Accepted Manuscript A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle Cretaceous of northern Brazil Rafael Matos Lindoso, Manuel Alfredo Araújo Medeiros, Ismar de Souza Carvalho, Agostinha Araújo Pereira, Ighor Dienes Mendes, Fabiano Vidoi Iori, Eliane Pinheiro Sousa, Silvia Helena Souza Arcanjo, Taciane Costa Madeira Silva PII:
S0195-6671(18)30206-4
DOI:
https://doi.org/10.1016/j.cretres.2019.104191
Article Number: 104191 Reference:
YCRES 104191
To appear in:
Cretaceous Research
Received Date: 30 May 2018 Revised Date:
1 July 2019
Accepted Date: 23 July 2019
Please cite this article as: Lindoso, R.M., Medeiros, M.A.A., Carvalho, I.d.S., Pereira, A.A., Mendes, I.D., Iori, F.V., Sousa, E.P., Souza Arcanjo, S.H., Madeira Silva, T.C., A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle Cretaceous of northern Brazil, Cretaceous Research, https:// doi.org/10.1016/j.cretres.2019.104191. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT 1
A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle
2
Cretaceous of northern Brazil
3 Rafael Matos Lindosoa,c*, Manuel Alfredo Araújo Medeirosb, Ismar de Souza Carvalhoc,
5
Agostinha Araújo Pereirad, Ighor Dienes Mendese, Fabiano Vidoi Iorif, Eliane Pinheiro
6
Sousag, Silvia Helena Souza Arcanjob, Taciane Costa Madeira Silvab
RI PT
4
7 8
a
9
Pesquisa, Pós-Graduação e Inovação - PRPGI, Av. Colares Moreira, 477, Renascença,
SC
Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Pró-Reitoria de
São Luís, MA, CEP: 65.075-441, Brazil; e-mail:
[email protected]
11
b
12
s/n, CEP: 65.085-580, São Luís, MA, Brazil; e-mail:
[email protected];
13
[email protected],
[email protected]
14
c
15
CEP: 21.949-900, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil; e-
16
mail:
[email protected]
17
d
18
Centro,
19
[email protected]
20
e
21
Biodiversidade e Biologia Evolutiva, CCS/IB, CEP: 21.941-902, Cidade Universitária,
22
Ilha do Fundão, Rio de Janeiro, RJ, Brazil; e-mail:
[email protected]
23
f
24
Garisto, CEP: 15.890-000, Uchoa, SP, Brazil; e-mail:
[email protected];
M AN U
10
Universidade Federal do Maranhão, Campus do Bacanga, Avenida dos Portugueses,
TE D
Universidade Federal do Rio de Janeiro, Departamento de Geologia, CCMN/IGEO,
EP
Centro de Pesquisa de História Natural e Arqueologia do Maranhão, Rua do Giz, 59, São
Luís,
Maranhão,
Brazil;
e-mail:
AC C
CEP:65.010-680,
Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em
Museu de Paleontologia Pedro Candolo, Estação Cultura, Praça Farmacêutico Bruno
1
ACCEPTED MANUSCRIPT 25
g
26
Universitária Paulo VI, CEP: 65.055-970 São Luís, MA, Brazil; e-mail:
27
[email protected]
28
*Corresponding author. Tel. +55(98)98868-7462;
[email protected]
Universidade
Estadual
do
Maranhão,
Departamento
Biologia,
Cidade
RI PT
29
de
30 31 32
Abstract
33
São Luís Basin, Alcântara Formation, Itapeuasaurus cajapioensis gen. et sp. nov., is
34
described, the first from this temporal interval in northern Brazil. It is characterized by
35
the presence of large and deep fossae on ventro-lateral aspect of the dorsal neural arch
36
split by laminae obliquely oriented; posterior centrodiapophyseal lamina forked
37
ventrally forming the dorsal edge of the centrodiapophyseal fossa; dorsal and ventral
38
components of anterior caudal transverse process thinner than the usual bony bar. This
39
latter
40
centrodiapophyseal fossa accessory lamina. The phylogenetic analysis performed herein
41
identifies the subclade Nigersaurinae as a South American – African/European clade,
42
suggesting a vicariant event before Cenomanian times. In addition, continental
43
vertebrate taxa recorded in the Alcântara Formation offer support to a minor
44
evolutionary change after major vicariant event in Western Gondwana.
45
Keywords: Sauropoda; Diplodocoidea; Rebbachisauridae; Alcântara Formation; Brazil
47
SC
associated
M AN U
is
with
the
presence
of
a
prezygodiapophyseal
EP
TE D
feature
AC C
46
A new genus and species of Rebbachisauridae sauropod from the Cenomanian of the
1 Introduction
48
One of the most interesting subjects concerning the Mesozoic continental faunas
49
is the identification of events of vicariance and dispersal throughout the history of
50
Gondwana. In this sense, Rebbachisauridae is paleobiogeographically relevant, a clade
51
formed by all diplodocoids more closely related to Rebbachisaurus garasbae than to 2
ACCEPTED MANUSCRIPT Diplodocus longus (sensu Salgado et al., 2004). Their records have been useful for
53
ascertaining the moment of definitive separation between South America and Africa
54
(Carballido et al., 2010). Recently, phylogenetic analysis has emphasized a marked
55
provincialism among members of Rebbachisauridae, with some of them restricted to
56
Europe and northern Africa (e.g. Nigersaurus, Demandasaurus, Rebbachisaurus) and
57
others only composed by Upper Cretaceous South American taxa (e.g. Limaysaurus,
58
Cathartesaura, Nopcsaspondylus, El Chocon rebbachisaurid) (Sereno et al., 2007;
59
Whitlock, 2011; Fanti et al., 2013; Wilson and Allain, 2015; Mannion et al., 2019). This
60
group of neosauropods also reveals extreme adaptations for herbivory and high
61
temperatures in habitats at tropical and subtropical paleolatitudes (Ibiricu et al., 2017;
62
Sereno et al., 2007).
M AN U
SC
RI PT
52
In South America, Rebbachisauridae is diverse and frequently recorded in an
64
interval extending from the Barremian to Turonian, particularly in Argentina.
65
Additionally, their remains are composed mainly of postcranial elements (Calvo and
66
Salgado, 1995; Bonaparte, 1996; Calvo, 1999; Salgado et al., 2004; Gallina and
67
Apesteguía, 2005; Apesteguía, 2007; Carballido et al., 2010, 2012; Haluza et al., 2012;
68
Ibiricu et al., 2012, 2013). This diversity has been also complemented by a few cranial
69
remains (Calvo and Salgado, 1995; Carabajal et al., 2016; Canudo et al., 2018). Other
70
records of Rebbachisauridae in South America occur only in northern-northeastern
71
Brazil (Carvalho et al., 2003; Medeiros and Schultz, 2004; Castro et al., 2007; Medeiros
72
et al., 2014).
AC C
EP
TE D
63
73
In the São Luís Basin, Cretaceous outcrops are mainly Cenomanian in age
74
(Klein and Ferreira, 1979; Pedrão et al., 1993). For over 20 years, the most important
75
fossiliferous outcrop in this basin has been the Laje do Coringa bone-bed, which records
76
the Alcântara Formation (lower Cenomanian), at Cajual Island, São Marcos Bay
3
ACCEPTED MANUSCRIPT (Corrêa-Martins, 1996; Medeiros and Schultz, 2001, 2002) (Fig. 1). Therein, a
78
noteworthy paleocommunity including crocodyliforms, fishes, dinosaurs, plants
79
remains, invertebrates, and pterosaurs has been recorded (Medeiros et al., 1995, 1996,
80
2014; Corrêa-Martins, 1996; Vilas-Bôas et al., 1999; Vilas-Bôas and Carvalho, 2001;
81
Medeiros and Schultz, 2001, 2002; Elias et al., 2007; Pereira and Medeiros, 2008;
82
Araújo et al., 2011; Lindoso et al., 2012, 2013a).
RI PT
77
The Alcântara Formation records both Titanosauria and Diplodocoidea remains,
84
although the former is less frequent in the Laje do Coringa bone bed (Medeiros et al.,
85
2007, 2014). The fragmentary state of these materials has precluded the proposition of
86
any nominal species, except for a few teeth tentatively assigned to Malawisaurus (Freire
87
et al., 2007). Some rebbachisaurid remains (e.g. caudal vertebrae/neural spine) have
88
been tentatively assigned to a more specific taxonomic level, cf. Limaysaurus tessonei
89
(Medeiros and Schultz, 2004).
M AN U
SC
83
In the Parnaíba sedimentary Province (which also include the São Luís Basin to
91
the north), Diplodocoidea remains has been found in a better preservation state, with a
92
unique nominal species described so far, Amazonsaurus maranhensis Carvalho et al.,
93
2003. This rebbachisaurid was described based on a partial postcranial skeleton in
94
Lower Cretaceous (Aptian-Albian) strata of the Itapecuru Formation, southern
95
Maranhão State, northern Brazil (Carvalho et al., 2003). Many common taxa are
96
recorded in the Alcântara and Itapecuru formations (e.g. Theropoda and fishes),
97
suggesting a homogeneous paleocommunity inhabiting the northeastern Brazil
98
throughout the Albian and early Cenomanian (Medeiros and Schultz, 2002; Medeiros et
99
al., 2007, 2014).
AC C
EP
TE D
90
100
In the present study, a new genus and species of rebbachisaurid dinosaur is
101
described from lower Cenomanian strata of Brazil, the first nominal diplodocoid from
4
ACCEPTED MANUSCRIPT 102
the Alcântara Formation. It comes from a new fossiliferous locality in Maranhão State
103
and may help to increase our understanding concerning this sauropod group during the
104
mid-Cretaceous worldwide.
106
2 Geological setting
The São Luís Basin is a marginal basin located in the north portion of South
SC
107 108 109 110 111
Please, include the Fig. 1 near here.
RI PT
105
America. It has a total area of 18.000 km2 and its genesis is related to the Equatorial
113
Atlantic opening initiated during the Late Jurassic and Early Cretaceous (Szatimari et
114
al., 1987; Carvalho, 2001a; Góes and Rossetti, 2001). This basin represents one sub-
115
basin on a larger intracratonic sedimentary area, the Parnaíba Province, tectonically
116
reactivated in the Mesozoic during the South America and Africa breakup (Góes, 1995;
117
Góes and Coimbra, 1996; Góes and Rossetti, 2001). The São Luís Basin is limited by
118
the following structural arches: the Xambioá-Alto Parnaíba Antecline to the south, the
119
Capim Arch to the northwest, and the Rio Parnaíba Lineament to the east (Góes, 1995).
