A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle Cretaceous of northern Brazil

A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle Cretaceous of northern Brazil

Accepted Manuscript A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle Cretaceous of northern Brazil Rafael Matos Lindoso, Manuel Alfredo...

990KB Sizes 1 Downloads 104 Views

Accepted Manuscript A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle Cretaceous of northern Brazil Rafael Matos Lindoso, Manuel Alfredo Araújo Medeiros, Ismar de Souza Carvalho, Agostinha Araújo Pereira, Ighor Dienes Mendes, Fabiano Vidoi Iori, Eliane Pinheiro Sousa, Silvia Helena Souza Arcanjo, Taciane Costa Madeira Silva PII:

S0195-6671(18)30206-4

DOI:

https://doi.org/10.1016/j.cretres.2019.104191

Article Number: 104191 Reference:

YCRES 104191

To appear in:

Cretaceous Research

Received Date: 30 May 2018 Revised Date:

1 July 2019

Accepted Date: 23 July 2019

Please cite this article as: Lindoso, R.M., Medeiros, M.A.A., Carvalho, I.d.S., Pereira, A.A., Mendes, I.D., Iori, F.V., Sousa, E.P., Souza Arcanjo, S.H., Madeira Silva, T.C., A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle Cretaceous of northern Brazil, Cretaceous Research, https:// doi.org/10.1016/j.cretres.2019.104191. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT 1

A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle

2

Cretaceous of northern Brazil

3 Rafael Matos Lindosoa,c*, Manuel Alfredo Araújo Medeirosb, Ismar de Souza Carvalhoc,

5

Agostinha Araújo Pereirad, Ighor Dienes Mendese, Fabiano Vidoi Iorif, Eliane Pinheiro

6

Sousag, Silvia Helena Souza Arcanjob, Taciane Costa Madeira Silvab

RI PT

4

7 8

a

9

Pesquisa, Pós-Graduação e Inovação - PRPGI, Av. Colares Moreira, 477, Renascença,

SC

Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Pró-Reitoria de

São Luís, MA, CEP: 65.075-441, Brazil; e-mail: [email protected]

11

b

12

s/n, CEP: 65.085-580, São Luís, MA, Brazil; e-mail: [email protected];

13

[email protected], [email protected]

14

c

15

CEP: 21.949-900, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil; e-

16

mail: [email protected]

17

d

18

Centro,

19

[email protected]

20

e

21

Biodiversidade e Biologia Evolutiva, CCS/IB, CEP: 21.941-902, Cidade Universitária,

22

Ilha do Fundão, Rio de Janeiro, RJ, Brazil; e-mail: [email protected]

23

f

24

Garisto, CEP: 15.890-000, Uchoa, SP, Brazil; e-mail: [email protected];

M AN U

10

Universidade Federal do Maranhão, Campus do Bacanga, Avenida dos Portugueses,

TE D

Universidade Federal do Rio de Janeiro, Departamento de Geologia, CCMN/IGEO,

EP

Centro de Pesquisa de História Natural e Arqueologia do Maranhão, Rua do Giz, 59, São

Luís,

Maranhão,

Brazil;

e-mail:

AC C

CEP:65.010-680,

Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em

Museu de Paleontologia Pedro Candolo, Estação Cultura, Praça Farmacêutico Bruno

1

ACCEPTED MANUSCRIPT 25

g

26

Universitária Paulo VI, CEP: 65.055-970 São Luís, MA, Brazil; e-mail:

27

[email protected]

28

*Corresponding author. Tel. +55(98)98868-7462; [email protected]

Universidade

Estadual

do

Maranhão,

Departamento

Biologia,

Cidade

RI PT

29

de

30 31 32

Abstract

33

São Luís Basin, Alcântara Formation, Itapeuasaurus cajapioensis gen. et sp. nov., is

34

described, the first from this temporal interval in northern Brazil. It is characterized by

35

the presence of large and deep fossae on ventro-lateral aspect of the dorsal neural arch

36

split by laminae obliquely oriented; posterior centrodiapophyseal lamina forked

37

ventrally forming the dorsal edge of the centrodiapophyseal fossa; dorsal and ventral

38

components of anterior caudal transverse process thinner than the usual bony bar. This

39

latter

40

centrodiapophyseal fossa accessory lamina. The phylogenetic analysis performed herein

41

identifies the subclade Nigersaurinae as a South American – African/European clade,

42

suggesting a vicariant event before Cenomanian times. In addition, continental

43

vertebrate taxa recorded in the Alcântara Formation offer support to a minor

44

evolutionary change after major vicariant event in Western Gondwana.

45

Keywords: Sauropoda; Diplodocoidea; Rebbachisauridae; Alcântara Formation; Brazil

47

SC

associated

M AN U

is

with

the

presence

of

a

prezygodiapophyseal

EP

TE D

feature

AC C

46

A new genus and species of Rebbachisauridae sauropod from the Cenomanian of the

1 Introduction

48

One of the most interesting subjects concerning the Mesozoic continental faunas

49

is the identification of events of vicariance and dispersal throughout the history of

50

Gondwana. In this sense, Rebbachisauridae is paleobiogeographically relevant, a clade

51

formed by all diplodocoids more closely related to Rebbachisaurus garasbae than to 2

ACCEPTED MANUSCRIPT Diplodocus longus (sensu Salgado et al., 2004). Their records have been useful for

53

ascertaining the moment of definitive separation between South America and Africa

54

(Carballido et al., 2010). Recently, phylogenetic analysis has emphasized a marked

55

provincialism among members of Rebbachisauridae, with some of them restricted to

56

Europe and northern Africa (e.g. Nigersaurus, Demandasaurus, Rebbachisaurus) and

57

others only composed by Upper Cretaceous South American taxa (e.g. Limaysaurus,

58

Cathartesaura, Nopcsaspondylus, El Chocon rebbachisaurid) (Sereno et al., 2007;

59

Whitlock, 2011; Fanti et al., 2013; Wilson and Allain, 2015; Mannion et al., 2019). This

60

group of neosauropods also reveals extreme adaptations for herbivory and high

61

temperatures in habitats at tropical and subtropical paleolatitudes (Ibiricu et al., 2017;

62

Sereno et al., 2007).

M AN U

SC

RI PT

52

In South America, Rebbachisauridae is diverse and frequently recorded in an

64

interval extending from the Barremian to Turonian, particularly in Argentina.

65

Additionally, their remains are composed mainly of postcranial elements (Calvo and

66

Salgado, 1995; Bonaparte, 1996; Calvo, 1999; Salgado et al., 2004; Gallina and

67

Apesteguía, 2005; Apesteguía, 2007; Carballido et al., 2010, 2012; Haluza et al., 2012;

68

Ibiricu et al., 2012, 2013). This diversity has been also complemented by a few cranial

69

remains (Calvo and Salgado, 1995; Carabajal et al., 2016; Canudo et al., 2018). Other

70

records of Rebbachisauridae in South America occur only in northern-northeastern

71

Brazil (Carvalho et al., 2003; Medeiros and Schultz, 2004; Castro et al., 2007; Medeiros

72

et al., 2014).

AC C

EP

TE D

63

73

In the São Luís Basin, Cretaceous outcrops are mainly Cenomanian in age

74

(Klein and Ferreira, 1979; Pedrão et al., 1993). For over 20 years, the most important

75

fossiliferous outcrop in this basin has been the Laje do Coringa bone-bed, which records

76

the Alcântara Formation (lower Cenomanian), at Cajual Island, São Marcos Bay

3

ACCEPTED MANUSCRIPT (Corrêa-Martins, 1996; Medeiros and Schultz, 2001, 2002) (Fig. 1). Therein, a

78

noteworthy paleocommunity including crocodyliforms, fishes, dinosaurs, plants

79

remains, invertebrates, and pterosaurs has been recorded (Medeiros et al., 1995, 1996,

80

2014; Corrêa-Martins, 1996; Vilas-Bôas et al., 1999; Vilas-Bôas and Carvalho, 2001;

81

Medeiros and Schultz, 2001, 2002; Elias et al., 2007; Pereira and Medeiros, 2008;

82

Araújo et al., 2011; Lindoso et al., 2012, 2013a).

RI PT

77

The Alcântara Formation records both Titanosauria and Diplodocoidea remains,

84

although the former is less frequent in the Laje do Coringa bone bed (Medeiros et al.,

85

2007, 2014). The fragmentary state of these materials has precluded the proposition of

86

any nominal species, except for a few teeth tentatively assigned to Malawisaurus (Freire

87

et al., 2007). Some rebbachisaurid remains (e.g. caudal vertebrae/neural spine) have

88

been tentatively assigned to a more specific taxonomic level, cf. Limaysaurus tessonei

89

(Medeiros and Schultz, 2004).

M AN U

SC

83

In the Parnaíba sedimentary Province (which also include the São Luís Basin to

91

the north), Diplodocoidea remains has been found in a better preservation state, with a

92

unique nominal species described so far, Amazonsaurus maranhensis Carvalho et al.,

93

2003. This rebbachisaurid was described based on a partial postcranial skeleton in

94

Lower Cretaceous (Aptian-Albian) strata of the Itapecuru Formation, southern

95

Maranhão State, northern Brazil (Carvalho et al., 2003). Many common taxa are

96

recorded in the Alcântara and Itapecuru formations (e.g. Theropoda and fishes),

97

suggesting a homogeneous paleocommunity inhabiting the northeastern Brazil

98

throughout the Albian and early Cenomanian (Medeiros and Schultz, 2002; Medeiros et

99

al., 2007, 2014).

AC C

EP

TE D

90

100

In the present study, a new genus and species of rebbachisaurid dinosaur is

101

described from lower Cenomanian strata of Brazil, the first nominal diplodocoid from

4

ACCEPTED MANUSCRIPT 102

the Alcântara Formation. It comes from a new fossiliferous locality in Maranhão State

103

and may help to increase our understanding concerning this sauropod group during the

104

mid-Cretaceous worldwide.

106

2 Geological setting

The São Luís Basin is a marginal basin located in the north portion of South

SC

107 108 109 110 111

Please, include the Fig. 1 near here.

RI PT

105

America. It has a total area of 18.000 km2 and its genesis is related to the Equatorial

113

Atlantic opening initiated during the Late Jurassic and Early Cretaceous (Szatimari et

114

al., 1987; Carvalho, 2001a; Góes and Rossetti, 2001). This basin represents one sub-

115

basin on a larger intracratonic sedimentary area, the Parnaíba Province, tectonically

116

reactivated in the Mesozoic during the South America and Africa breakup (Góes, 1995;

117

Góes and Coimbra, 1996; Góes and Rossetti, 2001). The São Luís Basin is limited by

118

the following structural arches: the Xambioá-Alto Parnaíba Antecline to the south, the

119

Capim Arch to the northwest, and the Rio Parnaíba Lineament to the east (Góes, 1995).

