Applied Mathematics and Computation 222 (2013) 553–558
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
A note on higher-order symmetric duality T.R. Gulati, Khushboo Verma ⇑ Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
a r t i c l e
i n f o
Keywords: Wolfe and Mond–Weir type higher-order dual Higher-order invexity Symmetric duality Efficient solution
a b s t r a c t In this paper, a pair of Wolfe type higher-order symmetric dual multiobjective programs is formulated. Strong and converse duality theorems are established under invexity assumptions. Duality relations for Mond–Weir type dual models have also been obtained under pseudoinvexity assumptions. Ó 2013 Elsevier Inc. All rights reserved.
1. Introduction Mangasarian [14] introduced the concept of second and higher-order duality in nonlinear problems. This motivated several authors [2,6,8–10,13] in this field. One practical advantage of second and higher order duality is that it provides tighter bounds for the value of the objective function of the primal problem when approximations are used because there are more parameters involved. Arana et al. [4] have discussed Kuhn–Tucker and Fitz–John type necessary and sufficient conditions and duality for a multiobjective problem. Mond and Zhang [15] and Yang et al. [17] have discussed multiobjective higher-order symmetric duality under invexity assumptions. Chen [6] studied higher-order symmetric duality for multiobjective nondifferentiable programming problems by introducing higher-order F-convexity. Recently, Nahak and Padhan [16] have presented higher order symmetric dual programs for multiobjective problems. In the literature strong and converse duality theorems have been established assuming conditions on known quantities. How for Wolfe ever, in strong and converse duality theorems in [16] an assumption involves the unknown lagrange multiplier a and c for Mond–Weir type symmetric duals. In this note we establish type symmetric duals, and the lagrange multipliers a these results under the assumptions on the lines of [1,5,7–9,11,12] involving known quantities. 2. Preliminaries Consider the following multiobjective programming problem:
ðPÞ Minimize FðxÞ ¼ fF 1 ðxÞ; F 2 ðxÞ; . . . ; F k ðxÞg;
x2X
where F : Rn ! Rk and X # Rn . The following convention for vector inequalities will be used: If a; b 2 Rn , then a=b () ai =bi ; i ¼ 1; 2; . . . ; n; a=b () a=b and a – b; a > b () ai > bi ; i ¼ 1; 2; . . . ; n. Definition 2.1. A point x 2 X is said to be an efficient solution of (P) if there exists no x 2 X such that FðxÞ 6 Fð xÞ. Definition 2.2. A function F : Rn ! Rk is said to be higher-order invex at u 2 Rn with respect to g : Rn Rn ! Rn and h : Rn Rn ! R, if for all ðx; pÞ 2 Rn Rn and e 2 Rk ⇑ Corresponding author. E-mail addresses:
[email protected] (T.R. Gulati),
[email protected] (K. Verma). 0096-3003/$ - see front matter Ó 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.07.064
554
T.R. Gulati, K. Verma / Applied Mathematics and Computation 222 (2013) 553–558
FðxÞ FðuÞ = gT ðx; uÞ rx FðuÞ þ ðrp hðu; pÞÞe þ hðu; pÞ pT rp hðu; pÞ e:
Definition 2.3. A function F : Rn ! Rk is said to be higher-order pseudoinvex at u 2 Rn with respect to g : Rn Rn ! Rn and h : Rn Rn ! R, if for all ðx; pÞ 2 Rn Rn and e 2 Rk
gT ðx; uÞ½rx FðuÞ þ ðrp hðu; pÞÞe = 0 ) FðxÞ FðuÞ ½hðu; pÞ þ pT rp hðu; pÞe = 0: Let f : Rn Rm # Rk ; g : Rn Rm Rn # R e ¼ ð1; 1; . . . ; 1ÞT 2 Rk .