TE D
M AN U
112
The sedimentary record of the São Luís Basin can be divided into three
121
depositional sequences sensu Rossetti (2001): S1, S2 and S3. The S1 sequence
122
accumulated during the upper Aptian and lower Albian, and includes about 450 m of
123
sandstones, shales and limestones deposited in shallow marine, lacustrine and fluvio-
124
deltaic environments that make up the Grajaú and Codó formations. The S2 sequence,
125
lower-middle Albian, consists of about 500 m of sandstone and pelitic deposits
126
attributed to shallow marine and fluvio-deltaic environments that make up the Itapecuru
127
Formation (Campbell, 1949) or Undifferentiated Unit (Rossetti and Truckenbrodt,
128
1997).
AC C
EP
120
The S3 sequence accumulated between the middle Albian and the Upper
5
ACCEPTED MANUSCRIPT 129
Cretaceous. It comprises 600-800 m of sandstones and pelitic deposits referred to the
130
Alcântara and Cujupe formations (Rossetti and Truckenbrodt, 1997; Paz and Rossetti,
131
2001). The new sauropod described herein comes from a new locality in the Itapeua
133
beach, Cajapió municipality, northern Maranhão State, Brazil (Fig. 1). This locality is
134
part of the Alcântara Formation, São Luís Basin (Medeiros et al., 2015). Its sedimentary
135
succession includes around 2,5 m of reddish argillaceous levels at the base, being
136
immediately overlaid by centimetric levels of fine to medium siltic sandstones,
137
laterized, where dinosaur bones and teeth remains are found. These layers are
138
superposed by reddish argillite strata intercalated by greenish siltite mottled with
139
reddish coloring. Additionally, mud crack, fluidization and elephant skin structures are
140
observed in plan view (Medeiros et al., 2015). The diplodocoid remains comes from
141
greenish argillaceous siltic levels 20 cm thickness (Fig. 2B). The Alcântara Formation
142
records a diverse biota comprising plants, fishes, turtles, dinosaurs, pterosaurs,
143
vertebrate and invertebrate ichnofossils (Medeiros and Vilas-Bôas, 1999; Carvalho,
144
2001b; Dutra and Malabarba, 2001; Medeiros and Schultz, 2001; Moraes-Santos and
145
Carvalho, 2001; Elias et al., 2007; Freire et al., 2007; Pereira and Medeiros, 2008;
146
Lindoso et al., 2012, 2013a; Medeiros et al., 2014).
148 149
SC
M AN U
TE D
EP
AC C
147
RI PT
132
Please, include the Fig. 2 near here.
150 151 152 153
3 Material and methods
154
Universidade Federal do Maranhão (UFMA). They were localized by a fisherman on a
155
beach in the Cajapió municipality, Maranhão State, subsequently being recovered by a
The fossils described herein are housed at the fossil collection of the
6
ACCEPTED MANUSCRIPT team of Paleontologists of the Universidade Federal do Maranhão (UFMA),
157
Universidade Federal do Rio de Janeiro (UFRJ), Centro de Pesquisa de História Natural
158
e Arqueologia do Maranhão (CPHNAMA) and Universidade Estadual do Maranhão
159
(Fig. 2A). As the specimen was exposed on the intertidal area, it was necessary to
160
develop a stabilization technique under flood conditions, using wire, splints and
161
impermeable polyurethane foam, before and after the total removal of each bony
162
element, which often took more than one daily tide cycle (Medeiros et al., 2015).
163
Considering the tidal cycles and the stabilization technique, the effective working time
164
was reduced to less than 4 hours per day.
SC
RI PT
156
Mechanical conventional techniques of fossil preparation were performed at the
166
laboratory of the CPHNAMA. The phylogenetic analysis conducted herein is detailed in
167
a specific section. For the nomenclature of vertebral laminae and fossae we followed
168
Wilson (1999), Wilson et al. (2011) and Carballido et al. (2012).
M AN U
165
TE D
169 4 Systematic paleontology
171
SAURISCHIA Seeley, 1887
172
SAUROPODOMORPHA Huene, 1932
173
SAUROPODA Marsh, 1878
174
DIPLODOCOIDEA Marsh, 1884 (sensu Upchurch, 1995)
175
REBBACHISAURIDAE Bonaparte, 1997
176
Itapeuasaurus cajapioensis, gen. et sp. nov.
177
(Figs. 3-9)
AC C
EP
170
178 179
Diagnosis. Rebbachisauridae distinguished by the following combination of characters
180
on the dorsal and caudal vertebrae (autapomorphies are marked with an asterisk):
7
ACCEPTED MANUSCRIPT Presence of three shallow pneumatic fossae disposed vertically on the dorsal surface of
182
the neural arch, which are separated by the spinoprezygapophyseal lamina and
183
spinopostzygapophyseal accessory lamina; large and deep fossae on the ventro-lateral
184
aspect of the dorsal neural arch split by laminae obliquely oriented*; posterior
185
centrodiapophyseal lamina forked ventrally forming the dorsal edge of the
186
centrodiapophyseal fossa*; dorsal and ventral components of anterior caudal transverse
187
process thinner than the usual bony bar associated to the presence of a
188
prezygapophyseal
189
centrodiapophyseal fossa accessory lamina*.
190
Holotype. An incomplete dorsal neural arch (UFMA. 1.10.1960-01); three anterior
191
caudal vertebrae (UFMA. 1.10.1960-03, 1.10.1960-04, UFMA. 1.10.1960-05); and two
192
middle caudal vertebrae (UFMA. 1.10.1960-07, 1.10.1960-08).
193
Paratype. A summit of dorsal neural spine (UFMA. 1.10.1960-02); an anterior caudal
194
vertebra (UFMA. 1.10.1960-06); two chevrons (UFMA. 1.10.1960-10, 1.10.1960-11);
195
an incomplete ischium (UFMA. 1.10.1960-09)
196
Stratigraphic horizon. Alcântara Formation, São Luís Basin, lower Upper Cretaceous
197
(Cenomanian).
and
prezygodiapophyseal
SC
lamina
TE D
M AN U
fossa
EP
198
centrodiapophyseal
RI PT
181
4.1 Comparative description
Dorsal vertebrae. Two elements comprise the dorsal vertebrae of Itapeuasaurus
203
cajapioensis. However, only the most well preserved is described herein (Fig. 3).
204
UFMA 1.10.1960-01 represents a large, partially preserved middle-posterior dorsal
205
neural arch. Most of the neural spine and right costal articulations are not preserved.
206
The left parapophysis is missing and only the base of the right diapophysis is preserved.
207
The left diapophysis is almost completely preserved; it is broad and laminar, forming an
AC C
199 200 201 202
8
ACCEPTED MANUSCRIPT 208
angle of almost 90 degrees relative to the neural spine. Although the centrum is missing,
209
large fossae on the ventrolateral aspect of neural arch are deep and internally partitioned
210
by a thin, obliquely oriented lamina (Fig. 3D). Its unusual position does not allow
211
comparisons with other rebbachisaurids. In UFMA 1.10.1960-01, the parapophysis is above the zygapophysis level, a
213
position observed in Rebbachisaurus, Nigersaurus, Histriasaurus and Demandasaurus
214
(Dalla Vecchia, 1999; Sereno et al., 2007; Fernández-Baldor et al., 2011; Wilson and
215
Allain, 2015), but not shared with Comahuesaurus and Limaysaurus [=Rebbachisaurus
216
tessonei] (Calvo and Salgado, 1995; Carballido et al., 2012). In these latter
217
rebbachisaurids, the parapophysis is far below the level of the zygapophysis. Otherwise,
218
the leveling parapophysis/zygapophysis is present in the Rebbachisauridae MMCH-Pv
219
49/17 (Haluza et al., 2012).
M AN U
SC
RI PT
212
The lateral aspect of neural arch display two fossae (centrodiapophyseal fossa,
221
cdf; parapophyseal centrodiapophyseal fossa, pacdf; fig. 3C), which differ from all
222
others rebbachisaurids known. For example, in Katepensaurus the parapophyseal
223
centroprezygapophyseal fossa (pacprf) and (pacdf) are subdivided by laminae (Ibiricu
224
et al., 2013; fig. 7C), and in Histriasaurus it forms a complex latticework of thin bone
225
laminae (Dalla Vecchia, 1998; fig. 9C). Otherwise, Limaysaurus, Nopcsaspondylus,
226
Nigersaurus and Demandasaurus present a reduction in complexity in these fossae
227
(Nopcsa, 1902, fig. 2; Calvo and Salgado, 1995, fig. 8D; Sereno et al., 2007, fig. 3C;
228
Fernández-Baldor et al., 2011, fig. 9B). In UFMA 1.10.1960-01, the posterior
229
centrodiapophyseal lamina (pcdl) is forked in the middle region of the neural arch
230
toward the centrum. These two new laminae form the border of the cdf and partially the
231
pacdf. We consider it an autapomorphy for Itapeuasaurus cajapioensis.
AC C
EP
TE D
220
232
9
ACCEPTED MANUSCRIPT 233
Please, include the Fig. 3 near here.
234 The surface framed by the prespinal (prsl), prezygoparapophyseal (prpl), and
236
spinodiapophyseal (spdl) laminae is well delimited by three shallow fossae disposed
237
vertically, increasing in size toward the apex (Fig. 4B). These fossae are subdivided by
238
the spinoprezygapophyseal lamina (sprl) and spinopostzygapophyseal accessory lamina
239
(spzal). Limaysaurus tessonei possesses apparently the same complex of fossae/lamina,
240
but at a number of two (Calvo and Salgado, 1995; fig. 8). Although Nigersaurus also
241
have dorsal vertebrae with paired pneumatic spaces at the base of the neural spines,
242
Sereno et al. (1999) does not offer information regarding its compartmentalization. In
243
Rebbachisaurus, the pneumatic fossae are irregularly distributed along the inferior
244
margin of the diapophysis, margin of the spinodiapophyseal lamina and neural spine
245
(Wilson and Allain, 2015; figs. 8B, 9).
M AN U
SC
RI PT
235
The neural canal is almost circular in anterior and slightly elliptical in posterior
247
view. It is bordered by the medial centroprezygapophyseal lamina (med. cprl) into a
248
large fossa in a drop shape in anterior view (centroprezygapophyseal fossa - cprf). Both
249
the med. cprl and the intraprezygapophyseal lamina (tprl) border the subfossa
250
centroprezygapophyseal dorsal (s-cprf-d, sensu Carballido et al., 2012; fig. 4B), which
251
is large in Itapeuasaurus cajapioensis. (Fig. 3A). In fact, the complex lamina/fossae in
252
the infraprezygapophyseal region of UFMA 1.10.1960-01 is distinct from all other
253
Rebbachisauridae known.
AC C
EP
TE D
246
254 255
Please, include the Fig. 4 near here.
