Microelectron. Reliab., Vol. 32, No. 1/2, pp. 79-87, 1992. Printed in Great Britain.
0026-2714/92/$5.00 + .00 Pergamon Press plc
A NOTE ON RECURSIVE ESTIMATOR OF THE DENSITY FUNCTION WHICH IS NOT NECESSARILY CONTINUOUS M.M. EL-FAHHAM Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt (Received for publication 30 October 1990)
Summary:
Consider a sequence XI'X2 '''''Xn of independent, identically distributed random variables with unknown density function f, which with its first derivative are not necessarily continuous, and let .
fnCXl =
n
x-X
I-1/2 Z h l/2KCh-- l j=l
3
be the recursive kernel estimator of f. It will be shown, under certain additional regularity conditions on K and lh(n)], that, * ] = 0 (n-4/5 ) if f and f' are continuous, where as MISE [fn(X) MISE
[fnl(x) ] = 0(n -3/4) if f is continuous and f' is not and
MISE [f*2"(X)]: 0(n -I/2) if f and f' are not continuous.
Introduction: Consider a sequence XI,X2,...,X n of n independent, identically distributed random variables
(i.i.d.) with unknown density function
(d.f.) f(x). A class of density estimators, known as Kernel estimators, which has been widely studied by Parzen [i] and Rosenblatt [21 may be defined as follows: ^ n x-X --/)f (x) = (n h) -1 Z K( ,--7 n n j=l
,
Parzen has shown that if the Kernel function K(.) satisfies certain conditions,
including
I
K(y)dy = 1 and h = h(n) is a bounded and ^
nonincreasing function of n such that h(n) = 0(n-l), then f(x) is a mean squared error consistnet estimator of f(x) at all continuity points x of f. E.J. Wegman and H.I.Davies [2J considered a modified estimator of the form , (n2hn) _i/2 fn(X) -MI~ 32/I-2--F
n (hj).i/2 X-Xh~ ' ~ K( ). j=l j 79
(1)
80
M . M . EL-FAHHAM
They
established
tors
as w e l l
sure
invariance
as
In this form are
f
(x)
n
not
laws
the
logarithm
distribution
for d e n s i t y
results
using
estima-
the a l m o s t
principle. article
we s h a l l
for an u n k n o w n
use
iterated
the a s y m p t o t i c
necessarily
authors
of
discuss
d.f.
f(x)
continuous.
the m e a n
classes
which
As a
integrated
square
,(=ll
with
its
measure
of
error
given
~o
==== If
of e s t i m a t o r s first
of the
derivative
improvement,
many
by
2
: = :
[fi(=,
- f(-I
dx
(2)
-.
=in==
2
° = :
I=i(=l
-co
-
d= :
(,,
where B{f(x))
=
E
[fn(X)]
- f(x).
Hence 2
['fnC=,I = ~l~S~ [f~(=I] -,- (l-n>= I~(=I/
~s~
Consider baised
on
function
a recursive
the r a n d o m satisfying
Kernel
sample.
estimator
Assuming
the f o l l o w i n g
t sup IK(=~l <= X
K(.)
of
the
form
is a s o m e
(i) of
suitable
f Kernel
conditions:
,
lira IxK(×ll
= 0,
X --*+o~
(A) co
cc
-fc~ IK(x) Idx < o0 a n d h(n) to z e r o
is a s e q u e n c e as n tends
As s y m b o l s , are
f-co x 2 K ( x ) d x
of n o n i n c r e a s i n g
to
we s h a l l
and
positive
< co , constants
~ .
f~(x) as an estimator for f when o if f is c o n t i n u o u s b u t f' is not, then we
continuous,
as an e s t i m a t o r
use
for
converging
f and
f
(x) as an e s t i m a t o r n2
for
f when
f and take
f' f
(x) n1
f and
are not continuous.