TE D

M AN U

112

The sedimentary record of the São Luís Basin can be divided into three

121

depositional sequences sensu Rossetti (2001): S1, S2 and S3. The S1 sequence

122

accumulated during the upper Aptian and lower Albian, and includes about 450 m of

123

sandstones, shales and limestones deposited in shallow marine, lacustrine and fluvio-

124

deltaic environments that make up the Grajaú and Codó formations. The S2 sequence,

125

lower-middle Albian, consists of about 500 m of sandstone and pelitic deposits

126

attributed to shallow marine and fluvio-deltaic environments that make up the Itapecuru

127

Formation (Campbell, 1949) or Undifferentiated Unit (Rossetti and Truckenbrodt,

128

1997).

AC C

EP

120

The S3 sequence accumulated between the middle Albian and the Upper

5

ACCEPTED MANUSCRIPT 129

Cretaceous. It comprises 600-800 m of sandstones and pelitic deposits referred to the

130

Alcântara and Cujupe formations (Rossetti and Truckenbrodt, 1997; Paz and Rossetti,

131

2001). The new sauropod described herein comes from a new locality in the Itapeua

133

beach, Cajapió municipality, northern Maranhão State, Brazil (Fig. 1). This locality is

134

part of the Alcântara Formation, São Luís Basin (Medeiros et al., 2015). Its sedimentary

135

succession includes around 2,5 m of reddish argillaceous levels at the base, being

136

immediately overlaid by centimetric levels of fine to medium siltic sandstones,

137

laterized, where dinosaur bones and teeth remains are found. These layers are

138

superposed by reddish argillite strata intercalated by greenish siltite mottled with

139

reddish coloring. Additionally, mud crack, fluidization and elephant skin structures are

140

observed in plan view (Medeiros et al., 2015). The diplodocoid remains comes from

141

greenish argillaceous siltic levels 20 cm thickness (Fig. 2B). The Alcântara Formation

142

records a diverse biota comprising plants, fishes, turtles, dinosaurs, pterosaurs,

143

vertebrate and invertebrate ichnofossils (Medeiros and Vilas-Bôas, 1999; Carvalho,

144

2001b; Dutra and Malabarba, 2001; Medeiros and Schultz, 2001; Moraes-Santos and

145

Carvalho, 2001; Elias et al., 2007; Freire et al., 2007; Pereira and Medeiros, 2008;

146

Lindoso et al., 2012, 2013a; Medeiros et al., 2014).

148 149

SC

M AN U

TE D

EP

AC C

147

RI PT

132

Please, include the Fig. 2 near here.

150 151 152 153

3 Material and methods

154

Universidade Federal do Maranhão (UFMA). They were localized by a fisherman on a

155

beach in the Cajapió municipality, Maranhão State, subsequently being recovered by a

The fossils described herein are housed at the fossil collection of the

6

ACCEPTED MANUSCRIPT team of Paleontologists of the Universidade Federal do Maranhão (UFMA),

157

Universidade Federal do Rio de Janeiro (UFRJ), Centro de Pesquisa de História Natural

158

e Arqueologia do Maranhão (CPHNAMA) and Universidade Estadual do Maranhão

159

(Fig. 2A). As the specimen was exposed on the intertidal area, it was necessary to

160

develop a stabilization technique under flood conditions, using wire, splints and

161

impermeable polyurethane foam, before and after the total removal of each bony

162

element, which often took more than one daily tide cycle (Medeiros et al., 2015).

163

Considering the tidal cycles and the stabilization technique, the effective working time

164

was reduced to less than 4 hours per day.

SC

RI PT

156

Mechanical conventional techniques of fossil preparation were performed at the

166

laboratory of the CPHNAMA. The phylogenetic analysis conducted herein is detailed in

167

a specific section. For the nomenclature of vertebral laminae and fossae we followed

168

Wilson (1999), Wilson et al. (2011) and Carballido et al. (2012).

M AN U

165

TE D

169 4 Systematic paleontology

171

SAURISCHIA Seeley, 1887

172

SAUROPODOMORPHA Huene, 1932

173

SAUROPODA Marsh, 1878

174

DIPLODOCOIDEA Marsh, 1884 (sensu Upchurch, 1995)

175

REBBACHISAURIDAE Bonaparte, 1997

176

Itapeuasaurus cajapioensis, gen. et sp. nov.

177

(Figs. 3-9)

AC C

EP

170

178 179

Diagnosis. Rebbachisauridae distinguished by the following combination of characters

180

on the dorsal and caudal vertebrae (autapomorphies are marked with an asterisk):

7

ACCEPTED MANUSCRIPT Presence of three shallow pneumatic fossae disposed vertically on the dorsal surface of

182

the neural arch, which are separated by the spinoprezygapophyseal lamina and

183

spinopostzygapophyseal accessory lamina; large and deep fossae on the ventro-lateral

184

aspect of the dorsal neural arch split by laminae obliquely oriented*; posterior

185

centrodiapophyseal lamina forked ventrally forming the dorsal edge of the

186

centrodiapophyseal fossa*; dorsal and ventral components of anterior caudal transverse

187

process thinner than the usual bony bar associated to the presence of a

188

prezygapophyseal

189

centrodiapophyseal fossa accessory lamina*.

190

Holotype. An incomplete dorsal neural arch (UFMA. 1.10.1960-01); three anterior

191

caudal vertebrae (UFMA. 1.10.1960-03, 1.10.1960-04, UFMA. 1.10.1960-05); and two

192

middle caudal vertebrae (UFMA. 1.10.1960-07, 1.10.1960-08).

193

Paratype. A summit of dorsal neural spine (UFMA. 1.10.1960-02); an anterior caudal

194

vertebra (UFMA. 1.10.1960-06); two chevrons (UFMA. 1.10.1960-10, 1.10.1960-11);

195

an incomplete ischium (UFMA. 1.10.1960-09)

196

Stratigraphic horizon. Alcântara Formation, São Luís Basin, lower Upper Cretaceous

197

(Cenomanian).

and

prezygodiapophyseal

SC

lamina

TE D

M AN U

fossa

EP

198

centrodiapophyseal

RI PT

181

4.1 Comparative description

Dorsal vertebrae. Two elements comprise the dorsal vertebrae of Itapeuasaurus

203

cajapioensis. However, only the most well preserved is described herein (Fig. 3).

204

UFMA 1.10.1960-01 represents a large, partially preserved middle-posterior dorsal

205

neural arch. Most of the neural spine and right costal articulations are not preserved.

206

The left parapophysis is missing and only the base of the right diapophysis is preserved.

207

The left diapophysis is almost completely preserved; it is broad and laminar, forming an

AC C

199 200 201 202

8

ACCEPTED MANUSCRIPT 208

angle of almost 90 degrees relative to the neural spine. Although the centrum is missing,

209

large fossae on the ventrolateral aspect of neural arch are deep and internally partitioned

210

by a thin, obliquely oriented lamina (Fig. 3D). Its unusual position does not allow

211

comparisons with other rebbachisaurids. In UFMA 1.10.1960-01, the parapophysis is above the zygapophysis level, a

213

position observed in Rebbachisaurus, Nigersaurus, Histriasaurus and Demandasaurus

214

(Dalla Vecchia, 1999; Sereno et al., 2007; Fernández-Baldor et al., 2011; Wilson and

215

Allain, 2015), but not shared with Comahuesaurus and Limaysaurus [=Rebbachisaurus

216

tessonei] (Calvo and Salgado, 1995; Carballido et al., 2012). In these latter

217

rebbachisaurids, the parapophysis is far below the level of the zygapophysis. Otherwise,

218

the leveling parapophysis/zygapophysis is present in the Rebbachisauridae MMCH-Pv

219

49/17 (Haluza et al., 2012).

M AN U

SC

RI PT

212

The lateral aspect of neural arch display two fossae (centrodiapophyseal fossa,

221

cdf; parapophyseal centrodiapophyseal fossa, pacdf; fig. 3C), which differ from all

222

others rebbachisaurids known. For example, in Katepensaurus the parapophyseal

223

centroprezygapophyseal fossa (pacprf) and (pacdf) are subdivided by laminae (Ibiricu

224

et al., 2013; fig. 7C), and in Histriasaurus it forms a complex latticework of thin bone

225

laminae (Dalla Vecchia, 1998; fig. 9C). Otherwise, Limaysaurus, Nopcsaspondylus,

226

Nigersaurus and Demandasaurus present a reduction in complexity in these fossae

227

(Nopcsa, 1902, fig. 2; Calvo and Salgado, 1995, fig. 8D; Sereno et al., 2007, fig. 3C;

228

Fernández-Baldor et al., 2011, fig. 9B). In UFMA 1.10.1960-01, the posterior

229

centrodiapophyseal lamina (pcdl) is forked in the middle region of the neural arch

230

toward the centrum. These two new laminae form the border of the cdf and partially the

231

pacdf. We consider it an autapomorphy for Itapeuasaurus cajapioensis.

AC C

EP

TE D

220

232

9

ACCEPTED MANUSCRIPT 233

Please, include the Fig. 3 near here.

234 The surface framed by the prespinal (prsl), prezygoparapophyseal (prpl), and

236

spinodiapophyseal (spdl) laminae is well delimited by three shallow fossae disposed

237

vertically, increasing in size toward the apex (Fig. 4B). These fossae are subdivided by

238

the spinoprezygapophyseal lamina (sprl) and spinopostzygapophyseal accessory lamina

239

(spzal). Limaysaurus tessonei possesses apparently the same complex of fossae/lamina,

240

but at a number of two (Calvo and Salgado, 1995; fig. 8). Although Nigersaurus also

241

have dorsal vertebrae with paired pneumatic spaces at the base of the neural spines,

242

Sereno et al. (1999) does not offer information regarding its compartmentalization. In

243

Rebbachisaurus, the pneumatic fossae are irregularly distributed along the inferior

244

margin of the diapophysis, margin of the spinodiapophyseal lamina and neural spine

245

(Wilson and Allain, 2015; figs. 8B, 9).

M AN U

SC

RI PT

235

The neural canal is almost circular in anterior and slightly elliptical in posterior

247

view. It is bordered by the medial centroprezygapophyseal lamina (med. cprl) into a

248

large fossa in a drop shape in anterior view (centroprezygapophyseal fossa - cprf). Both

249

the med. cprl and the intraprezygapophyseal lamina (tprl) border the subfossa

250

centroprezygapophyseal dorsal (s-cprf-d, sensu Carballido et al., 2012; fig. 4B), which

251

is large in Itapeuasaurus cajapioensis. (Fig. 3A). In fact, the complex lamina/fossae in

252

the infraprezygapophyseal region of UFMA 1.10.1960-01 is distinct from all other

253

Rebbachisauridae known.

AC C

EP

TE D

246

254 255

Please, include the Fig. 4 near here.