256
10
ACCEPTED MANUSCRIPT Caudal vertebrae. Six caudal vertebrae almost complete are preserved (four
258
anterior and two middle). The most anterior of them, UFMA 1.10.1960-03 is 540 mm
259
high being 95% complete (Table 1; Fig. 5). The centrum is anteroposteriorly short,
260
subcircular in shape, with lateral and ventral sides concave. The ventral concavity has a
261
mediolateral direction without the presence of lateral ridges. There is no sign of lateral
262
pneumatic cavities and both articular faces are amphicoelous. Subcircular anterior
263
caudal centrum is present in Cathartesaura, but along with amphiplatyan articular faces
264
(Gallina and Apesteguía, 2005).
SC
RI PT
257
The neural arch is reduced and positioned on the anterior half of the centrum. In
266
UFMA 1.10.1960-03 the neural spine is slightly inclined posteriorly (Fig. 5C).
267
Otherwise, the neural arch in anterior caudals of Limaysaurus is twice higher than the
268
height of the centra (Calvo and Salgado, 1995: 22) and in Cathartesaura a neural spine
269
S-shaped is present (Gallina and Apesteguía, 2005; fig. 3A).
M AN U
265
The transverse process is a laminar complex dorsoventrally short and slightly
271
oriented upward (a slight variation from the morphological type ‘complex’ termed by
272
Gallina and Otero, 2009). Instead, in Histriasaurus the transverse process is laterally
273
and backwardly directed (Dalla Vecchia, 1998). In UFMA 1.10.1960-03 both the dorsal
274
and ventral component of the transverse process are laminar rather than bar shaped; the
275
ventral component is parallel to the dorsal one rather than oblique as in most
276
rebbachisaurids (e.g. Katepensaurus, Limaysaurus, Rebbachisaurus, Cathartesaura).
277
The isolated anterior caudal vertebrae from Kem Kem bed (NHMUK R36636) bears
278
limited similarities with UFMA 1.10.1960-03, including dorsal and ventral components
279
parallel to each other in its dorsolateral plan. Most laminar anterior caudal transverse
280
processes put UFMA 1.10.1960-03 apart from diplodocids, which have dorsal
281
components well developed (bony bars). Although Comahuesaurus shares with
AC C
EP
TE D
270
11
ACCEPTED MANUSCRIPT 282
Itapeuasaurus cajapioensis a transverse process dorsoventrally short and dorsolaterally
283
deflected, the centroprezygapophyseal fossa (cprf) does not span the entire length of the
284
dorsal and ventral components of the transverse process (see Carballido et al., 2012; fig.
285
6A). A thin ‘web’ of bone between the dorsal and ventral components is absent in
287
UFMA 1.10.1960-03; instead, a large prezygapophyseal centrodiapophyseal fossa
288
(prcdf) is compartmentalized medially by two short laminae. The first one is positioned
289
more
290
centrodiapophyseal fossa lamina [prcdfl] (Fig. 5A). As in Katepensaurus, the prcdfl
291
arises from the dorsolateral margin of the centrum and isolates the dorsomedial corner
292
of the prcdf. However, this lamina continues a trajectory under the dorsal component (=
293
prezygodiapophyseal lamina [prdl]) performing an arc until contacting the ventral
294
component (Fig. 5A). The second lamina, herein termed prezygodiapophyseal
295
centrodiapophyseal fossa accessory lamina (prcdfal), is positioned more internally into
296
the prcdf, vertically oriented. This lamina arises from the base of the ventral component
297
toward the prdl (Fig. 5A). The presence and symmetrical arrangement of prcdfl and
298
prcdfal in anterior caudal vertebrae of Itapeuasaurus cajapioensis is herein considered
299
an autapomorphy. This condition is not present in others rebbachisaurids (see Pereda
300
Suberbiola et al., 2003; Fernández-Baldor et al., 2011; Fernández-Baldor, 2012). For
301
example, in the Isle of Wight rebbachisaurid anterior caudal vertebra (MIWG 5384),
302
both right and left prcdf are asymmetrically compartmentalized (see Mannion et al.,
303
2011: fig 1A).
into
the
prcdf,
obliquely
oriented
(prezygapophyseal
AC C
EP
TE D
M AN U
SC
externally
RI PT
286
304
The neural spine possesses spinodiapophyseal lamina (spdl), pre- and postspinal
305
lamina (prsl and posl) well developed. The spinodiapophyseal laminae are posteriorly
306
convex and anteriorly concave, which results in an anterior bending of these laminae,
12
ACCEPTED MANUSCRIPT present in Amazonsaurus and Rebbachisaurus garasbae (Carvalho et al., 2003; Wilson
308
and Allain, 2015), but diverging in R. tessonei (Calvo and Salgado, 1995). According to
309
Sereno et al. (2007), Nigersaurus has a characteristic flaring of the lateral lamina at mid
310
length. In Demandasaurus and the Isle of Wight rebbachisaurid anterior caudal vertebra
311
(MIWG 5384), the lateral lamina is marked by the small wing-like projections near the
312
top of the neural spine (Fernández-Baldor et al., 2011; Mannion et al., 2011; Pereda
313
Suberbiola et al., 2003). The distal third of the neural spine has a ‘petal-shape’ as a
314
consequence of the expansion of the spinodiapophyseal lamina which is also present in
315
R. garasbae (Wilson and Allain, 2015; fig. 9) (Fig. 5). In distal view, the
316
spinodiapophyseal lamina (spdl), prsl and posl form the tetraradiate character typical of
317
Rebbachisauridae (Calvo and Salgado, 1995; Salgado et al., 2004). However, the lateral,
318
anterior and posterior rami are proportional in length.
M AN U
SC
RI PT
307
The pre- and postspinal laminae bifurcate at the median region of the neural
320
spine, continuing toward the neurocentral junction, participating of the formation of the
321
prezygapophysis
322
postzygapophysis (medial spinopostzygapophyseal lamina [med. spol]). This character
323
is absent in A. maranhensis, partially present in R. garasbae and anterior caudal
324
vertebrae of rebbachisaurids from central Patagonia, UNPSJB-PV 580 and UNPSJB-PV
325
1004/2. In anterior caudal vertebrae of Katepensaurus this character is also distinct,
326
although the specimen UNPSJB-PV 1007/8 may have pre- and postspinal bifurcate
327
lamina once excluded possible diagenetic obliteration or deformation (Ibiricu et al.,
328
2013; fig. 10 C).
TE D
319
spinoprezygapophyseal
lamina
[med.
sprl])
and
AC C
EP
(medial
329 330
Please, include the Fig. 5 near here.
331
13
ACCEPTED MANUSCRIPT In the anterior caudal UFMA 1.10.1960-04 the centrum is amphicoelous. The
333
neural arch is low, which supports prezygapophysis well developed and not wide apart,
334
with its articular facets oriented medially. It is placed beyond the anterior margin of the
335
centrum (Fig. 6). This condition is distinct from Dicraeosaurus, Amazonsaurus and
336
from the isolated neural arch MCF-PVPH-633.
337 338
Please, include the Fig. 6 near here.
SC
339
RI PT
332
UFMA 1.10.1960-05 is 84 mm long, missing the distal half of neural spine, most
341
of the transverse process and posterior articular surface (Fig. 7). As in the anterior
342
caudal ones, the centrum is anteroposteriorly short, whit lateral sides slightly concave.
343
The ventral side is anteroposteriorly excavated; two discrete articular eruptions close to
344
the anterior edge of centrum is herein interpreted as the haemal articular surfaces. They
345
are ca. 5 cm apart, suggesting opened haemal articulations (not bridged).
TE D
M AN U
340
As in UFMA 1.10.1960-04, the pedicel is reduced, situated on anterior half of
347
the centrum. The prezygapophysis are placed beyond the anterior margin of the slightly
348
amphicoelous centrum, and there is no prezygodiapophyseal centrodiapophyseal fossa
349
(prcdf). The base of the transverse process preserved indicates a fusion of the dorsal
350
and ventral components in a single bony bar. Between the well-developed
351
postzygapophysis, there is a deep groove, which indicates the existence of a forked
352
postspinal laminae. The articular facets of the postzygapophysis form a shallow,
353
elliptic-elongated concavity (Fig. 7 B, C).
AC C
EP
346
354
In its medium region, the neural spine is pentaradiate in cross-section due the
355
absence of lateral lamina in the proximal half. This topography results of the medial
356
spinoprezygapophyseal (med.sprl), prespinal (prsl) and postspinal (posl) laminae. In
14
ACCEPTED MANUSCRIPT 357
Amazonsaurus (MN 4555-V), instead, the caudal vertebrae neural spine is more
358
laminar.
359 360
Please, include the Fig. 7 near here.
RI PT
361
UFMA 1.10.1960-07 is 42,4 mm long and is markedly compressed laterally. It is
363
interpreted herein as a middle caudal vertebra (Fig. 8). The centrum is amphicoelous,
364
possessing the lateral faces slightly concave; the ventral one, instead, exhibit a deep
365
notch anteroposteriorly oriented. The ventral margin of the posterior articular surface is
366
slightly bulky than the anterior one, probably as a result of the presence of the haemal
367
articular surfaces. In Katepensaurus (UNPSJB-PV 1004) and Cathartesaura, the middle
368
caudal centra are similar to UFMA 1.10.1960-07, but the formers are more rectangular
369
in lateral view and have lower neural spines. These differences clearly reflect distinct
370
positions in the caudal series, thus precluding direct comparisons.
TE D
M AN U
SC
362
The neural arch is positioned on the anterior half of centrum; in this specimen,
372
the transverse process is absent (a common aspect in posterior caudal vertebrae). The
373
neural canal is higher than wide and the pre- and postzygapophysis have a laminar
374
aspect. In lateral view, UFMA 1.10.1960-07 is similar to mid-posterior caudal vertebrae
375
of Amazonsaurus (MN 4560-V), but slightly more compressed in anterior/posterior
376
view. The neural spine is slightly oriented posteriorly, only the prsl and posl being
377
preserved.
AC C
EP
371
378
UFMA 1.10.1960-07 differs from Comahuesaurus (MOZ-PV 6634) by the
379
presence of a ridge on the lateral faces of the centrum, as well as a more excavated
380
ventral surface. Caudal lateral ridges are also present in Demandasaurus (Pereda
381
Suberbiola et al., 2003). The mid- caudals of Zapalasaurus (Pv-6127-MOZ), mainly the
15
ACCEPTED MANUSCRIPT 382
numbers 5 and 6, are remarkably similar to those of Itapeuasaurus cajapioensis, but
383
exhibits a slightly greater angle between the prezygapophysis and the neural spine
384
(Salgado et al., 2006; fig. 2: 5-6). This latter condition, plus the presence of a lateral
385
knob at the base of the neural arch, distances Histriasaurus from UFMA 1.10.1960-07.