Main
results: Theorem
!-
Assum
conditions
(A) a n d
nh
continuous
and
f"
is
n
that ~
K(.)
oo
square
as
is a B o r e l n ~
integrable,
~
function
, if
f(x)
satisfies , f'(x)
are
then
o
[If(xllF +~(nhl
-i
O
llg(t) ll = ; g ~ ( t ) d t
2
n
where
,
and Yn
=
n Z j=l
hl/2 3
n
[=h ~.lltK1/2¢tl/ j=l
] 2
4
tf"(=l/
2
+0(h;l]} ,
f'
Recursive estimator of the density function
~ h .~ If (n2h n) - i/2~n---~ B < ~ and (nhn)-I j[l
---+
0
as
81
n
---~ ~
,
then
and hence MIISE
~
In particular
MIISE
0
as
n ---~ ~
e
if h. = 0 (n-V), j=l,2,...,n; 3 [fn(X)] = 0(n Y-I) ÷ 0(n -4~)
X > 0, then
, 1
and hence the asymptotic optimum value Yo of y is -~ and then get minimum MIISE
Theorem 2.
[fn (x)~ = 0(n-4/5). o Suppose K(.) and h
If f(x) is continuous,
n
satisfy conditions of theorem i.
f' has finite points of discontinuity
(bl,b 2 .... ,b£) and f" is square integrable,
MIISE [fnl * Ix~] = C2{MllSE [fno * (x)]
then
+
4~( n 0 y 2 (]_ n -- ~ ha.)f [ f (y-t)g(t)dt] dy+O ~ ha.)}, n j=l 3 _~ _co n j=l 3 £ 0 < C2 < 1 , A = Z A2 , j=l 3
where
Aj
If
we
=
f' (bj)- f' (b;)
i_ n~ k3...~ n j=l
0
Tbe e s t i m a t i o n f n l ( x )
as
, j=l,2,...,n.
n ---~ ~ , then as
is c o n s i s t e n t
n ~
~ ,
in MIISE s e n s e , s p e c i a l l y
h3 = 0(n-3') ' j=l,2 ..... n, "!( > 0, then MIISE
if
[fnl(x)]=0(n'f-1)+0(n-3~()
and we get the asymptotic optimum value 70 of ~ is %, and hence minimum MIISE[f~I(X)~
Theorem 3.
= 0(n-3/4).
Let K(.) and h
n
satisfy conditions of theorem i.
If f has k(k > 0) points of discontinuity, -~ = a O < a I < a 2 < ... <
a k < ak+ 1 = co , and for each
i=l,...,k+l,
f' has Zi(£i > 0) points of d i s c o n t i n u i ~
ai_ 1 = b.lo < bil < bi2 < -.- < bi£ ' < b.1 = a.1 ' also i £i+i co co 2
I -co
If'tx) Idx < co
I
If"Ix) l dx < co
-co
then
Ml~sE [fn ~x~] < c 2 MiIS~ If x~] +
82
M . M . EL-FAHHAM o~ oo 2 n ,2 n + "-~'( ~ h.)f fy K(x)dx I dy 4 0( 1 ]:lhj)= n j=l 3 o k 6 = : 62 , 6 = f(a-) - f(a +) P i i i=l I i
where
k+l
£ +i l
i=l
j=l
i = i, .... k+l
If
n -1 ~ n j=l
h. ~ ]
CODSiste~t
0
and m i n i m u m
MIISE
Proof: theorem
as
in M I I S E
> 0, then M I I S E
1 and
and
~ij = f'(b:j)
and
j = i, .... £.+i l
13
n ~
~ , then
sense.
In
the
= 0(n ~-I)
[f~2(x)]
= 0(n-i/2).
It is s u f f i c i e n t
- f' (bij + ) ,
.
estimation
particularif
[f~2(x)J
,
f
n2
hj = 0(n -~)
(x)
is
, j=l,2,...,n,
+ 0(n -~) and also we get ~o = ~
to prove
theorem
3 which
implies
2.