and
h : Rn Rm Rm # R
be
differentiable
functions,
p 2 Rm ; r 2 Rn
and
3. Wolfe type symmetric duality We now establish duality theorems for the following pair of Wolfe type higher order multiobjective problems. Primal problem (WHP)
Minimize ðLðx; y; pÞ ¼ f ðx; yÞ þ ½hðx; y; pÞ pT rp hðx; y; pÞe yT ½ry ðkT f Þðx; yÞ þ rp hðx; y; pÞe
ð1Þ
subject to
ry ðkT f Þðx; yÞ þ rp hðx; y; pÞ50;
ð2Þ
k > 0; kT e ¼ 1:
ð3Þ
Dual problem (WHD) Maximize Mðu; v ; rÞ ¼ f ðu; v Þ þ ½gðu; v ; rÞ rT rr gðu; v ; rÞe uT ½rx f ðu; v Þ þ rr gðu; v ; rÞe
ð4Þ
subject to
rx ðkT f Þðu; v ÞÞ þ rr gðu; v ; rÞ=0; k > 0;
kT e ¼ 1:
ð5Þ ð6Þ
k will be denoted by ðWHDÞk . Any problem, say (WHD), in which k is fixed to be Theorem 3.1 [16] Weak duality. Let ðx; y; k; pÞ be feasible for the primal problem (WHP) and ðu; v ; k; rÞ be feasible for the dual problem (WHD). Let (i) (ii) (iii) (iv)
f ð:; v Þ be higher-order invex at u with respect to g1 and gðu; v ; rÞ, f ðx; :Þ be higher-order invex at y with respect to g2 and hðx; y; pÞ, g1 ðx; uÞ þ u=0 and g2 ðv ; yÞ þ y=0.
Then
Lðx; y; pÞiMðu; v ; rÞ: ; Þ be an efficient solution of (WHP). Suppose that k; p x; y Theorem 3.2 (Strong duality). Let ð (i) (ii) (iii) (iv) (v)
rpp hðx; y; pÞ is nonsingular, Þ; i ¼ 1; . . . ; kg is linearly independent, the set fry fi ð x; y R spanfry fi ð Þ; i ¼ 1; . . . ; kg n f0g x; y rp hðx; y; pÞ þ ry hðx; y; pÞ ryy ðkT f Þðx; yÞp ¼0)p ¼ 0 and rp hðx; y; pÞ þ ry hðx; y; pÞ ryy ðkT f Þðx; yÞp ; 0Þ ¼ gð ; 0Þ; rx hð ; 0Þ ¼ rr gð ; 0Þ; ry hð ; 0Þ ¼ rp hð ; 0Þ. hð x; y x; y x; y x; y x; y x; y
Then ; k; r ¼ 0Þ is feasible for (WHD) and (I) ð x; y ; p Þ ¼ Mð ; r Þ. (II) Lðx; y x; y ; Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of ðWHPÞk and ðWHDÞk , then ð x; y k; r ¼ 0Þ is an efficient solution of ðWHDÞk .