387
RI PT
386 Please, include the Fig. 8 near here.
388
UFMA 1.10.1960-08 represents a second middle caudal vertebra, posterior to
390
UFMA 1.10.1960-07 in the caudal series (Fig. 9). The centrum is 109,5 mm long and
391
170,5 mm, the lateral face being strongly excavated and the ventral face slightly
392
concave. The neurocentral junction is placed on anterior half of the centrum. The
393
prezygapophysis is laminar and surpass the anterior edge of the centrum. As in UFMA
394
1.10.1960-07, there is no an evident transverse process. The neural spine is low and
395
laterally compressed, without evidence of lateral laminae (ll).
TE D
M AN U
SC
389
UFMA 1.10.1960-08 differs from the middle caudals of Limaysaurus and
397
Demandasaurus in having a wider angle between the postzygapophysis and the
398
centrum, and from Comahuesaurus by a smaller neurocentral junction (Fig. 9B). The
399
mid-posterior caudal vertebra of Amazonsaurus (MN 4560-V) is more robust, with
400
equivalent prezygapophysis (Carvalho et al., 2003; fig. 11). In the specimen Nos IG-1,
401
the centrum has a spool shape, with a lateral knob (lk) at the base of the neural arch
402
(Dalla Vecchia, 1998; fig. 17A), aspects not present in UFMA 1.10.1960-08. In
403
Tataouinea, the postzygapophysis are more developed, and the prezygapophysis are
404
slightly oriented upward (Fanti et al., 2015; fig. 13A). The specimen UNPSJB-PV 1004
405
and mid-posterior caudal vertebrae of Zapalasaurus exhibit a neural spine more
AC C
EP
396
16
ACCEPTED MANUSCRIPT 406
expanded than UFMA 1.10.1960-08 (Salgado et al., 2006; fig. 5, 7, 8; Ibiricu et al.,
407
2012; fig. 7).
408 409
Please, include the Fig. 9 near here.
411
RI PT
410 5 Discussion
412 5.1 Phylogenetic Analysis
SC
413
Rebbachisauridae was defined as all diplodocoids more closely related to
416
Rebbachisaurus garasbae than to Diplodocus longus (Wilson [pers. comm.] in Salgado
417
et al., 2004). Recent analysis has recovered Amazonsaurus as the most ‘basal’ member
418
of this clade, with the European/African Histriasaurus its sister taxon. Histriasaurus
419
forms a polytomy with the South American Zapalasaurus at the base of
420
Rebbachisauridae and Comahuesaurus is also placed outside of Khebbashia
421
(Limaysaurinae + Nigersaurinae) (see Whitlock, 2011; Carballido et al., 2012; Wilson
422
and Allain, 2015; Fanti et al., 2015; Mannion et al., 2019).
TE D
M AN U
414 415
Nigersaurinae, a clade defined as Nigersaurus not Limaysaurus by Whitlock
424
(2011), is formed by African (Nigersaurus, Rebbachisaurus, Tataouinea) and European
425
(Demandasaurus) taxa (see Wilson and Allain, 2015; Mannion et al., 2019).
426
Rebbachisauridae also includes Limaysaurinae (Cathartesaura + Limaysaurus). In order
427
to ascertain the probable phylogenetic relationships of Itapeuasaurus cajapioensis, a
428
phylogenetic analysis was carried out based on the matrix proposed by Wilson and
429
Allain (2015). This analysis included a few changes in the characters 119 (from Salgado
430
et al., 2006), 124 (from Mcintosh, 1990), 131 (from Wilson, 2002), 132 (from Whitlock,
431
2011), 141 (from Wilson et al., 1999) (Appendix A).
AC C
EP
423
17
ACCEPTED MANUSCRIPT A parsimony analysis was carried out using the software TNT v. 1.1 (Goloboff
433
et al., 2008a, b). The matrix consists of the compiled data from Wilson and Allain
434
(2015) using a data set of 171 characters scored in 27 taxa, plus the inclusion of
435
Itapeuasaurus cajapioensis. Additionally, a heuristic tree search of 1,000 replicates of
436
Wagner Trees with random addition sequences was performed, followed by TBR
437
branch-swapping. The initial search produced 334 most parsimonious trees (MPTs) of
438
282 steps (consistency index [CI] = 0.663, retention index [RI] = 0.810). The strict
439
consensus of this analysis recovered a polytomy at the base of Rebbachisauridae (Fig.
440
10). However, when an agreement subtree analysis is performed, Itapeuasaurus
441
cajapioensis is grouped together with Demandasaurus and Nigersaurus in
442
Nigersaurinae (Fig. 11). In our resulting topology, Histriasaurus and Rebbachisaurus
443
were excluded and Amazonsaurus, Zapalasaurus and Comahuesaurus recovered as
444
successive outgroups to Khebbashia.
Please, include the Figs. 10 and 11 near here.
447 448
5.2 Taxonomy
EP
446
TE D
445
M AN U
SC
RI PT
432
Itapeuasaurus cajapioensis is the best preserved diplodocoid sauropod from the
450
Alcântara Formation, Cenomanian of the São Luís Basin. We consider it as a
451
Diplodocoidea primarily by the neural arch in the dorsal vertebrae being tall and neural
452
spines very elongated both in dorsal and caudal vertebrae, being tetraradiate in cross-
453
section. Its attribution to Rebbachisauridae is mainly based on dorsal and ventral
454
components of the transverse process supported by a reduced ‘web’ of bone (sensu
455
Gallina and Otero, 2009), summit of the anterior caudal neural spine ‘petal-shaped’ (see
456
Wilson and Allain, 2015; fig. 12) as well as absence of hyposphene-hypantrum in
AC C
449
18
ACCEPTED MANUSCRIPT posterior dorsals (see Calvo and Salgado, 1995). Additionally, the presence of fossae
458
split by an obliquely oriented internal pneumatic fossa lamina on the dorsals neural
459
arch, posterior centrodiapophyseal lamina forked on the dorsal vertebrae and caudal
460
transverse processes thinner than the usual bony bar characterize it as a new genus and
461
species of Rebbachisauridae.
RI PT
457
In Brazil, rebbachisaurids are scarce and only recorded in the Albian-
463
Cenomanian strata of the São Luís and Parnaíba basins (Alcântara and Itapecuru
464
formations, respectively). Until now, solely one nominal species has been described,
465
Amazonsaurus maranhensis, from Aptian-Albian Itapecuru Formation (Carvalho et al.,
466
2003). Isolated and fragmentary rebbachisaurids records include materials of few
467
diagnostic value (e.g. fragments of tetraradiate neural spine) from the Alcântara
468
Formation as well as in underlying Undifferentiated Unit deposits (a designation used
469
for Itapecuru Formation by some authors as Rossetti and Truckenbrodt, 1997),
470
lower/middle Albian in age (Medeiros and Schultz 2004; Castro et al., 2007). Most of
471
the caudal centra from the Alcântara Formation (e.g. Laje do Coringa bone bed) have
472
been related to Limaysaurus sp. (Medeiros and Schultz, 2004), but the authors admit
473
that this generic assignment is weakly sustained because of the lack of diagnostic
474
features (M.A. Medeiros, pers. comm., 2015).
475 476
5.3 Spatiotemporal context
478
M AN U
TE D
EP
AC C
477
SC
462
Prior studies have supported a North America origin for Diplodocoidea, with the
479
surge of diversification in Flagellicaudata occurring in the Kimmeridgian of North
480
America, Europe and Africa, and Tithonian of South and North America (Whitlock,
481
2011). Recently, discoveries in East Asia have challenged current paleobiogeographic
19
ACCEPTED MANUSCRIPT 482
hypotheses concerning the origin and dispersion of Diplodocoidea, estimating an early
483
Middle Jurassic age for the earliest members of the clade (Xu et al., 2018). New discoveries also have improved our knowledge regarding spatiotemporal
485
context of Rebbachisauridae. After extinction of most flagellicaudatan taxa in the Late
486
Jurassic, Rebbachisauridae became the latest-surviving dipodocoids occupying both
487
Laurasian and Gondwanan landmasses during the Early Cretaceous (Wilson and Allain,
488
2015). The earliest record of this clade is Maraapunisaurus, now dated as Upper
489
Jurassic of North America (Morrison Formation) (Carpenter, 2018). Moreover, the
490
Lower Cretaceous Xenoposeidon from Hastings Group of England represents the
491
successive earliest rebbachisaurid known (Taylor, 2018).
M AN U
SC
RI PT
484
The presence of Diplodocoidea in the early Middle – Late Jurassic interval of
493
North America and Asia suggests a global distribution of this clade before the breakup
494
of Pangea. Furthermore, the discovery of the dicraeosaurid Lingwulong shenqi in China
495
indicates that many advanced sauropods lineages originated c. 15 million years earlier
496
than previously hypothesized (Xu et al., 2018). According to Carpenter (2018), it is
497
probable that the migration of rebbachisaurids has occurred between North America and
498
Europe during the latest Late Jurassic and earliest Early Cretaceous, reaching South
499
America via Europe and Africa. This scenario has now confronted time-calibrated
500
phylogeny for a South American root of Rebbachisauridae radiation (see Fanti et al.,
501
2015).
EP
AC C
502
TE D
492
Recently, Rebbachisaurus has been positioned as sister taxon to Nigersaurus and
503
Demandasaurus in the subclade Rebbachisaurinae by Wilson and Allain (2015) (herein
504
termed Nigersaurinae following recommendation of Mannion et al., 2019) or as sister
505
taxon to Demandasaurus and Tataouinea by Fanti et al. (2015). In both cases,
506
Nigersaurinae is a subclade restricted to Europe and northern Africa. In fact, the oceanic
20
ACCEPTED MANUSCRIPT barrier that would have prevented the closer relationship between African and European
508
faunas seems to have been bridged by an intercontinental land passage by means of
509
carbonate platforms in the Tethyan seaway known as the Apulian Route (Canudo et al.,
510
2009; Dalla Vecchia, 2002; Fernández-Baldor et al., 2011; Sereno et al., 2007;
511
Holwerda et al., 2018). According to Fernández-Baldor et al., (2011), although the
512
Apulian Route may never have been a continuous land corridor between south Europe
513
and northern Africa, islands appear to have been sufficiently closer to allow faunal
514
interchange. In the present study, the clade formed by Itapeuasaurus cajapioensis and
515
Demandasaurus suggests that Nigersaurinae was not restricted only to Europe and
516
northern Africa, but also included South American taxa. Similarly, Fanti et al. (2015)
517
also suggest a more widely distributed Nigersaurinae lineage.