256

10

ACCEPTED MANUSCRIPT Caudal vertebrae. Six caudal vertebrae almost complete are preserved (four

258

anterior and two middle). The most anterior of them, UFMA 1.10.1960-03 is 540 mm

259

high being 95% complete (Table 1; Fig. 5). The centrum is anteroposteriorly short,

260

subcircular in shape, with lateral and ventral sides concave. The ventral concavity has a

261

mediolateral direction without the presence of lateral ridges. There is no sign of lateral

262

pneumatic cavities and both articular faces are amphicoelous. Subcircular anterior

263

caudal centrum is present in Cathartesaura, but along with amphiplatyan articular faces

264

(Gallina and Apesteguía, 2005).

SC

RI PT

257

The neural arch is reduced and positioned on the anterior half of the centrum. In

266

UFMA 1.10.1960-03 the neural spine is slightly inclined posteriorly (Fig. 5C).

267

Otherwise, the neural arch in anterior caudals of Limaysaurus is twice higher than the

268

height of the centra (Calvo and Salgado, 1995: 22) and in Cathartesaura a neural spine

269

S-shaped is present (Gallina and Apesteguía, 2005; fig. 3A).

M AN U

265

The transverse process is a laminar complex dorsoventrally short and slightly

271

oriented upward (a slight variation from the morphological type ‘complex’ termed by

272

Gallina and Otero, 2009). Instead, in Histriasaurus the transverse process is laterally

273

and backwardly directed (Dalla Vecchia, 1998). In UFMA 1.10.1960-03 both the dorsal

274

and ventral component of the transverse process are laminar rather than bar shaped; the

275

ventral component is parallel to the dorsal one rather than oblique as in most

276

rebbachisaurids (e.g. Katepensaurus, Limaysaurus, Rebbachisaurus, Cathartesaura).

277

The isolated anterior caudal vertebrae from Kem Kem bed (NHMUK R36636) bears

278

limited similarities with UFMA 1.10.1960-03, including dorsal and ventral components

279

parallel to each other in its dorsolateral plan. Most laminar anterior caudal transverse

280

processes put UFMA 1.10.1960-03 apart from diplodocids, which have dorsal

281

components well developed (bony bars). Although Comahuesaurus shares with

AC C

EP

TE D

270

11

ACCEPTED MANUSCRIPT 282

Itapeuasaurus cajapioensis a transverse process dorsoventrally short and dorsolaterally

283

deflected, the centroprezygapophyseal fossa (cprf) does not span the entire length of the

284

dorsal and ventral components of the transverse process (see Carballido et al., 2012; fig.

285

6A). A thin ‘web’ of bone between the dorsal and ventral components is absent in

287

UFMA 1.10.1960-03; instead, a large prezygapophyseal centrodiapophyseal fossa

288

(prcdf) is compartmentalized medially by two short laminae. The first one is positioned

289

more

290

centrodiapophyseal fossa lamina [prcdfl] (Fig. 5A). As in Katepensaurus, the prcdfl

291

arises from the dorsolateral margin of the centrum and isolates the dorsomedial corner

292

of the prcdf. However, this lamina continues a trajectory under the dorsal component (=

293

prezygodiapophyseal lamina [prdl]) performing an arc until contacting the ventral

294

component (Fig. 5A). The second lamina, herein termed prezygodiapophyseal

295

centrodiapophyseal fossa accessory lamina (prcdfal), is positioned more internally into

296

the prcdf, vertically oriented. This lamina arises from the base of the ventral component

297

toward the prdl (Fig. 5A). The presence and symmetrical arrangement of prcdfl and

298

prcdfal in anterior caudal vertebrae of Itapeuasaurus cajapioensis is herein considered

299

an autapomorphy. This condition is not present in others rebbachisaurids (see Pereda

300

Suberbiola et al., 2003; Fernández-Baldor et al., 2011; Fernández-Baldor, 2012). For

301

example, in the Isle of Wight rebbachisaurid anterior caudal vertebra (MIWG 5384),

302

both right and left prcdf are asymmetrically compartmentalized (see Mannion et al.,

303

2011: fig 1A).

into

the

prcdf,

obliquely

oriented

(prezygapophyseal

AC C

EP

TE D

M AN U

SC

externally

RI PT

286

304

The neural spine possesses spinodiapophyseal lamina (spdl), pre- and postspinal

305

lamina (prsl and posl) well developed. The spinodiapophyseal laminae are posteriorly

306

convex and anteriorly concave, which results in an anterior bending of these laminae,

12

ACCEPTED MANUSCRIPT present in Amazonsaurus and Rebbachisaurus garasbae (Carvalho et al., 2003; Wilson

308

and Allain, 2015), but diverging in R. tessonei (Calvo and Salgado, 1995). According to

309

Sereno et al. (2007), Nigersaurus has a characteristic flaring of the lateral lamina at mid

310

length. In Demandasaurus and the Isle of Wight rebbachisaurid anterior caudal vertebra

311

(MIWG 5384), the lateral lamina is marked by the small wing-like projections near the

312

top of the neural spine (Fernández-Baldor et al., 2011; Mannion et al., 2011; Pereda

313

Suberbiola et al., 2003). The distal third of the neural spine has a ‘petal-shape’ as a

314

consequence of the expansion of the spinodiapophyseal lamina which is also present in

315

R. garasbae (Wilson and Allain, 2015; fig. 9) (Fig. 5). In distal view, the

316

spinodiapophyseal lamina (spdl), prsl and posl form the tetraradiate character typical of

317

Rebbachisauridae (Calvo and Salgado, 1995; Salgado et al., 2004). However, the lateral,

318

anterior and posterior rami are proportional in length.

M AN U

SC

RI PT

307

The pre- and postspinal laminae bifurcate at the median region of the neural

320

spine, continuing toward the neurocentral junction, participating of the formation of the

321

prezygapophysis

322

postzygapophysis (medial spinopostzygapophyseal lamina [med. spol]). This character

323

is absent in A. maranhensis, partially present in R. garasbae and anterior caudal

324

vertebrae of rebbachisaurids from central Patagonia, UNPSJB-PV 580 and UNPSJB-PV

325

1004/2. In anterior caudal vertebrae of Katepensaurus this character is also distinct,

326

although the specimen UNPSJB-PV 1007/8 may have pre- and postspinal bifurcate

327

lamina once excluded possible diagenetic obliteration or deformation (Ibiricu et al.,

328

2013; fig. 10 C).

TE D

319

spinoprezygapophyseal

lamina

[med.

sprl])

and

AC C

EP

(medial

329 330

Please, include the Fig. 5 near here.

331

13

ACCEPTED MANUSCRIPT In the anterior caudal UFMA 1.10.1960-04 the centrum is amphicoelous. The

333

neural arch is low, which supports prezygapophysis well developed and not wide apart,

334

with its articular facets oriented medially. It is placed beyond the anterior margin of the

335

centrum (Fig. 6). This condition is distinct from Dicraeosaurus, Amazonsaurus and

336

from the isolated neural arch MCF-PVPH-633.

337 338

Please, include the Fig. 6 near here.

SC

339

RI PT

332

UFMA 1.10.1960-05 is 84 mm long, missing the distal half of neural spine, most

341

of the transverse process and posterior articular surface (Fig. 7). As in the anterior

342

caudal ones, the centrum is anteroposteriorly short, whit lateral sides slightly concave.

343

The ventral side is anteroposteriorly excavated; two discrete articular eruptions close to

344

the anterior edge of centrum is herein interpreted as the haemal articular surfaces. They

345

are ca. 5 cm apart, suggesting opened haemal articulations (not bridged).

TE D

M AN U

340

As in UFMA 1.10.1960-04, the pedicel is reduced, situated on anterior half of

347

the centrum. The prezygapophysis are placed beyond the anterior margin of the slightly

348

amphicoelous centrum, and there is no prezygodiapophyseal centrodiapophyseal fossa

349

(prcdf). The base of the transverse process preserved indicates a fusion of the dorsal

350

and ventral components in a single bony bar. Between the well-developed

351

postzygapophysis, there is a deep groove, which indicates the existence of a forked

352

postspinal laminae. The articular facets of the postzygapophysis form a shallow,

353

elliptic-elongated concavity (Fig. 7 B, C).

AC C

EP

346

354

In its medium region, the neural spine is pentaradiate in cross-section due the

355

absence of lateral lamina in the proximal half. This topography results of the medial

356

spinoprezygapophyseal (med.sprl), prespinal (prsl) and postspinal (posl) laminae. In

14

ACCEPTED MANUSCRIPT 357

Amazonsaurus (MN 4555-V), instead, the caudal vertebrae neural spine is more

358

laminar.

359 360

Please, include the Fig. 7 near here.

RI PT

361

UFMA 1.10.1960-07 is 42,4 mm long and is markedly compressed laterally. It is

363

interpreted herein as a middle caudal vertebra (Fig. 8). The centrum is amphicoelous,

364

possessing the lateral faces slightly concave; the ventral one, instead, exhibit a deep

365

notch anteroposteriorly oriented. The ventral margin of the posterior articular surface is

366

slightly bulky than the anterior one, probably as a result of the presence of the haemal

367

articular surfaces. In Katepensaurus (UNPSJB-PV 1004) and Cathartesaura, the middle

368

caudal centra are similar to UFMA 1.10.1960-07, but the formers are more rectangular

369

in lateral view and have lower neural spines. These differences clearly reflect distinct

370

positions in the caudal series, thus precluding direct comparisons.

TE D

M AN U

SC

362

The neural arch is positioned on the anterior half of centrum; in this specimen,

372

the transverse process is absent (a common aspect in posterior caudal vertebrae). The

373

neural canal is higher than wide and the pre- and postzygapophysis have a laminar

374

aspect. In lateral view, UFMA 1.10.1960-07 is similar to mid-posterior caudal vertebrae

375

of Amazonsaurus (MN 4560-V), but slightly more compressed in anterior/posterior

376

view. The neural spine is slightly oriented posteriorly, only the prsl and posl being

377

preserved.

AC C

EP

371

378

UFMA 1.10.1960-07 differs from Comahuesaurus (MOZ-PV 6634) by the

379

presence of a ridge on the lateral faces of the centrum, as well as a more excavated

380

ventral surface. Caudal lateral ridges are also present in Demandasaurus (Pereda

381

Suberbiola et al., 2003). The mid- caudals of Zapalasaurus (Pv-6127-MOZ), mainly the

15

ACCEPTED MANUSCRIPT 382

numbers 5 and 6, are remarkably similar to those of Itapeuasaurus cajapioensis, but

383

exhibits a slightly greater angle between the prezygapophysis and the neural spine

384

(Salgado et al., 2006; fig. 2: 5-6). This latter condition, plus the presence of a lateral

385

knob at the base of the neural arch, distances Histriasaurus from UFMA 1.10.1960-07.