555
T.R. Gulati, K. Verma / Applied Mathematics and Computation 222 (2013) 553–558
Remark 3.1. In the above theorem assumptions (iii) and (iv) are on the lines of [1,7–9]. These replace the assumption
ry f ðx; yÞða ðaT eÞÞ ½rp hðx; y; pÞ þ ry hðx; y; pÞðaT eÞ þ ryy ðkT f Þðx; yÞðaT eÞp ¼ 0 ) p ¼ 0; involving the unknown Lagrange multiplier a in Theorem 3.2 in [16]. ; Þ is an efficient solution for (WHP), by the Fritz–John necessary optimality conditions [3,14], there exist k; p Proof. Since ð x; y
a 2 Rk ; b 2 Rm ; x 2 Rk and l 2 R, such that the following conditions are satisfied: rx ðaT f Þðx; yÞ þ rx hðx; y; pÞðaT eÞ þ rxy ðkT f Þðx; yÞðb ðaT eÞyÞ þ rpx hðx; y; pÞðb ðaT eÞðp þ yÞÞ ¼ 0;
ð7Þ
ry f ðx; yÞða ðaT eÞkÞ þ ry hðx; y; pÞðaT eÞ þ ryy ðkT f Þðx; yÞðb ðaT eÞyÞ rp hðx; y; pÞðaT eÞ ; p Þðb ðaT eÞðp þy ÞÞ ¼ 0; þ rpy hðx; y
ð8Þ
rpp hðx; y; pÞðb ðaT eÞðp þ yÞÞ ¼ 0;
ð9Þ
ÞðaT eÞ þ bT ry f ðx; y Þ x þ le ¼ 0; yT ry f ðx; y
ð10Þ
Þ þ rp hðx; y ; p ÞÞ ¼ 0; bT ðry ðkT f Þðx; y
ð11Þ
xT k ¼ 0;
ð12Þ
ða; b; xÞ 0; ða; b; x; lÞ – 0;
ð13Þ
Since k > 0 and x = 0, Eq. (12) implies
x ¼ 0:
ð14Þ
Using hypothesis (i) in Eq. (9) we get
þy Þ; b ¼ ðaT eÞðp
ð15Þ
Now, we claim that a 0. Indeed, if a ¼ 0, then (15) gives b ¼ 0 and so Eqs. (10) and (14) imply ða; b; x; lÞ ¼ 0, a contradiction to (13). Thus a 0 or
aT e > 0:
l ¼ 0. Therefore ð16Þ
Eqs. (15) and (16), reduce Eq. (8) to
rp hðx; y; pÞ þ ry hðx; y; pÞ ryy ðkT f Þðx; yÞp ¼
ða ðaT eÞkÞ Þg: fry f ðx; y aT e
Using hypothesis (iii) and (iv), the above relation gives
¼ 0: p
ð17Þ
Therefore in view of Eq. (15) and Assumption (v), Eq. (8) gives
Þða ðaT eÞkÞ ¼ 0: ðry f Þðx; y Since the set fry fi ; i ¼ 1; . . . ; kg is linearly independent, the above equation implies
a ¼ ðaT eÞk:
ð18Þ
Using (15)–(18) in (7), we get
rx ðkT f Þðx; yÞ þ rr gðx; y; 0Þ ¼ 0:
ð19Þ
; h; k; r ¼ 0Þ is a feasible solution for the dual problem (WHD). Also, from Eqs. (11), (15), (16) and (17), we get Thus ð x; y
T ½ry ðkT f Þðx; y Þ þ rp hðx; y ; 0Þ ¼ 0: y
ð20Þ
Hypothesis (v) and Eqs. (19) and (20) leads to the equality of the two objective function values. Using weak duality, it can be ; h; ¼ 0Þ is an efficient solution of ðWHDÞk . h k; p easily shown that ð x; y ; v ; k; r Þ be an efficient solution of (WHD). Suppose that Theorem 3.3 (Converse Duality). Let ðu ; v ; r Þ is nonsingular, (i) rrr gðu ; v Þ; i ¼ 1; . . . ; kgis linearly independent, (ii) the set fru g i ðu
556
T.R. Gulati, K. Verma / Applied Mathematics and Computation 222 (2013) 553–558