M AN U
SC
RI PT
507
In Western Gondwana, especially in the northeastern Brazil, paleobiogeographic
519
patterns are more complex than previously thought. Recent models have suggested the
520
presence of epicontinental seaways on the rift valleys along the Recôncavo-Tucano-
521
Jatobá and Cariri-Potiguar trends during the Aptian (Arai, 1999, 2009, 2014; Maisey,
522
2000). Maisey (2011) postulated one of these probably separated northeastern Brazil
523
from the rest of South America, but it remained connected with Africa. For this author,
524
another seaway may have left northern Brazil apart from both South America and
525
Africa. As a result, dispersal and vicariance of Early Cretaceous biota of northeastern
526
Brazil do not reflect a conspicuous and unambiguous unique ‘event’ of breakup between
527
South America and Africa, but complex isolation episodes in parts of Western
528
Gondwana (Maisey, 2011).
AC C
EP
TE D
518
529
The earlier marine incursions along the Equatorial-South Atlantic continental
530
margin of Brazil has been widely recognized as Aptian in age. Undoubted evidences
531
come from Macro- and microfossils records of Sergipe and Parnaíba basins: from the
21
ACCEPTED MANUSCRIPT 532
first one, the oldest ammonite assemblages are representatives of the early
533
douvilleiceratid lineage (e.g. Epicheloniceras–Eodouvilleiceras) and characterize a
534
middle Aptian age, some may even suggest a late early Aptian (e.g. Dufrenoyia
535
justinae) (Bengtson et al., 2007).
536
the Sergipe Basin confirms a well-developed open connection with low-latitude western
537
Tethyan regions during the late Aptian – late Albian (Koutsoukos, 1992). By the late
538
Coniacian – early Santonian times, the final structural detachment of South America
539
and Africa occurred and consequently the establishment of deep-oceanic conditions in
540
the northern South Atlantic (Koutsoukos, 1998). In the Parnaíba Basin, Maranhão State,
541
marine isopods record is also late Aptian in age (Lindoso et al., 2013b). All these
542
records show faunal Tethyan affinities. In the Cenomanian, however, a permanent
543
oceanic connection seems to have developed, in part as a result of eustatic sea level
544
rising with repeated flooding by ocean waters across most of Saharan region (Maisey,
545
1991).
TE D
M AN U
SC
RI PT
Foraminifera record from oldest marine deposits in
The fossil record of the Alcântara Formation has revealed remarkable
547
similarities between the continental faunas of northeastern Brazil and northern Africa
548
during the lower Cenomanian, mainly when compared to the material from southeast
549
Morocco (Medeiros and Schultz, 2001, 2002; Medeiros et al., 2014). The fishes
550
assemblage recorded in the Laje do Coringa bone bed is the most striking element of
551
correlation (see Cavin and Dutheil, 1999; Cavin et al., 2010), although theropod
552
dinosaurs (e.g. Carcharodontosaurus, Spinosaurus) are also remarkable. Despite some
553
taxa are restricted to the Alcântara Formation (e.g. Atlanticopristis equatorialis,
554
Equinoxiodus alcantarensis, Coringasuchus anisodontis and Oxalaia quilombensis), the
555
similarities of vertebrate taxa recorded in this lithostratigraphic unit with those of Africa
556
has been claimed as a Gondwanan heritage. For Medeiros et al. (2014), it might be
AC C
EP
546
22
ACCEPTED MANUSCRIPT 557
attributed to minor evolutionary changes of the biota after the breakup of South
558
America and Africa. The presence of a new genus and species of rebbachisaurid in the Alcântara
560
Formation closely related to Demandasaurus is another evidence that South America
561
and Africa still shared a faunistic identity during the early Late Cretaceous. Thus, the
562
present data fits well with previous statement of a greater similarity among South
563
America and Africa mid-Cretaceous continental fauna than amongst the southern and
564
northern South American ones (Medeiros and Schultz, 2002; Medeiros et al., 2007,
565
2014). Before the early Late Cretaceous, dinosaur faunas were relatively cosmopolitan.
566
The isolation of continental landmasses by oceanic barriers led to marked
567
provincialisms (Sereno et al., 1994, 1996).
M AN U
SC
RI PT
559
Since most Alcântara Formation sauropod sampling comes from the Laje do
569
Coringa bone bed, and the skeletal remains collected therein are reworked, fractured and
570
abraded, they are unsuitable for assessing relative diversities. Taphonomic bias is an
571
important factor to be considered in the Laje do Coringa vertebrate assemblage which
572
includes skeletal remains transported and re-deposited (Holz, 2003).
TE D
568
Nonetheless, diplodocoid isolated caudal centra are far more numerous than
574
those of titanosaurs, and they certainly would not belong to a single individual. Instead,
575
the fossils from Laje do Coringa represent a sample of a paleocommunity (see Medeiros
576
et al., 2014). However, we consider the Alcântara Formation vertebrate record
577
insufficient to make confident sinecological assessments. The complex pneumaticy
578
observed in Itapeuasaurus cajapioensis could be an adaptation for the high
579
temperatures in tropical to subtropical paleolatitudes during the early Late Cretaceous
580
(Fig. 12) (see Ibiricu et al., 2017).
AC C
EP
573
581
23
ACCEPTED MANUSCRIPT 582
Please, include the Fig. 11 near here.
583 584
6 Conclusion
Itapeuasaurus cajapioensis represents the northernmost record of Diplodocoidea
587
in South America and the second nominal Rebbachisauridae for the middle-Cretaceous
588
of Brazil, expanding our knowledge regarding the diversity of this clade in Western
589
Gondwana. Its set of autapomorphies confirm the pneumatic complexity inherent to this
590
neosauropod
591
Nigersaurinae as a South American – African/European clade more than an exclusively
592
African and European taxa during Cenomanian times. Although this scenario is
593
consistent with previous paleontological data recorded in the lower Upper Cretaceous of
594
the São Luís Basin, recent phylogenetic approaches within Rebbachisauridae precludes
595
a reliable paleobiogeographic hypothesis at this moment. Finally, by now it seems clear
596
that rebbachisaurids outnumbered titanosaurs in the early Late Cretaceous in northern
597
South America right before the steep decline of Rebbachisauridae. New information on
598
several aspects of this remarkable community that lived in northern Brazil depends on
599
better preserved specimens that may be found in the future.
601 602
phylogenetic
analysis
SC
The
performed
herein
identifies
EP
TE D
M AN U
group.
AC C
600
RI PT
585 586
Acknowledgements
We would like to thank Dr. Philip Mannion for criticisms, comments and English
603
improvement addressed to the final version of this manuscript. We are very grateful to
604
Dr. Eduardo Koutsoukos for his valuable comments on the paleobiogeography of
605
Western Gondwana, and the anonymous reviewer for criticisms and comments. We also
606
would like to thank Robertônio Brito (UFMA), Mosart Rogério Soares, João Francisco
607
Martins Costa, Taísa Pinheiro, Cláudia Cristina Soares, Nalva Cilene Soares, Max 24
ACCEPTED MANUSCRIPT William, Etiane Carvalho, Rosileia Alcofarado and the executive authorities for the
609
support during the fieldwork in Cajapió municipality. This manuscript is part of the first
610
author’s post-doctoral research (CNPq – 402602/2015-3) at the Universidade Federal do
611
Rio de Janeiro (UFRJ). Logistical support was offered by the Centro de Pesquisa de
612
História Natural e Arqueologia do Maranhão (CPHNAMA) and Instituto Federal de
613
Educação, Ciência e Tecnologia do Maranhão (IFMA). This manuscript received
614
financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico
615
(CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de
616
Janeiro (FAPERJ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
617
(CAPES).
M AN U
SC
RI PT
608
618 References
621
Arai, M., 1999. A transgressão marinha mesocretácea: sua implicação no paradigma da
622
reconstituição paleogeográfica do Cretáceo no Brasil, in: SIMPÓSIO SOBRE O
623
CRETÁCEO DO BRASIL, 5, Serra Negra, Boletim, Rio Claro, UNESP, Rio
624
Claro, pp. 577–582.
EP
626
Arai, M., 2009. Paleogeografia do Atlântico Sul no Aptiano: um novo modelo a partir de dados micropaleontológicos recentes. Bol. Geociências Petrobras 17, 331–351.
AC C
625
TE D
619 620
627
Arai, M., 2014. Aptian/Albian (Early Cretaceous) paleogeography of the South
628
Atlantic: a paleontological perspective. Brazilian J. Geol. 44, 339–350.
629 630
https://doi.org/10.5327/Z2317-4889201400020012.
Apesteguía, S., 2007. The sauropod diversity of the La Amarga Formation (Barremian),
631
Neuquén
632
https://doi.org/10.1016/J.GR.2007.04.007.
633
(Argentina).
Gondwana
Res.
12,
533–546.
Araújo, K.C.O., Sommer, M.G., Medeiros, M.A.A., Girnos, E.C., Schimdt, I.D., 2011. 25
ACCEPTED MANUSCRIPT 634
Lenhos de Coníferas do Mesocretáceo do Norte do Maranhão Brasil. Rev. Bras.
635
Paleontol. 14, 29–38. https://doi.org/10.4072/rbp.2011.1.03. Bengtson, P., Koutsoukos, E.A.M., Kakabadze, M.V., Zucon, M.H., 2007. Ammonite
637
and foraminiferal biogeography and the opening of the Equatorial Atlantic
638
Gateway, in: 1er Symposium International de Paléobiogéographie. Université
639
Pierre et Marie Curie (Paris 6) Muséum National d’Histoire Naturelle, Paris
640
CNRS, Paris, p. 2.
642
Bonaparte,
J.F.,
1996.
Cretaceous
tetrapods
Geowissenschaftliche Abhandlungen A, 73–130.
of
Argentina.
Münchner
SC
641
RI PT
636
Calvo, J.O., 1999. Dinosaurs and other vertebrates of the Lake Ezequiel Ramos Mexía
644
Area, Neuquén-Patagonia, Argentina, in: Y. Tomida, T. H. Rich, and P.V.-R.
645
(Ed.), Proceedings of the Second Gondwanan Dinosaur Symposium. National
646
Science Museum Monographs 15, Tokyo, Japan, pp. 13–45.
M AN U
643
Calvo, J.O., Salgado, L., 1995. Rebbachisaurus tessonei sp. nov. a new sauropoda from
648
the Albian-Cenomanian of Argentina; new evidence on the origin of Diplodocidae.
649
Gaia 13–33.
651
Campbell, D.F., 1949. Revised report on the reconnaissance geology of the Maranhão
EP
650
TE D
647
Basin (No. 7), Relatório interno da Petrobras n° 7. Belém. Canudo, J.I., Barco, J.L., Pereda−Suberbiola, X., Ruiz−Omeñaca, J.I., Salgado, L.,
653
Fernández−Baldor, T.F., Gasulla, J.M., 2009. What Iberian dinosaurs reveal about
654 655
AC C
652
the bridge said to exist between Gondwana and Laurasia in the Early Cretaceous. Bull. la Société Géologique Fr. 5–11.
