2 8λ λ 2 2 4λ + 4λ2 − λπ 2 n λ 2 2μ Q 1 (λ, μ) = , λ+1−μ + (1 − μ) 2 8 λ 2 2μ 2 λπ − 2λ − 2 n λ + 1 − μλ + Q 2 (λ, μ) = . 1 − μλ 2 2 λ
In particular, when λ = 2 in Corollary 4, we obtain Corollary 5. Let Ai > 0 (i = 1, 2, . . . , n, n ≥ 2), with max {K 1 (μ), K 2 (μ)} ≤ (n − 1)
n
n i=1
Ai ≤ π, and let 0 ≤ μ ≤ 1. Then
cos2 μAk − 2 cos μπ
k=1
≤ min {Q 1 (μ), Q 2 (μ)} , where
cos μAi cos μA j
1≤i< j ≤n
(16)
2 μπ n , 3 − μ2 + (π − 3) (1 − μ)2 μ2 cos2 2 2 2 2 μπ 12 − π 2 n 1 − μ2 , μ2 cos2 K 2 (μ) = 3 − μ2 + 2 16 2 2 12 − π 2 n Q 1 (μ) = 3 − μ2 + (1 − μ)2 μ2 , 2 4 2 2 n 2 2 Q 2 (μ) = μ2 . 3 − μ + (π − 3) 1 − μ 2
K 1 (μ) =
Inequality (16) is the main result of our recent paper [9], which is also a unified generalization of the earlier results of many authors (see [2–5,13].
538
S. Wu, L. Debnath / Applied Mathematics Letters 20 (2007) 532–538
Acknowledgment The research was supported by the Natural Science Foundation of Fujian Province Education Department of China under grant No. JA05324. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
D.S. Mitrinovi´c, P.M. Vasi´c, Analytic Inequalities, Springer-Verlag, New York, 1970. L. Zhu, Sharpening Jordan’s inequality and Yang Le inequality, Appl. Math. Lett. 19 (2006) 240–243. L. Zhu, Sharpening Jordan’s inequality and Yang Le inequality II, Appl. Math. Lett. (in press). Available online 5 January 2006. ¨ A.Y. Ozban, A new refined form of Jordan’s inequality and its applications, Appl. Math. Lett. 19 (2006) 155–160. L. Debnath, C.J. Zhao, New strengthened Jordan’s inequality and its applications, Appl. Math. Lett. 16 (4) (2003) 557–560. F. Yuefeng, Jordan’s inequality, Math. Mag. 69 (1996) 126–127. S.H. Wu, On generalizations and refinements of Jordan type inequality, Octog. Math. Mag. 12 (1) (2004) 267–272. A.McD. Mercer, U. Abel, D. Caccia, A sharpening of Jordan’s inequality, Amer. Math. Monthly 93 (1986) 568–569. S.H. Wu, L. Debnath, A new generalized and sharp version of Jordan’s inequality and its applications to the improvement of the Yang Le inequality, Appl. Math. Lett. (in press). Available online 24 March 2006. G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, New York, 1997. G.D. Anderson, S.L. Qiu, M.K. Vamanamurthy, M. Vuorinen, Generalized elliptic integral and modular equations, Pacific J. Math. 192 (2000) 1–37. L. Yang, Distribution of Values and New Research, Science Press, Beijing, 1982 (in Chinese). C.J. Zhao, L. Debnath, On generalizations of L.Yang’s inequality, J. Inequal. Pure Appl. Math. 3 (4) (2002).