387

RI PT

386 Please, include the Fig. 8 near here.

388

UFMA 1.10.1960-08 represents a second middle caudal vertebra, posterior to

390

UFMA 1.10.1960-07 in the caudal series (Fig. 9). The centrum is 109,5 mm long and

391

170,5 mm, the lateral face being strongly excavated and the ventral face slightly

392

concave. The neurocentral junction is placed on anterior half of the centrum. The

393

prezygapophysis is laminar and surpass the anterior edge of the centrum. As in UFMA

394

1.10.1960-07, there is no an evident transverse process. The neural spine is low and

395

laterally compressed, without evidence of lateral laminae (ll).

TE D

M AN U

SC

389

UFMA 1.10.1960-08 differs from the middle caudals of Limaysaurus and

397

Demandasaurus in having a wider angle between the postzygapophysis and the

398

centrum, and from Comahuesaurus by a smaller neurocentral junction (Fig. 9B). The

399

mid-posterior caudal vertebra of Amazonsaurus (MN 4560-V) is more robust, with

400

equivalent prezygapophysis (Carvalho et al., 2003; fig. 11). In the specimen Nos IG-1,

401

the centrum has a spool shape, with a lateral knob (lk) at the base of the neural arch

402

(Dalla Vecchia, 1998; fig. 17A), aspects not present in UFMA 1.10.1960-08. In

403

Tataouinea, the postzygapophysis are more developed, and the prezygapophysis are

404

slightly oriented upward (Fanti et al., 2015; fig. 13A). The specimen UNPSJB-PV 1004

405

and mid-posterior caudal vertebrae of Zapalasaurus exhibit a neural spine more

AC C

EP

396

16

ACCEPTED MANUSCRIPT 406

expanded than UFMA 1.10.1960-08 (Salgado et al., 2006; fig. 5, 7, 8; Ibiricu et al.,

407

2012; fig. 7).

408 409

Please, include the Fig. 9 near here.

411

RI PT

410 5 Discussion

412 5.1 Phylogenetic Analysis

SC

413

Rebbachisauridae was defined as all diplodocoids more closely related to

416

Rebbachisaurus garasbae than to Diplodocus longus (Wilson [pers. comm.] in Salgado

417

et al., 2004). Recent analysis has recovered Amazonsaurus as the most ‘basal’ member

418

of this clade, with the European/African Histriasaurus its sister taxon. Histriasaurus

419

forms a polytomy with the South American Zapalasaurus at the base of

420

Rebbachisauridae and Comahuesaurus is also placed outside of Khebbashia

421

(Limaysaurinae + Nigersaurinae) (see Whitlock, 2011; Carballido et al., 2012; Wilson

422

and Allain, 2015; Fanti et al., 2015; Mannion et al., 2019).

TE D

M AN U

414 415

Nigersaurinae, a clade defined as Nigersaurus not Limaysaurus by Whitlock

424

(2011), is formed by African (Nigersaurus, Rebbachisaurus, Tataouinea) and European

425

(Demandasaurus) taxa (see Wilson and Allain, 2015; Mannion et al., 2019).

426

Rebbachisauridae also includes Limaysaurinae (Cathartesaura + Limaysaurus). In order

427

to ascertain the probable phylogenetic relationships of Itapeuasaurus cajapioensis, a

428

phylogenetic analysis was carried out based on the matrix proposed by Wilson and

429

Allain (2015). This analysis included a few changes in the characters 119 (from Salgado

430

et al., 2006), 124 (from Mcintosh, 1990), 131 (from Wilson, 2002), 132 (from Whitlock,

431

2011), 141 (from Wilson et al., 1999) (Appendix A).

AC C

EP

423

17

ACCEPTED MANUSCRIPT A parsimony analysis was carried out using the software TNT v. 1.1 (Goloboff

433

et al., 2008a, b). The matrix consists of the compiled data from Wilson and Allain

434

(2015) using a data set of 171 characters scored in 27 taxa, plus the inclusion of

435

Itapeuasaurus cajapioensis. Additionally, a heuristic tree search of 1,000 replicates of

436

Wagner Trees with random addition sequences was performed, followed by TBR

437

branch-swapping. The initial search produced 334 most parsimonious trees (MPTs) of

438

282 steps (consistency index [CI] = 0.663, retention index [RI] = 0.810). The strict

439

consensus of this analysis recovered a polytomy at the base of Rebbachisauridae (Fig.

440

10). However, when an agreement subtree analysis is performed, Itapeuasaurus

441

cajapioensis is grouped together with Demandasaurus and Nigersaurus in

442

Nigersaurinae (Fig. 11). In our resulting topology, Histriasaurus and Rebbachisaurus

443

were excluded and Amazonsaurus, Zapalasaurus and Comahuesaurus recovered as

444

successive outgroups to Khebbashia.

Please, include the Figs. 10 and 11 near here.

447 448

5.2 Taxonomy

EP

446

TE D

445

M AN U

SC

RI PT

432

Itapeuasaurus cajapioensis is the best preserved diplodocoid sauropod from the

450

Alcântara Formation, Cenomanian of the São Luís Basin. We consider it as a

451

Diplodocoidea primarily by the neural arch in the dorsal vertebrae being tall and neural

452

spines very elongated both in dorsal and caudal vertebrae, being tetraradiate in cross-

453

section. Its attribution to Rebbachisauridae is mainly based on dorsal and ventral

454

components of the transverse process supported by a reduced ‘web’ of bone (sensu

455

Gallina and Otero, 2009), summit of the anterior caudal neural spine ‘petal-shaped’ (see

456

Wilson and Allain, 2015; fig. 12) as well as absence of hyposphene-hypantrum in

AC C

449

18

ACCEPTED MANUSCRIPT posterior dorsals (see Calvo and Salgado, 1995). Additionally, the presence of fossae

458

split by an obliquely oriented internal pneumatic fossa lamina on the dorsals neural

459

arch, posterior centrodiapophyseal lamina forked on the dorsal vertebrae and caudal

460

transverse processes thinner than the usual bony bar characterize it as a new genus and

461

species of Rebbachisauridae.

RI PT

457

In Brazil, rebbachisaurids are scarce and only recorded in the Albian-

463

Cenomanian strata of the São Luís and Parnaíba basins (Alcântara and Itapecuru

464

formations, respectively). Until now, solely one nominal species has been described,

465

Amazonsaurus maranhensis, from Aptian-Albian Itapecuru Formation (Carvalho et al.,

466

2003). Isolated and fragmentary rebbachisaurids records include materials of few

467

diagnostic value (e.g. fragments of tetraradiate neural spine) from the Alcântara

468

Formation as well as in underlying Undifferentiated Unit deposits (a designation used

469

for Itapecuru Formation by some authors as Rossetti and Truckenbrodt, 1997),

470

lower/middle Albian in age (Medeiros and Schultz 2004; Castro et al., 2007). Most of

471

the caudal centra from the Alcântara Formation (e.g. Laje do Coringa bone bed) have

472

been related to Limaysaurus sp. (Medeiros and Schultz, 2004), but the authors admit

473

that this generic assignment is weakly sustained because of the lack of diagnostic

474

features (M.A. Medeiros, pers. comm., 2015).

475 476

5.3 Spatiotemporal context

478

M AN U

TE D

EP

AC C

477

SC

462

Prior studies have supported a North America origin for Diplodocoidea, with the

479

surge of diversification in Flagellicaudata occurring in the Kimmeridgian of North

480

America, Europe and Africa, and Tithonian of South and North America (Whitlock,

481

2011). Recently, discoveries in East Asia have challenged current paleobiogeographic

19

ACCEPTED MANUSCRIPT 482

hypotheses concerning the origin and dispersion of Diplodocoidea, estimating an early

483

Middle Jurassic age for the earliest members of the clade (Xu et al., 2018). New discoveries also have improved our knowledge regarding spatiotemporal

485

context of Rebbachisauridae. After extinction of most flagellicaudatan taxa in the Late

486

Jurassic, Rebbachisauridae became the latest-surviving dipodocoids occupying both

487

Laurasian and Gondwanan landmasses during the Early Cretaceous (Wilson and Allain,

488

2015). The earliest record of this clade is Maraapunisaurus, now dated as Upper

489

Jurassic of North America (Morrison Formation) (Carpenter, 2018). Moreover, the

490

Lower Cretaceous Xenoposeidon from Hastings Group of England represents the

491

successive earliest rebbachisaurid known (Taylor, 2018).

M AN U

SC

RI PT

484

The presence of Diplodocoidea in the early Middle – Late Jurassic interval of

493

North America and Asia suggests a global distribution of this clade before the breakup

494

of Pangea. Furthermore, the discovery of the dicraeosaurid Lingwulong shenqi in China

495

indicates that many advanced sauropods lineages originated c. 15 million years earlier

496

than previously hypothesized (Xu et al., 2018). According to Carpenter (2018), it is

497

probable that the migration of rebbachisaurids has occurred between North America and

498

Europe during the latest Late Jurassic and earliest Early Cretaceous, reaching South

499

America via Europe and Africa. This scenario has now confronted time-calibrated

500

phylogeny for a South American root of Rebbachisauridae radiation (see Fanti et al.,

501

2015).

EP

AC C

502

TE D

492

Recently, Rebbachisaurus has been positioned as sister taxon to Nigersaurus and

503

Demandasaurus in the subclade Rebbachisaurinae by Wilson and Allain (2015) (herein

504

termed Nigersaurinae following recommendation of Mannion et al., 2019) or as sister

505

taxon to Demandasaurus and Tataouinea by Fanti et al. (2015). In both cases,

506

Nigersaurinae is a subclade restricted to Europe and northern Africa. In fact, the oceanic

20

ACCEPTED MANUSCRIPT barrier that would have prevented the closer relationship between African and European

508

faunas seems to have been bridged by an intercontinental land passage by means of

509

carbonate platforms in the Tethyan seaway known as the Apulian Route (Canudo et al.,

510

2009; Dalla Vecchia, 2002; Fernández-Baldor et al., 2011; Sereno et al., 2007;

511

Holwerda et al., 2018). According to Fernández-Baldor et al., (2011), although the

512

Apulian Route may never have been a continuous land corridor between south Europe

513

and northern Africa, islands appear to have been sufficiently closer to allow faunal

514

interchange. In the present study, the clade formed by Itapeuasaurus cajapioensis and

515

Demandasaurus suggests that Nigersaurinae was not restricted only to Europe and

516

northern Africa, but also included South American taxa. Similarly, Fanti et al. (2015)

517

also suggest a more widely distributed Nigersaurinae lineage.