656
Canudo, J., Carballido, J., Salgado, L., Garrido, A., 2018. A new rebbachisaurid
657
sauropod from the Aptian–Albian, Lower Cretaceous Rayoso Formation, Neuquén,
658
Argentina. Acta Palaeontol. Pol. 63. https://doi.org/10.4202/app.00524.2018.
26
ACCEPTED MANUSCRIPT 659
Carabajal, A.P., Canale, J.I., Haluza, A., 2016. New rebbachisaurid cranial remains
660
(Sauropoda, Diplodocoidea) from the Cretaceous of Patagonia, Argentina, and the
661
first endocranial description for a South American representative of the clade. J.
662
Vertebr.
663
https://doi.org/10.1080/02724634.2016.1167067.
36,
e1167067.
RI PT
Paleontol.
Carballido, J.L., Garrido, A.C., Canudo, J.I., Salgado, L., 2010. Redescription of
665
Rayososaurus agrioensis Bonaparte (Sauropoda, Diplodocoidea), a rebbachisaurid
666
from the early Late Cretaceous of Neuquén. Geobios 43, 493–502.
SC
664
Carballido, J.L., Salgado, L., Pol, D., Canudo, J.I., Garrido, A., 2012. A new basal
668
rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the
669
Neuquén Basin; evolution and biogeography of the group. Hist. Biol. 24, 631–654.
670
https://doi.org/10.1080/08912963.2012.672416.
M AN U
667
Carpenter, K., 2018. Maraapunisaurus fragillimus, N.G. (formerly Amphicoelias
672
fragillimus), a basal Rebbachisaurid from the Morrison Formation (Upper Jurassic)
673
of Colorado. Geol. Intermt. West 5, 227–244.
675
Carvalho, I.S., 2001a. A Bacia de São Luís, in: Brito, I.M. (Ed.), Geologia Histórica. EDUFU, p. 413 p.
EP
674
TE D
671
Carvalho, I.S., 2001b. Pegadas de dinossauros em depósitos estuarinos (Cenomaniano)
677
da Bacia de São Luís (MA), Brasil, in: Rossetti, D.F., Góes, A.M., Truckenbrodt,
678 679
AC C
676
W. (Eds.), O Cretáceo da Bacia de São Luís-Grajaú. Museu Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, pp. 245–264.
680
Carvalho, I.S., Avilla, L.S., Salgado, L., 2003. Amazonsaurus maranhensis gen. et sp.
681
nov. (Sauropoda, Diplodocoidea) from the Lower Cretaceous (Aptian–Albian) of
682
Brazil. Cretac. Res. 697–713.
683
Castro, D.F., Bertini, R.J., Santucci, R.M., Medeiros, M.A., 2007. Sauropods of the
27
ACCEPTED MANUSCRIPT 684
Itapecuru Group (lower/middle Albian), São Luís-Grajaú Basin, Maranhão State,
685
Brazil. Rev. Bras. Paleontol. 10, 195–200. Cavin, L., Dutheil, D.B., 1999. A new Cenomanian ichthyofauna from southeastern
687
Morocco and its relationships with other early Late Cretaceous Moroccan faunas.
688
Geol. en Mijnb. 78, 261–266.
RI PT
686
Cavin, L., Tong, H., Boudad, L., Meister, C., Piuz, A., Tabouelle, J., Aarab, M., Amiot,
690
R., Buffetaut, E., Dyke, G., Hua, S., Le Loeuff, J., 2010. Vertebrate assemblages
691
from the early Late Cretaceous of southeastern Morocco: an overview. J. African
692
Earth Sci. 57, 391–412. https://doi.org/10.1016/j.jafrearsci.2009.12.007.
SC
689
Corrêa-Martins, F.J., 1996. Levantamento de aspectos geológicos da parte setentrional
694
da ilha de São Luís e áreas adjacentes. Universidade Federal do Rio de Janeiro.
695
Dalla Vecchia, F.M., 2002. Cretaceous dinosaurs in the Adriatic−Dinaric carbonate platform
697
paleogeographical hypotheses. Mem. della Soc. Geol. Ital. 57, 89–100.
699
and
Croatia):
paleoenvironmental
implications
and
TE D
696
698
(Italy
M AN U
693
Dalla Vecchia, F.M., 1999. Atlas of the sauropod bones from the upper Hauterivian lower Barremian of Bale/Valle (SW Istria, Croatia). Nat. Nascosta 6–41. Dalla Vecchia, F.M., 1998. Remains of Sauropoda (Reptilia, Saurischia) in the Lower
701
Cretaceous (upper Hauterivian/lower Barremian) Limestones of SW Istria
702
(Croatia). Geol. Croat. 51, 105–134.
AC C
EP
700
703
Dutra, M.F.A., Malabarba, M.C.S.L., 2001. Peixes do Albiano-Cenomaniano do Grupo
704
Itapecuru no estado do Maranhão, Brasil, in: Rossetti, D. de F., Góes, A.M.,
705
Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú. Museu
706
Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, Brasil, pp. 191–208.
707
Elias, F.A., Bertini, R.J., Medeiros, M.A., 2007. Pterosaur teeth from the Laje do
708
Coringa, middle Cretaceous, São Luís-Grajaú Basin, Maranhão State, Northern-
28
ACCEPTED MANUSCRIPT 709
Northeastern Brazil. Rev. Bras. Geociências 37. Fanti, F., Cau, A., Cantelli, L., Hassine, M., Auditore, M., 2015. New Information on
711
Tataouinea hannibalis from the Early Cretaceous of Tunisia and Implications for
712
the Tempo and Mode of Rebbachisaurid Sauropod Evolution. PLoS One 10,
713
e0123475. https://doi.org/10.1371/journal.pone.0123475.
RI PT
710
Fanti, F., Cau, A., Hassine, M., Contessi, M., 2013. A new sauropod dinosaur from the
715
Early Cretaceous of Tunisia with extreme avian like pneumatization. Nat.
716
Commun. 4, 1–7.
SC
714
Fernández-Baldor, F.T., 2012. Sistemática, filogenia y análisis paleobiogeográfico de
718
Demandasaurus darwini (Sauropoda, Rebbachisauridae) del Barremiense superior-
719
Aptiense de Burgos (Espana). Universidad de Zaragoza.
M AN U
717
Fernández-Baldor, F.T., Canudo, J.I., Huerta, P., Montero, D., Suberbiola, X.P.,
721
Salgado, L., 2011. Demandasaurus darwini, a new rebbachisaurid sauropod from
722
the Early Cretaceous of the Iberian Peninsula. Acta Palaeontol. Pol. 56, 535–552.
TE D
720
Freire, P.C., Medeiros, M.A., Lindoso, R.M., 2007. Sauropod teeth diversity in the Laje
724
do Coringa fossiliferous site, Eocenomanian of Northeastern Brazil, in: Carvalho,
725
I.d.S., Cassab, R. de C.T., Schwanke, C., Carvalho, M. de A., Fernandes, A.C.S.,
726
Rodrigues, M.A. da C., Carvalho, M.S.S. de, Arai, M., Oliveira, M.E.Q. (Eds.),
727
Paleontologia: Cenários de Vida. Editora Interciência, Rio de Janeiro, Brasil, pp.
AC C
728
EP
723
523–532.
729
Gallina, P.A., Apesteguía, S., 2005. Cathartesaura anaerobica gen. et sp. nov., a new
730
rebbachisaurid (Dinosauria, Sauropoda) from the Huincul Formation (Upper
731
Cretaceous), Río Negro, Argentina. Rev. del Mus. Argentino Ciencias Nat. 7, 153–
732
166.
733
Gallina, P.A., Otero, A., 2009. Anterior caudal transverse processes in sauropod
29
ACCEPTED MANUSCRIPT 734
dinosaurs: morphological, phylogenetic and functional aspects. Ameghiniana 46,
735
165–176.
736 737
Góes, A.M., 1995. A Formação Poti (Carbonífero Inferior) da Bacia do Parnaíba. Universidade de São Paulo. Góes, A.M., Rossetti, D.F., 2001. Gênese da Bacia de São Luís-Grajaú. Meio Norte do
739
Brasil., in: Rossetti, D. de F., Góes, A.M., Truckenbrodt, W. (Eds.), O Cretáceo na
740
Bacia de São Luís-Grajaú, Belém. Museu Paraense Emílio Goeldi, Coleção
741
Friedrich Katzer, Belém, Brasil, pp. 15–29.
SC
RI PT
738
Góes, A.M., Coimbra, A.M., 1996. Bacias sedimentares da província sedimentar do
743
Meio Norte do Brasil, in: Simpósio de Geologia da Amazônia, 5. Belém/PA.
744
Boletim de Resumos Expandidos. Sociedade Brasileira de Geologia, Belém, pp.
745
186–187.
746
M AN U
742
Goloboff, P.A., Farris, S., Nixon, K., 2008a. TNT: tree analysis using new technology, vers
748
http//www.lillo.org.ar/phylogeny/tnt/.
750
[www
Document].
(Willi
Henning
Soc.
Ed.
Updat.
Goloboff, P.A., Farris, S., Nixon, K., 2008b. TNT, a free program for phylogenetic analysis. Cladistics 774–786.
EP
749
1.1.
TE D
747
Haluza, A., I., C.J., Otero, A., Pérez, L.M., Scanferla, C.A., 2012. Changes in vertebral
752
laminae across the cervicodorsal transition of a well-preserved rebbachisaurid
753 754
AC C
751
(Dinosauria, Sauropoda) from the Cenomanian of Patagonia, Argentina. J. Vertebr. Paleontol. https://doi.org/10.2307/41407719.
755
Holwerda, F.M., Díez Díaz, V., Blanco, A., Montie, R., Reumer, J.W.F., 2018. Late
756
Cretaceous sauropod tooth morphotypes may provide supporting evidence for
757
faunal connections between North Africa and Southern Europe. PeerJ 6, e5925.
758
https://doi.org/10.7717/peerj.5925.
30
ACCEPTED MANUSCRIPT 759
Holz, M., 2003. Sequence stratigraphy of a lagoonal estuarine system – an example
760
from
the early Permian Rio Bonito Formation, Parana Basin, Brazil., in: LatinAmerican Congress of Sedimentologists, 3. MPEG, Belém, pp. 125–126.
762
Ibiricu, L., Lamanna, M., Martinez, R., Casal, G., Cerda, I., Martinez, G., Salgado, L.,
763
2017. A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur:
764
implications for the paleobiology of Rebbachisauridae. Acta Palaeontol. Pol. 62.
765
https://doi.org/10.4202/app.00316.2016.
RI PT
761
Ibiricu, L.M., Casal, G.A., Lamanna, M.C., Martínez, R.D., Harris, J.D., Lacovara, K.J.,
767
2012. The southernmost records of Rebbachisauridae (Sauropoda: Diplodocoidea),
768
from early Late Cretaceous deposits in central Patagonia. Cretac. Res. 34, 220–
769
232. https://doi.org/10.1016/J.CRETRES.2011.11.003.