; v ; r Þ þ ru hðu ; v ; r Þ ruu ð ; v Þr R spanfru g i ðu ; v Þ; i ¼ 1; . . . ; kg n f0g (iii) rr hðu kT gÞðu ; v ; gÞ þ ru gðu ; v ; r Þ ruu ð ; v Þr ¼ 0 ) r ¼ 0 and (iv) rr gðu kT gÞðu ; v ; 0Þ ¼ gðu ; v ; 0Þ; rx hðu ; v ; 0Þ ¼ rr gðu ; v ; 0Þ; ry hðu ; v ; 0Þ ¼ rp hðu ; v ; 0Þ. (v) hðu Then ; v ¼ 0Þ is feasible for (WHP) and ; k; p (I) ðu ; p Þ ¼ Mðu ; v ; rÞ. (II) Lðu; v ; v ; ¼ 0Þ is an Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of ðWHPÞk and ðWHDÞk , then ðu k; p efficient solution of ðWHPÞk . Proof. Follows on the lines of Theorem 3.2. h 4. Mond–Weir type symmetric duality We now establish duality theorems for the following pair of Mond–Weir type higher order multiobjective problems. Primal problem (MWHP) Minimize
Rðx; y; pÞ ¼ f ðx; yÞ þ ½hðx; y; pÞ pT rp hðx; y; pÞe
ð21Þ
subject to
ry ðkT f Þðx; yÞ þ rp hðx; y; pÞ 5 0;
ð22Þ
yT ½ry ðkT f Þðx; yÞ þ rp hðx; y; pÞ = 0;
ð23Þ
k > 0;
kT e ¼ 1:
ð24Þ
Dual problem (MWHD) Maximize
Sðu; v ; rÞ ¼ f ðu; v Þ þ ½gðu; v ; rÞ r T rr gðu; v ; rÞe
ð25Þ
subject to
rx f ðu; v Þ þ rr gðu; v ; rÞ = 0;
ð26Þ
uT ½rx ðkT f Þðu; v Þ þ rr gðu; v ; rÞ 5 0;
ð27Þ
k > 0;
kT e ¼ 1;
ð28Þ
Any problem, say (MWHD), in which k is fixed to be k will be denoted by ðMWHDÞk . Theorem 4.1 ( [16] Weak duality). Let ðx; y; k; pÞ be feasible for the primal problem (MWHP) and ðu; v ; k; rÞ be feasible for the dual problem (MWHD). Let (i) f ð:; v Þ be higher-order pseudoivexinvex at u with respect to g1 and gðu; v ; rÞ, (ii) f ðx; :Þ be higher-order pseudoinvex at y with respect to g2 and hðx; y; pÞ, (iii) g1 ðx; uÞ þ u = 0 and (iv) g2 ðv ; yÞ þ y = 0. Then
Rðx; y; pÞiSðu; v ; rÞ: ; Þ be an efficient solution of (MWHP). Suppose that Theorem 4.2 (Strong duality). Let ð k; p x; y (i) (ii) (iii) (iv) (v)
rpp hðx; y; pÞ is nonsingular, Þ; i ¼ 1; . . . ; kg is linearly independent, the set fry fi ð x; y ry ðkT f Þðx; yÞ þ rp hðx; y; pÞ – 0, Þ þ rp hð ; p Þ ¼ 0 ) p ¼ 0 and pT ½ry ð kT f Þð x; y x; y ; 0Þ; rx hð ; 0Þ ¼ rr gð ; 0Þ ¼ 0; ry hð ; 0Þ ¼ rp hð ; 0Þ ¼ 0. hðx; y; 0Þ ¼ gð x; y x; y x; y x; y x; y
557
T.R. Gulati, K. Verma / Applied Mathematics and Computation 222 (2013) 553–558
Then ; y ; k; r ¼ 0Þ is feasible for (MWHD) and (I) ðx ; y ; p Þ ¼ Sð ; r Þ. (II) Rðx x; y ; Also, if the hypotheses of Theorem 4.1 are satisfied for all feasible solutions of ðMWHPÞk and ðMWHDÞk , then ð k; r ¼ 0Þ x; y is an efficient solution of ðMWHDÞk . Remark 4.1. In the above theorem assumption (iii) and (iv) are on the lines of [5,11,12]. These replace the assumption
ry f ðx; yÞða ckÞ crp hðx; y; pÞ þ ½ry hðx; y; pÞ þ ryy ðkT f Þðx; yÞpðaT eÞ ¼ 0 ) p ¼ 0; involving the unknown lagrange multipliers a and c in Theorem 4.2 in [16]. ; y ; Þ is an efficient solution for (MWHP), by the Fritz–John necessary optimality conditions [3,14], there Proof. Since ðx k; p k exist a 2 R ; b 2 Rm ; x 2 Rk and c; l 2 R, such that the following conditions are satisfied:
rx ðaT f Þðx; yÞ þ rx hðx; y; pÞðaT eÞ þ rxy ðkT f Þðx; yÞðb cyÞ þ rpx hðx; y; pÞðb cy ðaT eÞpÞ ¼ 0;
ð29Þ
ry f ðx; yÞða ckÞ þ ry hðx; y; pÞðaT eÞ þ ryy ðkT f Þðx; yÞðb cyÞ crp hðx; y; pÞ þ rpy hðx; y; pÞðb cy ðaT eÞpÞ ¼ 0;
ð30Þ
rpp hðx; y; pÞðb cy ðaT eÞpÞ ¼ 0;
ð31Þ
ry f ðx; yÞðb cyÞ x þ le ¼ 0;
ð32Þ
Þ þ rp hðx; y ; p ÞÞ ¼ 0; bT ðry ðkT f Þðx; y
ð33Þ
cyT ðry ðkT f Þðx; yÞ þ rp hðx; y; pÞÞ ¼ 0;
ð34Þ
xT k ¼ 0;
ð35Þ
ða; b; c; xÞ 0; ða; b; c; x; lÞ – 0;
ð36Þ
k > 0 and x=0, Eq. (35) implies Since
x ¼ 0:
ð37Þ
Using hypothesis (i) in (31), we get
þ ðaT eÞp : b ¼ cy
ð38Þ
Now, we claim that a 0. Indeed, if a ¼ 0, then (38) yields
; b ¼ cy then Eqs. (32), (37) and (38) imply
ð39Þ
l ¼ 0. Also from Eqs. (39) and (30), we obtain
c½ry ðkT f Þðx; yÞ þ rp hðx; y; pÞ ¼ 0; which along with hypothesis (iii) gives c ¼ 0 and so from (39), b ¼ 0. Therefore ða; b; c; x; lÞ ¼ 0, a contradiction to Eq. (7). Thus a 0 or
aT e > 0:
ð40Þ
Adding Eqs. (33) and (34), we get
Þ½ry ðkT f Þðx; y Þ þ rp hðx; y ; p Þ ¼ 0; ðb cy
ð41Þ
Further, using (38) and (40) and hypothesis (iv) in (41), we have
¼ 0; p
ð42Þ
Therefore in view of Eqs. (39), (42) and hypothesis (v), Eq. (30) gives
ry f ðx; yÞða ckÞ ¼ 0: Since the set fry fi ; i ¼ 1; . . . ; kg is linearly independent, the above equation implies
a ¼ ck:
ð43Þ
558
T.R. Gulati, K. Verma / Applied Mathematics and Computation 222 (2013) 553–558
As k > 0 and a 0,
c > 0:
ð44Þ
This together with Eqs. (38), (42), (43), hypothesis (v) and Eq. (29) give
rx ðkT f Þðx; yÞ ¼ 0;
ð45Þ
xT ½rx ðkT f Þðx; y Þ ¼ 0:
ð46Þ
and
; x; y k; r ¼ 0Þ is a feasible solution for the dual problem (MWHD). Also, hypothesis (v) leads to the equality of the two Thus ð ; k; r ¼ 0Þ is an efficient solution of objective function values. Using weak duality it can be easily shown that ð x; y ðMWHDÞk . h ; v ; k; rÞ be an efficient solution of (MWHD). Suppose that Theorem 4.3 (Converse Duality). Let ðu (i) (ii) (iii) (iv) (v)
; v ; rÞ is nonsingular, rpp hðu ; v Þ; i ¼ 1; . . . ; kg is linearly independent, the set fru g i ðu ; v Þ þ rr gðu ; v ; p Þ – 0, ru ðkT gÞðu ; v ; v Þ þ rr gðu ; rÞ ¼ 0 ) r ¼ 0 and rT ½ru ð kT gÞðu ; v ; 0Þ ¼ gðu ; v ; 0Þ; rx hðu ; v ; 0Þ ¼ rr gðu ; v ; 0Þ ¼ 0; ry hðu ; v ; 0Þ ¼ rp hðu ; v ; 0Þ ¼ 0. hðu