M AN U

SC

RI PT

507

In Western Gondwana, especially in the northeastern Brazil, paleobiogeographic

519

patterns are more complex than previously thought. Recent models have suggested the

520

presence of epicontinental seaways on the rift valleys along the Recôncavo-Tucano-

521

Jatobá and Cariri-Potiguar trends during the Aptian (Arai, 1999, 2009, 2014; Maisey,

522

2000). Maisey (2011) postulated one of these probably separated northeastern Brazil

523

from the rest of South America, but it remained connected with Africa. For this author,

524

another seaway may have left northern Brazil apart from both South America and

525

Africa. As a result, dispersal and vicariance of Early Cretaceous biota of northeastern

526

Brazil do not reflect a conspicuous and unambiguous unique ‘event’ of breakup between

527

South America and Africa, but complex isolation episodes in parts of Western

528

Gondwana (Maisey, 2011).

AC C

EP

TE D

518

529

The earlier marine incursions along the Equatorial-South Atlantic continental

530

margin of Brazil has been widely recognized as Aptian in age. Undoubted evidences

531

come from Macro- and microfossils records of Sergipe and Parnaíba basins: from the

21

ACCEPTED MANUSCRIPT 532

first one, the oldest ammonite assemblages are representatives of the early

533

douvilleiceratid lineage (e.g. Epicheloniceras–Eodouvilleiceras) and characterize a

534

middle Aptian age, some may even suggest a late early Aptian (e.g. Dufrenoyia

535

justinae) (Bengtson et al., 2007).

536

the Sergipe Basin confirms a well-developed open connection with low-latitude western

537

Tethyan regions during the late Aptian – late Albian (Koutsoukos, 1992). By the late

538

Coniacian – early Santonian times, the final structural detachment of South America

539

and Africa occurred and consequently the establishment of deep-oceanic conditions in

540

the northern South Atlantic (Koutsoukos, 1998). In the Parnaíba Basin, Maranhão State,

541

marine isopods record is also late Aptian in age (Lindoso et al., 2013b). All these

542

records show faunal Tethyan affinities. In the Cenomanian, however, a permanent

543

oceanic connection seems to have developed, in part as a result of eustatic sea level

544

rising with repeated flooding by ocean waters across most of Saharan region (Maisey,

545

1991).

TE D

M AN U

SC

RI PT

Foraminifera record from oldest marine deposits in

The fossil record of the Alcântara Formation has revealed remarkable

547

similarities between the continental faunas of northeastern Brazil and northern Africa

548

during the lower Cenomanian, mainly when compared to the material from southeast

549

Morocco (Medeiros and Schultz, 2001, 2002; Medeiros et al., 2014). The fishes

550

assemblage recorded in the Laje do Coringa bone bed is the most striking element of

551

correlation (see Cavin and Dutheil, 1999; Cavin et al., 2010), although theropod

552

dinosaurs (e.g. Carcharodontosaurus, Spinosaurus) are also remarkable. Despite some

553

taxa are restricted to the Alcântara Formation (e.g. Atlanticopristis equatorialis,

554

Equinoxiodus alcantarensis, Coringasuchus anisodontis and Oxalaia quilombensis), the

555

similarities of vertebrate taxa recorded in this lithostratigraphic unit with those of Africa

556

has been claimed as a Gondwanan heritage. For Medeiros et al. (2014), it might be

AC C

EP

546

22

ACCEPTED MANUSCRIPT 557

attributed to minor evolutionary changes of the biota after the breakup of South

558

America and Africa. The presence of a new genus and species of rebbachisaurid in the Alcântara

560

Formation closely related to Demandasaurus is another evidence that South America

561

and Africa still shared a faunistic identity during the early Late Cretaceous. Thus, the

562

present data fits well with previous statement of a greater similarity among South

563

America and Africa mid-Cretaceous continental fauna than amongst the southern and

564

northern South American ones (Medeiros and Schultz, 2002; Medeiros et al., 2007,

565

2014). Before the early Late Cretaceous, dinosaur faunas were relatively cosmopolitan.

566

The isolation of continental landmasses by oceanic barriers led to marked

567

provincialisms (Sereno et al., 1994, 1996).

M AN U

SC

RI PT

559

Since most Alcântara Formation sauropod sampling comes from the Laje do

569

Coringa bone bed, and the skeletal remains collected therein are reworked, fractured and

570

abraded, they are unsuitable for assessing relative diversities. Taphonomic bias is an

571

important factor to be considered in the Laje do Coringa vertebrate assemblage which

572

includes skeletal remains transported and re-deposited (Holz, 2003).

TE D

568

Nonetheless, diplodocoid isolated caudal centra are far more numerous than

574

those of titanosaurs, and they certainly would not belong to a single individual. Instead,

575

the fossils from Laje do Coringa represent a sample of a paleocommunity (see Medeiros

576

et al., 2014). However, we consider the Alcântara Formation vertebrate record

577

insufficient to make confident sinecological assessments. The complex pneumaticy

578

observed in Itapeuasaurus cajapioensis could be an adaptation for the high

579

temperatures in tropical to subtropical paleolatitudes during the early Late Cretaceous

580

(Fig. 12) (see Ibiricu et al., 2017).

AC C

EP

573

581

23

ACCEPTED MANUSCRIPT 582

Please, include the Fig. 11 near here.

583 584

6 Conclusion

Itapeuasaurus cajapioensis represents the northernmost record of Diplodocoidea

587

in South America and the second nominal Rebbachisauridae for the middle-Cretaceous

588

of Brazil, expanding our knowledge regarding the diversity of this clade in Western

589

Gondwana. Its set of autapomorphies confirm the pneumatic complexity inherent to this

590

neosauropod

591

Nigersaurinae as a South American – African/European clade more than an exclusively

592

African and European taxa during Cenomanian times. Although this scenario is

593

consistent with previous paleontological data recorded in the lower Upper Cretaceous of

594

the São Luís Basin, recent phylogenetic approaches within Rebbachisauridae precludes

595

a reliable paleobiogeographic hypothesis at this moment. Finally, by now it seems clear

596

that rebbachisaurids outnumbered titanosaurs in the early Late Cretaceous in northern

597

South America right before the steep decline of Rebbachisauridae. New information on

598

several aspects of this remarkable community that lived in northern Brazil depends on

599

better preserved specimens that may be found in the future.

601 602

phylogenetic

analysis

SC

The

performed

herein

identifies

EP

TE D

M AN U

group.

AC C

600

RI PT

585 586

Acknowledgements

We would like to thank Dr. Philip Mannion for criticisms, comments and English

603

improvement addressed to the final version of this manuscript. We are very grateful to

604

Dr. Eduardo Koutsoukos for his valuable comments on the paleobiogeography of

605

Western Gondwana, and the anonymous reviewer for criticisms and comments. We also

606

would like to thank Robertônio Brito (UFMA), Mosart Rogério Soares, João Francisco

607

Martins Costa, Taísa Pinheiro, Cláudia Cristina Soares, Nalva Cilene Soares, Max 24

ACCEPTED MANUSCRIPT William, Etiane Carvalho, Rosileia Alcofarado and the executive authorities for the

609

support during the fieldwork in Cajapió municipality. This manuscript is part of the first

610

author’s post-doctoral research (CNPq – 402602/2015-3) at the Universidade Federal do

611

Rio de Janeiro (UFRJ). Logistical support was offered by the Centro de Pesquisa de

612

História Natural e Arqueologia do Maranhão (CPHNAMA) and Instituto Federal de

613

Educação, Ciência e Tecnologia do Maranhão (IFMA). This manuscript received

614

financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico

615

(CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de

616

Janeiro (FAPERJ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

617

(CAPES).

M AN U

SC

RI PT

608

618 References

621

Arai, M., 1999. A transgressão marinha mesocretácea: sua implicação no paradigma da

622

reconstituição paleogeográfica do Cretáceo no Brasil, in: SIMPÓSIO SOBRE O

623

CRETÁCEO DO BRASIL, 5, Serra Negra, Boletim, Rio Claro, UNESP, Rio

624

Claro, pp. 577–582.

EP

626

Arai, M., 2009. Paleogeografia do Atlântico Sul no Aptiano: um novo modelo a partir de dados micropaleontológicos recentes. Bol. Geociências Petrobras 17, 331–351.

AC C

625

TE D

619 620

627

Arai, M., 2014. Aptian/Albian (Early Cretaceous) paleogeography of the South

628

Atlantic: a paleontological perspective. Brazilian J. Geol. 44, 339–350.

629 630

https://doi.org/10.5327/Z2317-4889201400020012.

Apesteguía, S., 2007. The sauropod diversity of the La Amarga Formation (Barremian),

631

Neuquén

632

https://doi.org/10.1016/J.GR.2007.04.007.

633

(Argentina).

Gondwana

Res.

12,

533–546.

Araújo, K.C.O., Sommer, M.G., Medeiros, M.A.A., Girnos, E.C., Schimdt, I.D., 2011. 25

ACCEPTED MANUSCRIPT 634

Lenhos de Coníferas do Mesocretáceo do Norte do Maranhão Brasil. Rev. Bras.

635

Paleontol. 14, 29–38. https://doi.org/10.4072/rbp.2011.1.03. Bengtson, P., Koutsoukos, E.A.M., Kakabadze, M.V., Zucon, M.H., 2007. Ammonite

637

and foraminiferal biogeography and the opening of the Equatorial Atlantic

638

Gateway, in: 1er Symposium International de Paléobiogéographie. Université

639

Pierre et Marie Curie (Paris 6) Muséum National d’Histoire Naturelle, Paris

640

CNRS, Paris, p. 2.

642

Bonaparte,

J.F.,

1996.

Cretaceous

tetrapods

Geowissenschaftliche Abhandlungen A, 73–130.

of

Argentina.

Münchner

SC

641

RI PT

636

Calvo, J.O., 1999. Dinosaurs and other vertebrates of the Lake Ezequiel Ramos Mexía

644

Area, Neuquén-Patagonia, Argentina, in: Y. Tomida, T. H. Rich, and P.V.-R.

645

(Ed.), Proceedings of the Second Gondwanan Dinosaur Symposium. National

646

Science Museum Monographs 15, Tokyo, Japan, pp. 13–45.

M AN U

643

Calvo, J.O., Salgado, L., 1995. Rebbachisaurus tessonei sp. nov. a new sauropoda from

648

the Albian-Cenomanian of Argentina; new evidence on the origin of Diplodocidae.

649

Gaia 13–33.

651

Campbell, D.F., 1949. Revised report on the reconnaissance geology of the Maranhão

EP

650

TE D

647

Basin (No. 7), Relatório interno da Petrobras n° 7. Belém. Canudo, J.I., Barco, J.L., Pereda−Suberbiola, X., Ruiz−Omeñaca, J.I., Salgado, L.,

653

Fernández−Baldor, T.F., Gasulla, J.M., 2009. What Iberian dinosaurs reveal about

654 655

AC C

652

the bridge said to exist between Gondwana and Laurasia in the Early Cretaceous. Bull. la Société Géologique Fr. 5–11.