M AN U
SC
766
Ibiricu, L.M., Casal, G.A., Martínez, R.D., Lamanna, M.C., Luna, M., Salgado, L.,
771
2013. Katepensaurus goicoecheai, gen. et sp. nov., a Late Cretaceous
772
rebbachisaurid (Sauropoda, Diplodocoidea) from central Patagonia, Argentina. J.
773
Vertebr. Paleontol. 33, 1351–1366. https://doi.org/10.2307/24523211.
TE D
770
Klein, V.C., Ferreira, C.S., 1979. Paleontologia e Estratigrafia de uma fácies estuarina
775
da Formação Itapecuru, Estado do Maranhão. An. da Acad. Bras. Ciências 5 51,
776
523–533.
EP
774
Koutsoukos, E.A.M., 1992. Late aptian to maastrichtian foraminiferal biogeography and
778
palaeoceanography of the Sergipe basin, Brazil. Palaeogeogr. Palaeoclimatol.
779
AC C
777
Palaeoecol. 92, 295–324. https://doi.org/10.1016/0031-0182(92)90089-N.
780
Koutsoukos, E.A.M., 1998. Upper Cretaceous palaeogeography of the Sergipe Basin,
781
NE Brazil: area of the Divina Pastora and Mosqueiro Lows. Zbl. Geol. Paläont. Tl.
782
I 1325–1337.
783
Lindoso, R.M., Medeiros, M.A., de Souza Carvalho, I., da Silva Marinho, T., 2012.
31
ACCEPTED MANUSCRIPT 784
Masiakasaurus-like theropod teeth from the Alcântara Formation, São Luís Basin
785
(Cenomanian),
786
https://doi.org/10.1016/j.cretres.2012.03.002.
northeastern
Brazil.
Cretac.
Res.
36,
119–124.
Lindoso, R.M., Marinho, T. da S., Santucci, R.M., Medeiros, M.A., Carvalho, I. de S.,
788
2013a. A titanosaur (Dinosauria: Sauropoda) osteoderm from the Alcântara
789
Formation (Cenomanian), São Luís Basin, Northeastern Brazil. Cretac. Res. 45,
790
43–48. https://doi.org/10.1016/j.cretres.2013.07.005.
RI PT
787
Lindoso, R.M., Carvalho, I.S., Mendes, I.D., 2013b. An isopod from the Codó
792
Formation (Aptian of the Parnaíba Basin), Northeastern Brazil. Brazilian J. Geol.
793
43, 16–21. https://doi.org/10.5327/Z2317-48892013000100003.
796 797
M AN U
795
Maisey, J.G., 1991. An ocean is formed, in: Santana Fossils: An Illustrated Atlas. TFH Publications, New Jersey, pp. 44–56.
Maisey, J.G., 2000. Continental break up and the distribution of fishes of Western Gondwana during the Early Cretaceous. Cretac. Res. 21, 281–314.
TE D
794
SC
791
Maisey, J.G., 2011. Northeastern Brazil: out of Africa?, in: Carvalho, I.S., Srivastava,
799
N.K., Strohschoen Jr., O., Lana, C.C. (Eds.), Paleontologia: Cenários de Vida.
800
Interciência, Rio de Janeiro, pp. 545–559.
802 803
Mannion, P.D., 2009. A rebbachisaurid sauropod from the Lower Cretaceous of the Isle of
Wight,
AC C
801
EP
798
England.
Cretac.
Res.
30,
521–526.
https://doi.org/10.1016/j.cretres.2008.09.005.
804
Mannion, P.D., Upchurch, P., Hutt, S., 2011. New rebbachisaurid (Dinosauria:
805
Sauropoda) material from the Wessex Formation (Barremian, Early Cretaceous),
806
Isle
807
https://doi.org/10.1016/J.CRETRES.2011.05.005.
of
Wight,
United
Kingdom.
Cretac.
Res.
32,
774–780.
808
32
ACCEPTED MANUSCRIPT 809
Mannion, P.D., Upchurch, P., Schwarz, D., Wings, O., 2019. Taxonomic affinities of
810
the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania:
811
phylogenetic and biogeographic implications for eusauropod dinosaur evolution.
812
Zool. J. Linn. Soc. 185, 784–909. https://doi.org/10.1093/zoolinnean/zly068.
815 816
RI PT
814
Mcintosh, J.S., 1990. Sauropoda, in: Weishampel, D.; Dodson, P.; Osmolska, H. (Ed.), The Dinosauria. University of California Press, pp. 345–401.
Medeiros, M., Schultz, C.L., 2004. Rayososaurus (Sauropoda, Diplodocoidea) no mesoCretáceo do norte-nordeste brasileiro. Rev. Bras. Paleontol. 7, 275–279.
SC
813
Medeiros, M.A., Arcanjo, S.H., Carvalho, I.S., Agostinha, A.P., Lindoso, R.M.,
818
Mendes, I.D., Sousa, E.P., Filho, J.F.C., Siqueira, W.S., 2015. Nova ocorrência de
819
Diplodocoidea na Bacia de São Luís (Cretáceo, Cenomaniano), norte do
820
Maranhão, in: 14° Simpósio de Geologia da Amazônia. Marabá, pp. 1–4.
M AN U
817
Medeiros, M.A., Corrêa-Martins, F.J., Silva Jr, J.R., Pontes, H., Vilas-Bôas, I., 1996. A
822
laje do Coringa (Ilha do Cajual-MA): depósitos conglomeráticos fossilíferos
823
contendo restos de dinossauros. Rev. Geol. 9, 123–129.
TE D
821
Medeiros, M.A., Freire, P.C., Pereira, A.A., Santos, R.A.B., Lindoso, R.M., Coêlho,
825
A.F. do A., Passos, E.B., Júnior, E.S.M., 2007. Another african dinosaur recorded
826
in the Eocenomanian of Brazil and a revision on the paleofauna of the Laje do
827
Coringa, in: Carvalho, I.D.S., Cassab, R. de C.T., Schwanke, C., Carvalho, M. de
829 830
AC C
828
EP
824
A., Fernandes, A.C.S., Rodrigues, M.A. da C., Carvalho, M.S.S. de, Arai, M., Oliveira, M.E.Q. (Eds.), Paleontologia: Cenários de Vida. Interciência, Rio de Janeiro, pp. 413–423.
831
Medeiros, M.A., Lindoso, R.M., Mendes, I.D., Carvalho, I.D.S., 2014. The Cretaceous
832
(Cenomanian) continental record of the Laje do Coringa flagstone (Alcântara
833
Formation), northeastern South America. J. South Am. Earth Sci. 53.
33
ACCEPTED MANUSCRIPT 834
https://doi.org/10.1016/j.jsames.2014.04.002.
835
Medeiros, M.A., Pontes, H., Vilas-Bôas, I., 1995. Ocorrência de fósseis de dinossauros
836
em um estrato Cenomaniano (Cretáceo Superior), na ilha do Cajual, Maranhão, in:
837
Reunião Anual da SBPC. São Luís, p. 431.
839
Medeiros, M.A., Schultz, C.L., 2002. A fauna dinossauriana da Laje do Coringa,
RI PT
838
Cretáceo Médio do Nordeste do Brasil. Arq. do Mus. Nac. 60, 155–162.
Medeiros, M.A., Schultz, C.L., 2001. Uma paleocomunidade de vertebrados do
841
Cretáceo médio, bacia de São Luís., in: Rossetti, D. de F., Góes, A.M.,
842
Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú-Grajaú. Museu
843
Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, Brasil, pp. 209–221.
844
Medeiros, M.A., Vilas-Bôas, I., 1999. Ocorrência de paleocomunidade contiental do
845
Cenomaniano (Cretáceo Superior) do Nordeste do Brasil, in: Jornadas Argentinas
846
de Paleontologia. Argentina, p. 18.
M AN U
SC
840
Moraes-Santos, H.M., Carvalho, I.S., 2001. Ocorrência de Pleurodira na Formação
848
Alcântara (Albiano-Cenomaniano), Bacia de São Luís, MA, in: Rossetti, D.F.,
849
Góes, A.M., Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú.
850
Museu Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, pp. 235–244.
851
Nopcsa, F., 1902. Notizen über cretacische Dinosaurier. Pt. 3. Wirbel eines
852
sudamerikanischen Sauropoden. Sitzungsberichte der Akad. der Wissenschaften zu
EP
AC C
853
TE D
847
Berlin, Math. Klasse 108–114.
854
Paz, J.D., Rossetti, D.F., 2001. Reconstrução paleoambiental da Formação Codó
855
(Aptiano), borda leste da Bacia do Grajaú, MA, in: Rossetti, D. de F., Góes, A.M.,
856
Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú. Museu
857
Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, Brasil, pp. 77–100.
858
Pedrão, E., Arai, M., Carvalho, I.S., Santos, M.H.B., 1993. Palinomorfos da Formação
34
ACCEPTED MANUSCRIPT 859
Itapecuru - análise palinológica de uma amostra de superfície da Ponta do Farol,
860
São Luís - MA., Petrobras, Relatório Técnico1. Rio de Janeiro. Pereda Suberbiola, X., Torcida, F., Izquierdo, L.A., Huerta, P., Montero, D., Pérez, G.,
862
2003. First rebbachisaurid dinosaur (Sauropoda, Diplodocoidea) from the early
863
Cretaceous of Spain: paleobiogeographical implications. Bull. la Société
864
Géologique Fr. 174, 471–479.
RI PT
861
Pereira, A.A., Medeiros, M.A., 2008. A new Sclerorhynchiform (Elasmobranchii) from
866
the middle Cretaceous of Brazil. Rev. Bras. Paleontol. 11, 207–212.
867
https://doi.org/10.4072/rbp.2008.3.07.
SC
865
Rossetti, D.F., 2001. Arquitetura deposicional da Bacia de São Luís-Grajaú, in:
869
Rossetti, D.F., Góes, A.M., Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São
870
Luís-Grajaú. Ed. Museu Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém,
871
Brasil, pp. 31–46.
M AN U
868
Rossetti, D.F., Truckenbrodt, W., 1997. Revisão estratigráfica para os depósitos do
873
Albiano-Terciário Inferior(?) na Bacia de São Luís (MA), norte do Brasil. Bol.
874
Mus. Para. Emílio Goeldi (Série Ciências da Terra) 9, 29–41.
TE D
872
Salgado, L., Carvalho, I. de S., Garrido, A.C., 2006. Zapalasaurus bonapartei, un nuevo
876
dinosaurio saurópodo de La Formación La Amarga (Cretácico Inferior), noroeste
877
de Patagonia, Provincia de Neuquén, Argentina. Geobios 695–707.