We can see
that co
~:s~ [fn21x)]-~/-o~ [f:ixl - f<×l:2 dx co ~- ~ / [(n2hn)-i/2 Z h -~ j=l
x-X.
n i:j2"(
oo (h2hn)-i = f [ -oo +2 ( n 2 h ) -i n
2 )
f(x)]
dx
3
n -i z x-X i Z h. EK (h ) + j=l ] i n
l=i
(b.h.)i ]
I '2 x-X. x-X / EK(~-~)K(h-~) i "j
-
X-X. -2f(x) ( n 2 h ) -I/ 2 n~ ( h ) -I/2EK( h ' ~ ) + f 2 ( x ) 3 d x . ~l j=l 3 3
(3)
First oo f
x-X. h-IEK2( h - ~ ) d x
= f
co co f
oo co = f / K2(t) f ( ~ - t h . ) d t d x -oo -co ]
-*
h:iK2(~.)f(y)dydx cc = f ¥2(t)dt+0(1) -co
•
(4)
Second co
x-X. co co h-!f(x)EK( .--r--])dx = f f(x)f K(t)f(x-thj)dtdx. ] n.3 -oo --co
/
(5)
At last n
z
co
x-X .
×-X
/ Chih I-1/2EK<@IEKC h----~Idx
i= J < j _co J 1 3 n co co = Z (hihj)I/2{f f ~ fo~ K(t)g(s) [f(x-thi)-f(x) ] . i=i < j -co [f
+ f(x-shj)]dt
dt
d s dx + f f f K(t)g(slf(x)[f
(6)
Recursive estimator of the density function
83
It is easy to see that the second term in the last equation is equal to n
co
oo
~n ~ hl/2 $
f (x) $ . . . .
j--I 3
K(t) f(x-th )dt dx ; 3
n hl/2 j=l 3
7j =
From (3) , (4) , (5) and (6) we get oo MISE [f~2(x)] = (n hn )-] )- i
f_ooK2(t) dt
n
+ 2(n~ hn
l=i < j -i
+ 2•n(n2h n)
1/2
oo
f-oo J(x,hi)J(x,hj)dx
(hih j)
n ~ oo ~ h I/2 I f K(t) f(x)f(x-thj)dt dx j=l 3 _~ _~
(n2hn)-l 7n2 f._~f2(x)d x - 2(n2hn)-l/2 j=lhl/2 j J'~ f(x)J(x,hjldx
_
- 2(n2hn )-1/2 7n f
f2(xldx + f
f2(x)dx+O((nhn I-l) ,
co where
J(x,h) = $ K(t) [f(x-th) - f(x)] dt . -co oe * MISE [fn2(X) ] = (nhn) -i I_~o K2(tldt
Then
n 0o + 2(n2 h )-i ~ (hihj)-i/2 f j(x,hi)J(x,hj)dx n l=i
2~n~hn~-l/2[1 - "%ln~h2-1/21 + [i-
~ h~./2 S fCx~JIx,hj~dx
j=l 3
_~
(n2hn)-I/27n]2 f~o f2 (x) dx + 0((n hn)-l) --co
By using HOlder's inequality we get MISE
2 2 [f~2(x)] ~ (n hn)-lltK(t) I + [l-(n2hn )-1/2~n~~2 I If(x) II n
+ 2(nZh )-i Z (hihj)+i/2 n l=i
J(x,hi) H llJ(x,hj)ll+0((n hn)-i ). (7)
By using Talylor series-like expansions for f satisfying conditions of our theorem a)
For
biJl_ 1 < x < b.131, bij2_ ] < x-th < biJ2, 1 -< Jl < li+l'
1 < J2 < li+l ' i=l,2,...,k+l f(x-th)-f(x)+th
t f'(x)-h 2 f (t~s)f"(x-sh)ds-o
0
'
Jl = J2
'
Jl < 92
,
Jl > J2
j-I =
~
7=Jl
(b.