656

Canudo, J., Carballido, J., Salgado, L., Garrido, A., 2018. A new rebbachisaurid

657

sauropod from the Aptian–Albian, Lower Cretaceous Rayoso Formation, Neuquén,

658

Argentina. Acta Palaeontol. Pol. 63. https://doi.org/10.4202/app.00524.2018.

26

ACCEPTED MANUSCRIPT 659

Carabajal, A.P., Canale, J.I., Haluza, A., 2016. New rebbachisaurid cranial remains

660

(Sauropoda, Diplodocoidea) from the Cretaceous of Patagonia, Argentina, and the

661

first endocranial description for a South American representative of the clade. J.

662

Vertebr.

663

https://doi.org/10.1080/02724634.2016.1167067.

36,

e1167067.

RI PT

Paleontol.

Carballido, J.L., Garrido, A.C., Canudo, J.I., Salgado, L., 2010. Redescription of

665

Rayososaurus agrioensis Bonaparte (Sauropoda, Diplodocoidea), a rebbachisaurid

666

from the early Late Cretaceous of Neuquén. Geobios 43, 493–502.

SC

664

Carballido, J.L., Salgado, L., Pol, D., Canudo, J.I., Garrido, A., 2012. A new basal

668

rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the

669

Neuquén Basin; evolution and biogeography of the group. Hist. Biol. 24, 631–654.

670

https://doi.org/10.1080/08912963.2012.672416.

M AN U

667

Carpenter, K., 2018. Maraapunisaurus fragillimus, N.G. (formerly Amphicoelias

672

fragillimus), a basal Rebbachisaurid from the Morrison Formation (Upper Jurassic)

673

of Colorado. Geol. Intermt. West 5, 227–244.

675

Carvalho, I.S., 2001a. A Bacia de São Luís, in: Brito, I.M. (Ed.), Geologia Histórica. EDUFU, p. 413 p.

EP

674

TE D

671

Carvalho, I.S., 2001b. Pegadas de dinossauros em depósitos estuarinos (Cenomaniano)

677

da Bacia de São Luís (MA), Brasil, in: Rossetti, D.F., Góes, A.M., Truckenbrodt,

678 679

AC C

676

W. (Eds.), O Cretáceo da Bacia de São Luís-Grajaú. Museu Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, pp. 245–264.

680

Carvalho, I.S., Avilla, L.S., Salgado, L., 2003. Amazonsaurus maranhensis gen. et sp.

681

nov. (Sauropoda, Diplodocoidea) from the Lower Cretaceous (Aptian–Albian) of

682

Brazil. Cretac. Res. 697–713.

683

Castro, D.F., Bertini, R.J., Santucci, R.M., Medeiros, M.A., 2007. Sauropods of the

27

ACCEPTED MANUSCRIPT 684

Itapecuru Group (lower/middle Albian), São Luís-Grajaú Basin, Maranhão State,

685

Brazil. Rev. Bras. Paleontol. 10, 195–200. Cavin, L., Dutheil, D.B., 1999. A new Cenomanian ichthyofauna from southeastern

687

Morocco and its relationships with other early Late Cretaceous Moroccan faunas.

688

Geol. en Mijnb. 78, 261–266.

RI PT

686

Cavin, L., Tong, H., Boudad, L., Meister, C., Piuz, A., Tabouelle, J., Aarab, M., Amiot,

690

R., Buffetaut, E., Dyke, G., Hua, S., Le Loeuff, J., 2010. Vertebrate assemblages

691

from the early Late Cretaceous of southeastern Morocco: an overview. J. African

692

Earth Sci. 57, 391–412. https://doi.org/10.1016/j.jafrearsci.2009.12.007.

SC

689

Corrêa-Martins, F.J., 1996. Levantamento de aspectos geológicos da parte setentrional

694

da ilha de São Luís e áreas adjacentes. Universidade Federal do Rio de Janeiro.

695

Dalla Vecchia, F.M., 2002. Cretaceous dinosaurs in the Adriatic−Dinaric carbonate platform

697

paleogeographical hypotheses. Mem. della Soc. Geol. Ital. 57, 89–100.

699

and

Croatia):

paleoenvironmental

implications

and

TE D

696

698

(Italy

M AN U

693

Dalla Vecchia, F.M., 1999. Atlas of the sauropod bones from the upper Hauterivian lower Barremian of Bale/Valle (SW Istria, Croatia). Nat. Nascosta 6–41. Dalla Vecchia, F.M., 1998. Remains of Sauropoda (Reptilia, Saurischia) in the Lower

701

Cretaceous (upper Hauterivian/lower Barremian) Limestones of SW Istria

702

(Croatia). Geol. Croat. 51, 105–134.

AC C

EP

700

703

Dutra, M.F.A., Malabarba, M.C.S.L., 2001. Peixes do Albiano-Cenomaniano do Grupo

704

Itapecuru no estado do Maranhão, Brasil, in: Rossetti, D. de F., Góes, A.M.,

705

Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú. Museu

706

Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, Brasil, pp. 191–208.

707

Elias, F.A., Bertini, R.J., Medeiros, M.A., 2007. Pterosaur teeth from the Laje do

708

Coringa, middle Cretaceous, São Luís-Grajaú Basin, Maranhão State, Northern-

28

ACCEPTED MANUSCRIPT 709

Northeastern Brazil. Rev. Bras. Geociências 37. Fanti, F., Cau, A., Cantelli, L., Hassine, M., Auditore, M., 2015. New Information on

711

Tataouinea hannibalis from the Early Cretaceous of Tunisia and Implications for

712

the Tempo and Mode of Rebbachisaurid Sauropod Evolution. PLoS One 10,

713

e0123475. https://doi.org/10.1371/journal.pone.0123475.

RI PT

710

Fanti, F., Cau, A., Hassine, M., Contessi, M., 2013. A new sauropod dinosaur from the

715

Early Cretaceous of Tunisia with extreme avian like pneumatization. Nat.

716

Commun. 4, 1–7.

SC

714

Fernández-Baldor, F.T., 2012. Sistemática, filogenia y análisis paleobiogeográfico de

718

Demandasaurus darwini (Sauropoda, Rebbachisauridae) del Barremiense superior-

719

Aptiense de Burgos (Espana). Universidad de Zaragoza.

M AN U

717

Fernández-Baldor, F.T., Canudo, J.I., Huerta, P., Montero, D., Suberbiola, X.P.,

721

Salgado, L., 2011. Demandasaurus darwini, a new rebbachisaurid sauropod from

722

the Early Cretaceous of the Iberian Peninsula. Acta Palaeontol. Pol. 56, 535–552.

TE D

720

Freire, P.C., Medeiros, M.A., Lindoso, R.M., 2007. Sauropod teeth diversity in the Laje

724

do Coringa fossiliferous site, Eocenomanian of Northeastern Brazil, in: Carvalho,

725

I.d.S., Cassab, R. de C.T., Schwanke, C., Carvalho, M. de A., Fernandes, A.C.S.,

726

Rodrigues, M.A. da C., Carvalho, M.S.S. de, Arai, M., Oliveira, M.E.Q. (Eds.),

727

Paleontologia: Cenários de Vida. Editora Interciência, Rio de Janeiro, Brasil, pp.

AC C

728

EP

723

523–532.

729

Gallina, P.A., Apesteguía, S., 2005. Cathartesaura anaerobica gen. et sp. nov., a new

730

rebbachisaurid (Dinosauria, Sauropoda) from the Huincul Formation (Upper

731

Cretaceous), Río Negro, Argentina. Rev. del Mus. Argentino Ciencias Nat. 7, 153–

732

166.

733

Gallina, P.A., Otero, A., 2009. Anterior caudal transverse processes in sauropod

29

ACCEPTED MANUSCRIPT 734

dinosaurs: morphological, phylogenetic and functional aspects. Ameghiniana 46,

735

165–176.

736 737

Góes, A.M., 1995. A Formação Poti (Carbonífero Inferior) da Bacia do Parnaíba. Universidade de São Paulo. Góes, A.M., Rossetti, D.F., 2001. Gênese da Bacia de São Luís-Grajaú. Meio Norte do

739

Brasil., in: Rossetti, D. de F., Góes, A.M., Truckenbrodt, W. (Eds.), O Cretáceo na

740

Bacia de São Luís-Grajaú, Belém. Museu Paraense Emílio Goeldi, Coleção

741

Friedrich Katzer, Belém, Brasil, pp. 15–29.

SC

RI PT

738

Góes, A.M., Coimbra, A.M., 1996. Bacias sedimentares da província sedimentar do

743

Meio Norte do Brasil, in: Simpósio de Geologia da Amazônia, 5. Belém/PA.

744

Boletim de Resumos Expandidos. Sociedade Brasileira de Geologia, Belém, pp.

745

186–187.

746

M AN U

742

Goloboff, P.A., Farris, S., Nixon, K., 2008a. TNT: tree analysis using new technology, vers

748

http//www.lillo.org.ar/phylogeny/tnt/.

750

[www

Document].

(Willi

Henning

Soc.

Ed.

Updat.

Goloboff, P.A., Farris, S., Nixon, K., 2008b. TNT, a free program for phylogenetic analysis. Cladistics 774–786.

EP

749

1.1.

TE D

747

Haluza, A., I., C.J., Otero, A., Pérez, L.M., Scanferla, C.A., 2012. Changes in vertebral

752

laminae across the cervicodorsal transition of a well-preserved rebbachisaurid

753 754

AC C

751

(Dinosauria, Sauropoda) from the Cenomanian of Patagonia, Argentina. J. Vertebr. Paleontol. https://doi.org/10.2307/41407719.

755

Holwerda, F.M., Díez Díaz, V., Blanco, A., Montie, R., Reumer, J.W.F., 2018. Late

756

Cretaceous sauropod tooth morphotypes may provide supporting evidence for

757

faunal connections between North Africa and Southern Europe. PeerJ 6, e5925.

758

https://doi.org/10.7717/peerj.5925.

30

ACCEPTED MANUSCRIPT 759

Holz, M., 2003. Sequence stratigraphy of a lagoonal estuarine system – an example

760

from

the early Permian Rio Bonito Formation, Parana Basin, Brazil., in: LatinAmerican Congress of Sedimentologists, 3. MPEG, Belém, pp. 125–126.

762

Ibiricu, L., Lamanna, M., Martinez, R., Casal, G., Cerda, I., Martinez, G., Salgado, L.,

763

2017. A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur:

764

implications for the paleobiology of Rebbachisauridae. Acta Palaeontol. Pol. 62.

765

https://doi.org/10.4202/app.00316.2016.

RI PT

761

Ibiricu, L.M., Casal, G.A., Lamanna, M.C., Martínez, R.D., Harris, J.D., Lacovara, K.J.,

767

2012. The southernmost records of Rebbachisauridae (Sauropoda: Diplodocoidea),

768

from early Late Cretaceous deposits in central Patagonia. Cretac. Res. 34, 220–

769

232. https://doi.org/10.1016/J.CRETRES.2011.11.003.