AC C
EP
875
878
Salgado, L., Garrido, A., Cocca, S.E., Cocca, J.R., 2004. Lower Cretaceous
879
Rebbachisaurid sauropods from Cerro Aguada del León (Lohan Cura Formation),
880
Neuquén Province, Northwestern Patagonia, Argentina. J. Vertebr. Paleontol. 24,
881
903–912.
882
Sereno, P.C., Beck, A.L., Dutheil, D.B., Larsson, H.C.E., Lyon, G.H., Moussa, B.,
883
Sadleir, R.W., Sidor, C.A., Varricchio, D.J., Wilson, G.P., Wilson, J.A., 1999.
35
ACCEPTED MANUSCRIPT 884
Cretaceous sauropods from the Sahara and the uneven rate of skeletal evolution
885
among
886
https://doi.org/10.1126/SCIENCE.286.5443.1342.
888
Science
286,
1342–7.
Sereno, P.C., Wilson, J.A., Larsson, H.C.E., Dutheil, D.B., Sues, H.-D., 1994. Early Cretaceous Dinosaurs from the Sahara. Science 266, 267–271.
RI PT
887
dinosaurs.
Sereno, P.C., Dutheil, D.B., Larochene, M., Larsson, H.C.E., Lyon, G.H., Magwene,
890
P.M., Sidor, C.A., Varricchio, D.J., Wilson, J.A., 1996. Predatory Dinosaurs from
891
the Sahara and Late Cretaceous faunal differentiation. Science 272, 986–991.
892
Sereno, P.C., Wilson, J.A., Witmer, L.M., Whitlock, J.A., Maga, A., Ide, O., Rowe,
895 896 897 898
M AN U
894
T.A., 2007. Structural Extremes in a Cretaceous Dinosaur. PLoS One e1230. Szatimari, P., Françolin, J.B.L., Zanotto, O., Wolff, S., 1987. Evolução tectônica da margem equatorial brasileira. Rev. Bras. Geociências 180–188. Taylor, M.P., 2018. Xenoposeidon is the earliest known rebbachisaurid sauropod dinosaur. PeerJ 6:e5212. https://doi.org/DOI 10.7717/peerj.5212.
TE D
893
SC
889
Vilas-Bôas, I., Carvalho, I.S., 2001. Répteis marinhos (mosasauria e plesiosauria) do
900
Cretáceo Superior da Bacia de São Luís (Maranhão, Brasil), in: Rossetti, D.F.,
901
Góes, A.M., Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú.
902
Museu Paraense Emílio Goeldi, Coleção Friedrich Katzer, pp. 223–233.
AC C
EP
899
903
Vilas-Bôas, I., Carvalho, I.S., Medeiros, M.A., Pontes, H., 1999. Dentes de
904
Carcharodontosaurus (Dinosauria, Tyrannosauridae [sic]) do Cenomaniano, Bacia
905
de São Luís (Norte do Brasil). Acad. Bras. Ciências 71, 846–847.
906
Whitlock, J.A., 2011. A phylogenetic analysis of Diplodocoidea (Saurischia:
907
Sauropoda). Zool. J. Linn. Soc. 161, 872–915. https://doi.org/10.1111/j.1096-
908
3642.2010.00665.x
36
ACCEPTED MANUSCRIPT 909 910
Wilson, J.A., 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zool. J. Linn. Soc. 217–276. Wilson, J.A., Allain, R., 2015. Osteology of Rebbachisaurus garasbae La Ibiricu vocat,
912
1954, a diplodocoid (Dinosauria, Sauropoda) from the early Late Cretaceous–aged
913
Kem Kem beds of southeastern Morocco. J. Vertebr. Paleontol. 33 pages.
RI PT
911
Wilson, J.A., Martinez, R.N., Alcober, O., 1999. Distal tail segment of a titanosaur
915
(Dinosauria, Sauropoda) from the Upper Cretaceous of Mendoza, Argentina. J.
916
Vertebr. Paleontol. 19, 591–594.
917
SC
914
Wilson, J.A., 1999. A nomenclature for vertebral laminae in sauropods and other saurischian
dinosaurs.
J.
Vertebr.
919
10.1080/02724634.1999.10011178.
Paleontol.
M AN U
918
19:4,
639-653.
doi:
Wilson J.A., D’Emic M.D., Ikejiri T., Moacdieh E.M., Whitlock J.A., 2011. A
921
nomenclature for vertebral fossae in sauropods and other saurischian dinosaurs.
922
PLoS ONE 6(2): e17114. doi:10.1371/journal.pone.0017114.
TE D
920
Xu, X., Upchurch, P., Mannion, P.D., Barrett, P.M., Regalado-Fernandez, O.R., Mo, J.,
924
Ma, J., Liu, H., 2018. A new Middle Jurassic diplodocoid suggests an earlier
925
dispersal and diversification of sauropod dinosaurs. Nat. Commun. 9, 2700.
926
https://doi.org/10.1038/s41467-018-05128-1.
928 929 930 931
AC C
927
EP
923
Captions
Fig. 1. Location of Itapeua beach, Cajapió municipality, northern Maranhão
932
State, Brazil. The sauropod silhouette indicates the area where the material was
933
collected.
934
Fig. 2. Photographs of the excavation and geological context of Itapeuasaurus
935
cajapioensis at Cajapió municipality, northern Maranhão State. A) View of the Itapeua 37
ACCEPTED MANUSCRIPT 936
beach during the removal of the material between tidal cycles; B) Section of an outcrop
937
of the Alcântara Formation (São Luís Basin) at Itapeua beach revealing reddish/greenish
938
pelitic deposits. Fig. 3. Holotype of I. cajapioensis. Dorsal vertebra (UFMA1.10.1960-01) in
940
anterior (A), posterior (B), right lateral (C) and latero-ventral views (D). The scale bar
941
represents 10 cm.
RI PT
939
Fig. 4. Holotype of I. cajapioensis. Dorsal vertebra (UFMA1.10.1960-01) in
943
anterior (A) and detail of the right base of the neural spine (B) views. The scale bar
944
represents 5 cm.
SC
942
Fig. 5. Holotype of I. cajapioensis. Anterior caudal vertebra (UFMA 1.10.1960-
946
03) in anterior (A), posterior (B) and left lateral (C) views. The scale bar represents 5
947
cm.
M AN U
945
Fig. 6. Holotype of I. cajapioensis. Anterior caudal vertebra (UFMA 1.10.1960-
949
04) in anterior (A), posterior (B) and right lateral (C) views. The scale bar represents 5
950
cm.
TE D
948
Fig. 7. Holotype of I. cajapioensis. Anterior caudal vertebra (UFMA 1.10.1960-
952
05) in anterior (A), posterior (B) and right lateral (C) views. The scale bar represents 5
953
cm.
Fig. 8. Holotype of I. cajapioensis. Middle caudal vertebra (UFMA 1.10.1960-
AC C
954
EP
951
955
07) in anterior (A), posterior (B) and left lateral (C) views. The scale bar represents 5
956
cm.
957 958
Fig. 9. Holotype of I. cajapioensis. Middle caudal vertebra (UFMA 1.10.196008) in anterior (A) and right lateral posterior (B) views. The scale bar represents 5 cm.
959
Fig. 10. Phylogenetic relationship among Neosauropoda, including the results
960
for Itapeuasaurus cajapioensis. The diagram reflects a strict consensus of 334 most
38
ACCEPTED MANUSCRIPT 961
parsimonious trees of 282 steps (MPTs). Abbreviations: c, characters; CI, consistency
962
index; MPT, most parsimonious trees; RI, retention index; t, taxa; TL, tree length. Fig. 11. Phylogenetic relationship among Neosauropoda based on agreement
964
subtree produced in TNT. The resulting topology shows Itapeuasaurus cajapioensis
965
grouped together with members of Nigersaurinae.
RI PT
963
Fig. 12. Paleoenvironmental context of Itapeuasaurus cajapioensis. In the
967
background, the Equatorial Atlantic Ocean had already represented a selective barrier
968
on the paleocommunities from the Northeastern Brazil and Northern Africa. Art by
969
Deverson Pepi.
971
Table 1. Measurements of the holotype of Itapeuasaurus cajapioensis. (in mm).
M AN U
970
SC
966
An ‘*’ indicates an incomplete measurement.
972
TE D
Anatomical Abbreviations
973 974 975 976
acpl, anterior centroparapophyseal lamina; cprf, centroprezygapophyseal fossa; di,
diapophysis;
978
centroprezygapophyseal lamina; med.sprl, medial spinoprezygapophyseal lamina; nc,
979
neural
980
centrodiapophyseal fossa; pcdl, posterior centrodiapophyseal lamina; pf, pneumatic
981
fossa; pfl, pneumatic fossa lamina; prcdf, prezygapophyseal centrodiapophyseal fossa,
982
prcdfl,
983
prezygodiapophyseal
984
prezygodiapophyseal lamina; prsl, prespinal lamina; prpl, prezygoparapophyseal
985
lamina; prz, prezygapophysis; posl, postspinal lamina; poz, postzygapophysis; spdl,
986
spinodiapophyseal
987
spinoprezygapophyseal lamina; spzal, spinopostzygapophyseal accessory lamina; s-
ns,
neural
AC C
canal;
cdf,
EP
977
prezygapophyseal
centrodiapophyseal
spine;
pa,
lamina;
parapophysis;
centrodiapophyseal
centrodiapophyseal
sprf,
fossa;
fossa
med.cprl,
pacdf,
fossa
parapophyseal
lamina;
accessory
spinoprezygapophyseal
medial
lamina;
fossa;
prcdfal, prdl,
sprl,
39
ACCEPTED MANUSCRIPT 988
cprf-d, subfossa centroprezygapophyseal dorsal; tp, transverse process; tprl,
989
intraprezygapophyseal lamina.
AC C
EP
TE D
M AN U
SC
RI PT
990
40
ACCEPTED MANUSCRIPT
Neural Neural Neural Neural Neural Neural arch, arch, spine, spine, canal canal greatest height greatest height width height transverse transverse width width UFMA.10.1960-01 135,5* 240* 46,9 45,8 UFMA.10.1960-03 82,9 130,5 112,7* 260* 110 78,4 400* 26,8 21,06 UFMA.10.1960-04 82,2* 118,8* 113,6* 190* 63,3 27,1* 31,6 UFMA.10.1960-05 82,4 120,1 100,6* 104,2 49,2 37,5 130* 30,7 21,03 UFMA.10.1960-07 95,9* 47,9* 95,4* 48,1 40,4 9,1 170* 22,5 27,4 UFMA.10.1960-08 111,8* 58,6 87,5 33 38,6 17,4 12,7 Table 1. Measurements of the holotype of Itapeuasaurus cajapioensis gen. et sp. nov. (in mm). An ‘*’ indicates an incomplete measurement.
M AN U
SC
RI PT
Centrum height
TE D
Centrum width
EP
Centrum length
AC C
Specimen