17
- x + th)
~ i7
J~-l(biT- x + th) Z~iy 7=32
84
M . M . EL-FAmtAM b)
For b.1131_1. < x < bil]l. ~
bi2J2_l < x-th < b.1232.,I -< Jl -< lil+l'
i ~ J2 E ii2+i'I ~ i I ! k+l, i ~ i 2 ~ k+l, il~ i 2 ,
f(x-th)-f(x)+th
t f' (x)-h 2 / (t-s)f"(x-sh)ds o
=
i. il+l i2-i (i)
1£+i
Z
(b. -x+th) A. + Z Y= Jl ilY i]y y=il+l
~
92-1 i2-i ~- Z (bi2 ~- x +th)Ai2~/ Z. 6 ~(=J2 U=i 2
(ii)
o<
i. i2+i
i
(ii) -
Z Y=J2
(bi2y-x+th)Ai23.
-
Z
,-x+th)Zl/~
if
iI < i 2
il-]
I£+I
Z Y=i2+l
Z -x+th)A ~/'=i (by,f,
Jl -I -
(b
y'=l
,
il-i (bil Y
-
x
+
th) Ail Y
+
Z
y=l
6u
if i'l >
i2
u=i2
Let oo t = h 2 f K(t) f (t-s)f"(x-sh)dsdt , -oo < x < co , -oo o x-b. i .+i _ iy i Hiji(×,h)= Z A. f h x + th)K(t)dt + Y =j I~ -o~ (bi~ x-b k+1 i£+i YY' h + ~ ~ A., / (b , - x + th)K(t)dt ~(= i+l y'=l -~ G(x,h)
j-i Z Ai% ' f (bi3-x+th)K(t)dt y=l x-b. iy h i-I i£+i oo ~ ~ A , f (b , - x + th)K(t), y=l y'=l 77 x-b Y7' h
Hij2(x,h)=
-
bij_l
-
< x < bij ; j=l,2,...,li+ 1 , i=l,2,...,k+l, i-I
Vil (x,h)= U =i
Vi2(x,h) Where
= -
W(y) =
Further
6u{l-w(X-a~)} h
k x-a ~ • (5U W ( h ~ ) U=I
Y f -oc
V.(x,h) i
< x < a i-i
,
ai_ 1
= Hijl(X,h)
= Vil (×,h) + Vi2 (×,h) "
.,k+l, ""
< x < a. , i=l,...,k. i
, i=l,...,k+l
+ Hij2(x,h)
i=l, i'
K(t) dt , -~ < y < co
let , for j=l,...,li+l
Hij(x,h)
, ~
and
!
Recursive estimator of the density function Lena
1. lira 1 I G(x,h)dx = %(f t2K(t)dt) 2 • I (f"(x) 2dx. h÷0 h ~ -~o -co -~
Lemma 2. b..
x3
2
2
0
y
lira 1 f Hij(x'h)dx = (~ij b+0 h 3 bij_l 1 ~ j ~ 1 i+l ' i=l ..... k+l.
Lemma 3. a. lim -~ f V2(x,h)dx = ( ~ + 6~ l)f (I-W(y))2dy, i=]...... k+l. z h-~0 ai_ 1 o Lemma 4. b.. a. x3 1 i G(x,h)V.(x,h)dx = lira 1 I G(x,h)Hij(x,h)dx= l i m - ~ f 1 b+0 h 3 bij_l h~0 ai_ 1 b..