M AN U

SC

766

Ibiricu, L.M., Casal, G.A., Martínez, R.D., Lamanna, M.C., Luna, M., Salgado, L.,

771

2013. Katepensaurus goicoecheai, gen. et sp. nov., a Late Cretaceous

772

rebbachisaurid (Sauropoda, Diplodocoidea) from central Patagonia, Argentina. J.

773

Vertebr. Paleontol. 33, 1351–1366. https://doi.org/10.2307/24523211.

TE D

770

Klein, V.C., Ferreira, C.S., 1979. Paleontologia e Estratigrafia de uma fácies estuarina

775

da Formação Itapecuru, Estado do Maranhão. An. da Acad. Bras. Ciências 5 51,

776

523–533.

EP

774

Koutsoukos, E.A.M., 1992. Late aptian to maastrichtian foraminiferal biogeography and

778

palaeoceanography of the Sergipe basin, Brazil. Palaeogeogr. Palaeoclimatol.

779

AC C

777

Palaeoecol. 92, 295–324. https://doi.org/10.1016/0031-0182(92)90089-N.

780

Koutsoukos, E.A.M., 1998. Upper Cretaceous palaeogeography of the Sergipe Basin,

781

NE Brazil: area of the Divina Pastora and Mosqueiro Lows. Zbl. Geol. Paläont. Tl.

782

I 1325–1337.

783

Lindoso, R.M., Medeiros, M.A., de Souza Carvalho, I., da Silva Marinho, T., 2012.

31

ACCEPTED MANUSCRIPT 784

Masiakasaurus-like theropod teeth from the Alcântara Formation, São Luís Basin

785

(Cenomanian),

786

https://doi.org/10.1016/j.cretres.2012.03.002.

northeastern

Brazil.

Cretac.

Res.

36,

119–124.

Lindoso, R.M., Marinho, T. da S., Santucci, R.M., Medeiros, M.A., Carvalho, I. de S.,

788

2013a. A titanosaur (Dinosauria: Sauropoda) osteoderm from the Alcântara

789

Formation (Cenomanian), São Luís Basin, Northeastern Brazil. Cretac. Res. 45,

790

43–48. https://doi.org/10.1016/j.cretres.2013.07.005.

RI PT

787

Lindoso, R.M., Carvalho, I.S., Mendes, I.D., 2013b. An isopod from the Codó

792

Formation (Aptian of the Parnaíba Basin), Northeastern Brazil. Brazilian J. Geol.

793

43, 16–21. https://doi.org/10.5327/Z2317-48892013000100003.

796 797

M AN U

795

Maisey, J.G., 1991. An ocean is formed, in: Santana Fossils: An Illustrated Atlas. TFH Publications, New Jersey, pp. 44–56.

Maisey, J.G., 2000. Continental break up and the distribution of fishes of Western Gondwana during the Early Cretaceous. Cretac. Res. 21, 281–314.

TE D

794

SC

791

Maisey, J.G., 2011. Northeastern Brazil: out of Africa?, in: Carvalho, I.S., Srivastava,

799

N.K., Strohschoen Jr., O., Lana, C.C. (Eds.), Paleontologia: Cenários de Vida.

800

Interciência, Rio de Janeiro, pp. 545–559.

802 803

Mannion, P.D., 2009. A rebbachisaurid sauropod from the Lower Cretaceous of the Isle of

Wight,

AC C

801

EP

798

England.

Cretac.

Res.

30,

521–526.

https://doi.org/10.1016/j.cretres.2008.09.005.

804

Mannion, P.D., Upchurch, P., Hutt, S., 2011. New rebbachisaurid (Dinosauria:

805

Sauropoda) material from the Wessex Formation (Barremian, Early Cretaceous),

806

Isle

807

https://doi.org/10.1016/J.CRETRES.2011.05.005.

of

Wight,

United

Kingdom.

Cretac.

Res.

32,

774–780.

808

32

ACCEPTED MANUSCRIPT 809

Mannion, P.D., Upchurch, P., Schwarz, D., Wings, O., 2019. Taxonomic affinities of

810

the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania:

811

phylogenetic and biogeographic implications for eusauropod dinosaur evolution.

812

Zool. J. Linn. Soc. 185, 784–909. https://doi.org/10.1093/zoolinnean/zly068.

815 816

RI PT

814

Mcintosh, J.S., 1990. Sauropoda, in: Weishampel, D.; Dodson, P.; Osmolska, H. (Ed.), The Dinosauria. University of California Press, pp. 345–401.

Medeiros, M., Schultz, C.L., 2004. Rayososaurus (Sauropoda, Diplodocoidea) no mesoCretáceo do norte-nordeste brasileiro. Rev. Bras. Paleontol. 7, 275–279.

SC

813

Medeiros, M.A., Arcanjo, S.H., Carvalho, I.S., Agostinha, A.P., Lindoso, R.M.,

818

Mendes, I.D., Sousa, E.P., Filho, J.F.C., Siqueira, W.S., 2015. Nova ocorrência de

819

Diplodocoidea na Bacia de São Luís (Cretáceo, Cenomaniano), norte do

820

Maranhão, in: 14° Simpósio de Geologia da Amazônia. Marabá, pp. 1–4.

M AN U

817

Medeiros, M.A., Corrêa-Martins, F.J., Silva Jr, J.R., Pontes, H., Vilas-Bôas, I., 1996. A

822

laje do Coringa (Ilha do Cajual-MA): depósitos conglomeráticos fossilíferos

823

contendo restos de dinossauros. Rev. Geol. 9, 123–129.

TE D

821

Medeiros, M.A., Freire, P.C., Pereira, A.A., Santos, R.A.B., Lindoso, R.M., Coêlho,

825

A.F. do A., Passos, E.B., Júnior, E.S.M., 2007. Another african dinosaur recorded

826

in the Eocenomanian of Brazil and a revision on the paleofauna of the Laje do

827

Coringa, in: Carvalho, I.D.S., Cassab, R. de C.T., Schwanke, C., Carvalho, M. de

829 830

AC C

828

EP

824

A., Fernandes, A.C.S., Rodrigues, M.A. da C., Carvalho, M.S.S. de, Arai, M., Oliveira, M.E.Q. (Eds.), Paleontologia: Cenários de Vida. Interciência, Rio de Janeiro, pp. 413–423.

831

Medeiros, M.A., Lindoso, R.M., Mendes, I.D., Carvalho, I.D.S., 2014. The Cretaceous

832

(Cenomanian) continental record of the Laje do Coringa flagstone (Alcântara

833

Formation), northeastern South America. J. South Am. Earth Sci. 53.

33

ACCEPTED MANUSCRIPT 834

https://doi.org/10.1016/j.jsames.2014.04.002.

835

Medeiros, M.A., Pontes, H., Vilas-Bôas, I., 1995. Ocorrência de fósseis de dinossauros

836

em um estrato Cenomaniano (Cretáceo Superior), na ilha do Cajual, Maranhão, in:

837

Reunião Anual da SBPC. São Luís, p. 431.

839

Medeiros, M.A., Schultz, C.L., 2002. A fauna dinossauriana da Laje do Coringa,

RI PT

838

Cretáceo Médio do Nordeste do Brasil. Arq. do Mus. Nac. 60, 155–162.

Medeiros, M.A., Schultz, C.L., 2001. Uma paleocomunidade de vertebrados do

841

Cretáceo médio, bacia de São Luís., in: Rossetti, D. de F., Góes, A.M.,

842

Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú-Grajaú. Museu

843

Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, Brasil, pp. 209–221.

844

Medeiros, M.A., Vilas-Bôas, I., 1999. Ocorrência de paleocomunidade contiental do

845

Cenomaniano (Cretáceo Superior) do Nordeste do Brasil, in: Jornadas Argentinas

846

de Paleontologia. Argentina, p. 18.

M AN U

SC

840

Moraes-Santos, H.M., Carvalho, I.S., 2001. Ocorrência de Pleurodira na Formação

848

Alcântara (Albiano-Cenomaniano), Bacia de São Luís, MA, in: Rossetti, D.F.,

849

Góes, A.M., Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú.

850

Museu Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, pp. 235–244.

851

Nopcsa, F., 1902. Notizen über cretacische Dinosaurier. Pt. 3. Wirbel eines

852

sudamerikanischen Sauropoden. Sitzungsberichte der Akad. der Wissenschaften zu

EP

AC C

853

TE D

847

Berlin, Math. Klasse 108–114.

854

Paz, J.D., Rossetti, D.F., 2001. Reconstrução paleoambiental da Formação Codó

855

(Aptiano), borda leste da Bacia do Grajaú, MA, in: Rossetti, D. de F., Góes, A.M.,

856

Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú. Museu

857

Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém, Brasil, pp. 77–100.

858

Pedrão, E., Arai, M., Carvalho, I.S., Santos, M.H.B., 1993. Palinomorfos da Formação

34

ACCEPTED MANUSCRIPT 859

Itapecuru - análise palinológica de uma amostra de superfície da Ponta do Farol,

860

São Luís - MA., Petrobras, Relatório Técnico1. Rio de Janeiro. Pereda Suberbiola, X., Torcida, F., Izquierdo, L.A., Huerta, P., Montero, D., Pérez, G.,

862

2003. First rebbachisaurid dinosaur (Sauropoda, Diplodocoidea) from the early

863

Cretaceous of Spain: paleobiogeographical implications. Bull. la Société

864

Géologique Fr. 174, 471–479.

RI PT

861

Pereira, A.A., Medeiros, M.A., 2008. A new Sclerorhynchiform (Elasmobranchii) from

866

the middle Cretaceous of Brazil. Rev. Bras. Paleontol. 11, 207–212.

867

https://doi.org/10.4072/rbp.2008.3.07.

SC

865

Rossetti, D.F., 2001. Arquitetura deposicional da Bacia de São Luís-Grajaú, in:

869

Rossetti, D.F., Góes, A.M., Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São

870

Luís-Grajaú. Ed. Museu Paraense Emílio Goeldi, Coleção Friedrich Katzer, Belém,

871

Brasil, pp. 31–46.

M AN U

868

Rossetti, D.F., Truckenbrodt, W., 1997. Revisão estratigráfica para os depósitos do

873

Albiano-Terciário Inferior(?) na Bacia de São Luís (MA), norte do Brasil. Bol.

874

Mus. Para. Emílio Goeldi (Série Ciências da Terra) 9, 29–41.

TE D

872

Salgado, L., Carvalho, I. de S., Garrido, A.C., 2006. Zapalasaurus bonapartei, un nuevo

876

dinosaurio saurópodo de La Formación La Amarga (Cretácico Inferior), noroeste

877

de Patagonia, Provincia de Neuquén, Argentina. Geobios 695–707.