Then ; v ; ¼ 0Þ is feasible for (MWHP) and (I) ðu k; p ; v Þ ¼ Sðu ; v ; p ; r Þ. (II) Rðu ; v ; Also, if the hypotheses of Theorem 4.1 are satisfied for all feasible solutions of ðMWHPÞk and ðMWHDÞk , then ðu k; r ¼ 0Þ is an efficient solution for ðMWHPÞk . Proof. Follows on the lines of Theorem 4.2. h Acknowledgements The authors are thankful to a reviewer for his suggestions. The second author is also thankful to the MHRD, Government of India, for providing financial support. References [1] I. Ahmad, Z. Husain, On multiobjective second-order symmetric duality with cone constraints, Eur. J. Oper. Res. 204 (2010) 402–409. [2] I. Ahmad, Z. Husain, Sarita Sharma, Higher-order duality in non-differentiable multiobjective programming, Numer. Func. Anal. Opt. 28 (2007) 989– 1002. [3] B.D. Craven, Lagrangian conditions and quasiduality, Bull. Austral. Math. Soc. 16 (1977) 587–592. [4] M. Arana, A. Rufin, R. Osuna, G. Ruiz, ’Pseudoinvexity, optimality conditions and efficiency in multiobjective problems; duality, Nonlinear Anal. TMA 68 (2008) 24–34. [5] S. Chandra, V. Kumar, A note on pseudo-invexity and symmetric duality, Eur. J. Oper. Res. 105 (1998) 626–629. [6] X. Chen, Higher order symmetric duality in non-differentiable multiobjective programming problems, J. Math. Anal. Appl. 290 (2004) 423–435. [7] T.R. Gulati, Geeta, On some symmetric dual models in multiobjective programming, Appl. Math. Comput. 215 (2009) 380–383. [8] S.K. Gupta, N. Kailey, Multiobjective second-order mixed symmetric duality with a square root term, Appl. Math. Comput. 218 (2012) 7602–7613. [9] S.K. Gupta, N. Kailey, A note on multiobjective second-order symmetric duality, Eur. J. Oper. Res. 201 (2010) 649–651. [10] S.K. Gupta, N. Kailey, M.K. Sharma, Higher-order ðF; a; q; dÞ-convexity and symmetric duality in multiobjective programming, Comput. Math. Appl. 60 (2010) 2373–2381. [11] S.H. Hou, X.M. Yang, On second-order symmetric duality in nondifferentiable programming, J. Math. Anal. Appl. 255 (2001) 491–498. [12] Mohamed Abd El-Hady Kassem, Multiobjective nonlinear second order symmetric duality with ðK; FÞ-pseudoconvexity, Appl. Math. Comput. 219 (2012) 2142–2148. [13] D.S. Kim, H.S. Kang, Y.J. Lee, Y.Y. Seo, Higher-order duality in multiobjective programming with cone constraints, Optimization 59 (1) (2010) 29–43. [14] O.L. Mangasarian, Second and higher-order duality in nonlinear programming, J. Math. Anal. Appl. 51 (1975) 607–620. [15] B. Mond, J. Zhang, Higher-order invexity and duality in mathematical programming, in: J. P. Crouzeix, et al. (Eds.), Generalized Convexity, Generalized Monotonicity: Recent Results, Kluwer Academic, Dordrecht, 1998, pp. 357–372. [16] C. Nahak, S.K. Padhan, Higher-order symmetric duality in multiobjective programming problems under higher-order invexity, Appl. Math. Comput. 218 (2011) 1705–1712. [17] X.M. Yang, X.Q. Yang, K.L. Teo, Higher-order symmetric duality in multiobjective mathematical programming with invexity, J. Ind. Manag. Optim. 4 (2008) 335–391.