=
1 13 lira -~ I Hij(x,h)Vi(x,h)dx = 0,
h~0
bij_l
1 < j < li= 1 , i=l .... ,k+l Proofs of these lemmas given by Eden, C.V. [4] . We can see that co
co
j2 (x,h)dx = f {f K(t) [f(x-th)-f(x)Idt}2dx -co -co =
k+l Zi+l bij ~ ~ f {G (x, h) +Hij (x,h) +Vi (x, h) }2dx J=l j = 1 bij_l
=
k+l £i+i bij k+l £i+i bij ~ ~ f G2(x,h) dx + 7~ ~ f H2. (x,h) dx 13 i=l j = 1 bij_l i=l j = 1 bij_l
+
k÷l £i+I 7 Z i=l j = i
+ 2
bij k+l Zi+l bij f V2. (x,h) dx+2 Z Z f G (x,h) Hij (x,h) dx bij_l i J=l j = i bij_l
k÷l £i+I bij k+l £i+i b . ~ Z f G (x,h)Vi(x,h) dx+2 7~ Z fagHij (x'h)Vi (x'h) dx i=l j = 1 bij_ l i=l j = 1 bij_l
~o k+l li+l bij = I G2(x,h)dx + Z Z f H2..(x,h)dx -o~ i=l j = 1 bij_l 13
+
k+l £i+i bi 3 k+l a i ~ I V2 (x,h) dx+2 Z Z f C (x,h) Hij (x,h) dx i=l ai_ 1 i=l i=l bij_l
+ 2
k+l £i+i bij k+l a 1 ~ f G (x,h) Vi (x,h) dx+2 ~ ~ f Hij (x,h)Vi(x,h) dx. i=l ai_ 1 i=l j=l bij_1
Then from lemmas (i), (2), (3) and (4), we get co 4 ce I J2(x,h)dx = ~ ( f t2Klt)dt) 2 f (f"(x))~x + 0(h4 )
85
86
M . M . EL-FAHHAM
+ h3
1 .+I k+l i 0 y Z Z ( ~ . + ,~2 i=l j = i J ij-l)I-co{ I_~o(y-t)K(t)dt~2dy k+l
+ 0(h ~) + h i=]
(6~ + 6 2 )/ (l-W(y))2dy i-i o
But from the fact that 1 .+I k+l 1 Z ~2 : i=l j 1 ij-i
1 .+i i
k+l Z
=
+ 0(h)
Z
i:l
j : 1
A2 • = ~ t i3
and k+l Z
i:l
k+l 62 i-i
=
Z
i:l
6 2. i
6
=
,
We have co
IIf"(xlIl
.; J2(.,h.)d. : ~, h t I l t K'~(t) II _(~
]
+ 0(h~) 3
3
0 y + 2h 3 ZI f (f (y-t)K(t)dt) 2 dy+0(h3.)
oo + 2hj 6 / (l-W(y))2 o From
(7) and
dy + 0(hj).
(8)
(8) we get
.~sE [f~2(xl] _< Inhnl lllK(t~ll~+0(nh n) 11 + [~-
(n~hn)-l/2~,o]~
Irf(.lll~
+ 2(nh )-l[~Irt~It)ll~Ilf"II
~(
~ hS.) + 0(hS..) + 3 j=l ]
n o y + 24( Z h~)/ {I (y-t)K(t)dt}2dy j=l 3 _co -co
o completes
the
+
+
n
Which
2
+
j=l J
proof of the theorem.
REFERENCES
[i]
Parzen,
E.
(1962).
mode.
[2]
Rosenblatt,
M.
Ann. Math.
(1956).
sequences tsch.,
[3]
Wegman,
On estimation
of a probability
Statist.
The central
density
and
33, 1065-1076.
limit
of random variables.
theorem
for mixing
Z. Wahrscheinl,
chkei-
12, 155-171.
E. J. and J. I. Davies sire estimators Statist.,
Vol.7,
(1979).
"Remarks
of a probability 316-327.
on some recur-
density".
Ann. Math.
Recursive estimator of the density function
E43
Van Eeden C.
87
(1984). Mean integrated squared error of Kernel
estimators when the density and its derivative necessarily
continuous.
Roppart de Recherche$
D~partement de mathematigues ersit6 de Montr6al.
are not no.82,
et de Statistique,
Univ-