AC C

EP

875

878

Salgado, L., Garrido, A., Cocca, S.E., Cocca, J.R., 2004. Lower Cretaceous

879

Rebbachisaurid sauropods from Cerro Aguada del León (Lohan Cura Formation),

880

Neuquén Province, Northwestern Patagonia, Argentina. J. Vertebr. Paleontol. 24,

881

903–912.

882

Sereno, P.C., Beck, A.L., Dutheil, D.B., Larsson, H.C.E., Lyon, G.H., Moussa, B.,

883

Sadleir, R.W., Sidor, C.A., Varricchio, D.J., Wilson, G.P., Wilson, J.A., 1999.

35

ACCEPTED MANUSCRIPT 884

Cretaceous sauropods from the Sahara and the uneven rate of skeletal evolution

885

among

886

https://doi.org/10.1126/SCIENCE.286.5443.1342.

888

Science

286,

1342–7.

Sereno, P.C., Wilson, J.A., Larsson, H.C.E., Dutheil, D.B., Sues, H.-D., 1994. Early Cretaceous Dinosaurs from the Sahara. Science 266, 267–271.

RI PT

887

dinosaurs.

Sereno, P.C., Dutheil, D.B., Larochene, M., Larsson, H.C.E., Lyon, G.H., Magwene,

890

P.M., Sidor, C.A., Varricchio, D.J., Wilson, J.A., 1996. Predatory Dinosaurs from

891

the Sahara and Late Cretaceous faunal differentiation. Science 272, 986–991.

892

Sereno, P.C., Wilson, J.A., Witmer, L.M., Whitlock, J.A., Maga, A., Ide, O., Rowe,

895 896 897 898

M AN U

894

T.A., 2007. Structural Extremes in a Cretaceous Dinosaur. PLoS One e1230. Szatimari, P., Françolin, J.B.L., Zanotto, O., Wolff, S., 1987. Evolução tectônica da margem equatorial brasileira. Rev. Bras. Geociências 180–188. Taylor, M.P., 2018. Xenoposeidon is the earliest known rebbachisaurid sauropod dinosaur. PeerJ 6:e5212. https://doi.org/DOI 10.7717/peerj.5212.

TE D

893

SC

889

Vilas-Bôas, I., Carvalho, I.S., 2001. Répteis marinhos (mosasauria e plesiosauria) do

900

Cretáceo Superior da Bacia de São Luís (Maranhão, Brasil), in: Rossetti, D.F.,

901

Góes, A.M., Truckenbrodt, W. (Eds.), O Cretáceo na Bacia de São Luís-Grajaú.

902

Museu Paraense Emílio Goeldi, Coleção Friedrich Katzer, pp. 223–233.

AC C

EP

899

903

Vilas-Bôas, I., Carvalho, I.S., Medeiros, M.A., Pontes, H., 1999. Dentes de

904

Carcharodontosaurus (Dinosauria, Tyrannosauridae [sic]) do Cenomaniano, Bacia

905

de São Luís (Norte do Brasil). Acad. Bras. Ciências 71, 846–847.

906

Whitlock, J.A., 2011. A phylogenetic analysis of Diplodocoidea (Saurischia:

907

Sauropoda). Zool. J. Linn. Soc. 161, 872–915. https://doi.org/10.1111/j.1096-

908

3642.2010.00665.x

36

ACCEPTED MANUSCRIPT 909 910

Wilson, J.A., 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zool. J. Linn. Soc. 217–276. Wilson, J.A., Allain, R., 2015. Osteology of Rebbachisaurus garasbae La Ibiricu vocat,

912

1954, a diplodocoid (Dinosauria, Sauropoda) from the early Late Cretaceous–aged

913

Kem Kem beds of southeastern Morocco. J. Vertebr. Paleontol. 33 pages.

RI PT

911

Wilson, J.A., Martinez, R.N., Alcober, O., 1999. Distal tail segment of a titanosaur

915

(Dinosauria, Sauropoda) from the Upper Cretaceous of Mendoza, Argentina. J.

916

Vertebr. Paleontol. 19, 591–594.

917

SC

914

Wilson, J.A., 1999. A nomenclature for vertebral laminae in sauropods and other saurischian

dinosaurs.

J.

Vertebr.

919

10.1080/02724634.1999.10011178.

Paleontol.

M AN U

918

19:4,

639-653.

doi:

Wilson J.A., D’Emic M.D., Ikejiri T., Moacdieh E.M., Whitlock J.A., 2011. A

921

nomenclature for vertebral fossae in sauropods and other saurischian dinosaurs.

922

PLoS ONE 6(2): e17114. doi:10.1371/journal.pone.0017114.

TE D

920

Xu, X., Upchurch, P., Mannion, P.D., Barrett, P.M., Regalado-Fernandez, O.R., Mo, J.,

924

Ma, J., Liu, H., 2018. A new Middle Jurassic diplodocoid suggests an earlier

925

dispersal and diversification of sauropod dinosaurs. Nat. Commun. 9, 2700.

926

https://doi.org/10.1038/s41467-018-05128-1.

928 929 930 931

AC C

927

EP

923

Captions

Fig. 1. Location of Itapeua beach, Cajapió municipality, northern Maranhão

932

State, Brazil. The sauropod silhouette indicates the area where the material was

933

collected.

934

Fig. 2. Photographs of the excavation and geological context of Itapeuasaurus

935

cajapioensis at Cajapió municipality, northern Maranhão State. A) View of the Itapeua 37

ACCEPTED MANUSCRIPT 936

beach during the removal of the material between tidal cycles; B) Section of an outcrop

937

of the Alcântara Formation (São Luís Basin) at Itapeua beach revealing reddish/greenish

938

pelitic deposits. Fig. 3. Holotype of I. cajapioensis. Dorsal vertebra (UFMA1.10.1960-01) in

940

anterior (A), posterior (B), right lateral (C) and latero-ventral views (D). The scale bar

941

represents 10 cm.

RI PT

939

Fig. 4. Holotype of I. cajapioensis. Dorsal vertebra (UFMA1.10.1960-01) in

943

anterior (A) and detail of the right base of the neural spine (B) views. The scale bar

944

represents 5 cm.

SC

942

Fig. 5. Holotype of I. cajapioensis. Anterior caudal vertebra (UFMA 1.10.1960-

946

03) in anterior (A), posterior (B) and left lateral (C) views. The scale bar represents 5

947

cm.

M AN U

945

Fig. 6. Holotype of I. cajapioensis. Anterior caudal vertebra (UFMA 1.10.1960-

949

04) in anterior (A), posterior (B) and right lateral (C) views. The scale bar represents 5

950

cm.

TE D

948

Fig. 7. Holotype of I. cajapioensis. Anterior caudal vertebra (UFMA 1.10.1960-

952

05) in anterior (A), posterior (B) and right lateral (C) views. The scale bar represents 5

953

cm.

Fig. 8. Holotype of I. cajapioensis. Middle caudal vertebra (UFMA 1.10.1960-

AC C

954

EP

951

955

07) in anterior (A), posterior (B) and left lateral (C) views. The scale bar represents 5

956

cm.

957 958

Fig. 9. Holotype of I. cajapioensis. Middle caudal vertebra (UFMA 1.10.196008) in anterior (A) and right lateral posterior (B) views. The scale bar represents 5 cm.

959

Fig. 10. Phylogenetic relationship among Neosauropoda, including the results

960

for Itapeuasaurus cajapioensis. The diagram reflects a strict consensus of 334 most

38

ACCEPTED MANUSCRIPT 961

parsimonious trees of 282 steps (MPTs). Abbreviations: c, characters; CI, consistency

962

index; MPT, most parsimonious trees; RI, retention index; t, taxa; TL, tree length. Fig. 11. Phylogenetic relationship among Neosauropoda based on agreement

964

subtree produced in TNT. The resulting topology shows Itapeuasaurus cajapioensis

965

grouped together with members of Nigersaurinae.

RI PT

963

Fig. 12. Paleoenvironmental context of Itapeuasaurus cajapioensis. In the

967

background, the Equatorial Atlantic Ocean had already represented a selective barrier

968

on the paleocommunities from the Northeastern Brazil and Northern Africa. Art by

969

Deverson Pepi.

971

Table 1. Measurements of the holotype of Itapeuasaurus cajapioensis. (in mm).

M AN U

970

SC

966

An ‘*’ indicates an incomplete measurement.

972

TE D

Anatomical Abbreviations

973 974 975 976

acpl, anterior centroparapophyseal lamina; cprf, centroprezygapophyseal fossa; di,

diapophysis;

978

centroprezygapophyseal lamina; med.sprl, medial spinoprezygapophyseal lamina; nc,

979

neural

980

centrodiapophyseal fossa; pcdl, posterior centrodiapophyseal lamina; pf, pneumatic

981

fossa; pfl, pneumatic fossa lamina; prcdf, prezygapophyseal centrodiapophyseal fossa,

982

prcdfl,

983

prezygodiapophyseal

984

prezygodiapophyseal lamina; prsl, prespinal lamina; prpl, prezygoparapophyseal

985

lamina; prz, prezygapophysis; posl, postspinal lamina; poz, postzygapophysis; spdl,

986

spinodiapophyseal

987

spinoprezygapophyseal lamina; spzal, spinopostzygapophyseal accessory lamina; s-

ns,

neural

AC C

canal;

cdf,

EP

977

prezygapophyseal

centrodiapophyseal

spine;

pa,

lamina;

parapophysis;

centrodiapophyseal

centrodiapophyseal

sprf,

fossa;

fossa

med.cprl,

pacdf,

fossa

parapophyseal

lamina;

accessory

spinoprezygapophyseal

medial

lamina;

fossa;

prcdfal, prdl,

sprl,

39

ACCEPTED MANUSCRIPT 988

cprf-d, subfossa centroprezygapophyseal dorsal; tp, transverse process; tprl,

989

intraprezygapophyseal lamina.

AC C

EP

TE D

M AN U

SC

RI PT

990

40

ACCEPTED MANUSCRIPT

Neural Neural Neural Neural Neural Neural arch, arch, spine, spine, canal canal greatest height greatest height width height transverse transverse width width UFMA.10.1960-01 135,5* 240* 46,9 45,8 UFMA.10.1960-03 82,9 130,5 112,7* 260* 110 78,4 400* 26,8 21,06 UFMA.10.1960-04 82,2* 118,8* 113,6* 190* 63,3 27,1* 31,6 UFMA.10.1960-05 82,4 120,1 100,6* 104,2 49,2 37,5 130* 30,7 21,03 UFMA.10.1960-07 95,9* 47,9* 95,4* 48,1 40,4 9,1 170* 22,5 27,4 UFMA.10.1960-08 111,8* 58,6 87,5 33 38,6 17,4 12,7 Table 1. Measurements of the holotype of Itapeuasaurus cajapioensis gen. et sp. nov. (in mm). An ‘*’ indicates an incomplete measurement.

M AN U

SC

RI PT

Centrum height

TE D

Centrum width

EP

Centrum length

AC C

Specimen