A note on permutations with fixed pattern

A note on permutations with fixed pattern

JOURNAL OF COMBINATORIALTHEORY (A) 19, 237-239 (1975) Note A Note on Permutations with Fixed Pattern MORTON ABRAMSON York University, Toronto, Onta...

105KB Sizes 2 Downloads 97 Views

JOURNAL OF COMBINATORIALTHEORY (A)

19, 237-239 (1975)

Note A Note on Permutations with Fixed Pattern MORTON ABRAMSON

York University, Toronto, Ontario, Canada Communicated by the Managing Editors Received F e b r u a r y 15, 1974

U s i n g the t e r m i n o l o g y o f C a d i t z [1], a p e r m u t a t i o n e~, % .... , % o f 1, 2 . . . n has p a t t e r n n ~ , n , ..... n , for fixed positive integers n , , n = nl -k "'" -}- n , , if q<%<...<%~, Enl+...+n~:+l ~

(1)

Enx+...+ni+ 2 ~ "'" ~ Enl+...+ni+ni+l ~

i = 1, 2,..., r - - 1,

and %1+n~+...+,,

>

%1+,,+...+,,+a,

i =

1, 2 , . . . , r - - 1.

(2)

D e n o t e b y A ( n l , n2 .... , nr) the n u m b e r o f p e r m u t a t i o n s o f 1, 2,..., n with p a t t e r n n l , n ~ ..... n r . A n explicit expression for A ( n i , n2 ..... n , ) is o b t a i n e d b y Carlitz [1, f o r m u l a (1.4)]. I n this note we give a simpler, s h o r t e r p r o o f t h a n t h a t o f Carlitz o f the f o r m u l a for A ( n ~ , n2 ,..., nr). I n fact, we consider a s o m e w h a t m o r e general p r o b l e m . T h e E u l e r i a n n u m b e r , as a special case, is n o t e d later. Permutations withfixed type. A p e r m u t a t i o n q , % ,..., % o f 1, 2 ..... n has t y p e n ~ , n2 ..... n , for fixed positive integers n i , n = nl + "'" -+- n , , if c o n d i t i o n (1) holds. A f a / / i s a p a i r E, > ~+~. D e n o t e b y A k ( n ~ , n2 ..... nr) the n u m b e r o f p e r m u t a t i o n s o f 1, 2 ..... n with type nx, n~ .... , n, c o n t a i n i n g precisely r - - 1 - - k falls. I n the special case k = 0, A o ( n l , n~ .... , nr) = A ( n l , n2 ,..., nr). W e n o w find a n expression for Ak(na , n2 ..... n,). The n u m b e r o f p e r m u t a t i o n s o f t y p e n l , n2 .... , n, is n ! / n ~ ! "'" n r ! , the same as the n u m b e r o f distributions o f n distinct objects into r distinct cells with n~ objects in cell i. C o n s i d e r the r - - 1 events, E,I+,~+..,+n~ <

%~+-2+...+-~+x,

Copyright 9 1975 by Academic Press, Inc. All rights of reproduction in any form reserved.

237

i =

1, 2 ..... r - - 1.

(3)

238

M O R T O N ABRAMSON

F r o m {1, 2,..., r -- 1} choose some (m -- 1)-combination 1 ~ Jl < J2 < "'" < j m - ~ < j ~ = r and consider the complementary ( r - re)combination 1 ~ < / 1 < / 2 < " " < i r - m ~ < r - - 1 (i, belongs to the c o m p l e m e n t a r y combination if it does not belong to the ( m - 1)combination). Consider n o w those (r -- m) events o f events (3) which correspond to this particular (r -- m)-combination; i, corresponds to the i,th event of (3). The n u m b e r o f permutations with type n 1 ..... n~ satisfying these particular (r -- m) events (and possibly other such events) is n !Is I

! S 2!

"'"

Sm !

n = s1 §

,

"'" § sin,

(4)

where Sl = nl § n2 +

and fori=

"'" § n~,

1,2 ..... m - - l ,

(5)

S~+x = nj,+l -]- hi,+2 q- "'" + he,+1

(Jm = r).

This is because (4) counts the n u m b e r of permutations with type s l , s2 ,..., sm, hence satisfying (1) and also the particular (r -- m) events. N o w A ~ ( n l , nz ,..., n r ) i s the n u m b e r of permutations o f type n~, n2 ..... n~ satisfying precisely k of the events (3). Hence, by the principle of inclusion and exclusion, it follows that A'(n1'n2

.....

n~)='-~-'(--1)i( k +i i) ~n'/s'!s2!'''s'-'-i!'

(6)

i=O

where (5) with m = r -- k -- i defines the s , , and the second s u m m a t i o n is o v e r a l l 1 ~ J l < J 2 < "'" O.

The special case r-1

.4o(

1,

..... " , ) =

E (-1)' i=0

o f (6) is the formula obtained in [1, (1.4)]. Also, m a n y interesting applications are given in [1]. The case r = n, nl = n2 . . . . . nn = 1 o f (6), denoted by A ( n ; k ) , counts the n u m b e r o f permutations o f 1, 2,..., n with precisely n - - 1 -- k falls or precisely k rises; a rise is a pair Ei < Ei+I. In this case, (6) is

PERMUTATIONS WITH FIXED PATTERN

239

simplified by noting that the number of distributions of n distinct objects into m distinct cells with no cell empty is

y

n !/t 1! " " tm! = m ! S ( n ,

m)

~l+...+train

m--1

(--1)" ( in )(m -- u) '~,

(7)

~=9

with S(n, m) the familiar Stirling number of the second kind also defined Iby

~, S(n, m) x"/n ! = (e ~ - - 1)~/rn !

(S(n, m) = O, n < m).

(8)

~0

By (6), (7), and use of a simple identity, we obtain n--l--k

A(.; ~1 :

Z

(_1) i(k~k i) ( n - k - i ) ! S ( n ' n - k - i )

i=0 n--l--~

J=o

j

(n - k - j ) ~ ,

(9)

with the symmetric property A(n; k) = A(n; n - - 1 - - k). By (9), n--1

~,

A(n; k) y~ = k=0

i! S(n, i)(y -- 1)"-~,

t=1

and using (8), we obtain the known generating function x n n--I

1 + ~ 1 ~ . ~ A(n; k) y~ =

1-- y

e(~-l)x _ y

A(n; k) is the well-known Eulerian number; see [2] where E1 is counted as

an initial rise.

REFERENCES 1. L. CARLITZ, Permutations with prescribed pattern, Math. Nachr. 58 (1973), 31-53. 2. J, RIORDAN, " A n Introduction to Combinatorial Analysis," Wiley, New York, 1958.