A Note on the Decomposition Numbers ofSp(4, q)

A Note on the Decomposition Numbers ofSp(4, q)

JOURNAL OF ALGEBRA ARTICLE NO. 186, 105]112 Ž1996. 0364 A Note on the Decomposition Numbers of SpŽ 4, q . Katsushi Waki Department of Information S...

114KB Sizes 1 Downloads 82 Views

JOURNAL OF ALGEBRA ARTICLE NO.

186, 105]112 Ž1996.

0364

A Note on the Decomposition Numbers of SpŽ 4, q . Katsushi Waki Department of Information Science, Hirosaki Uni¨ ersity, 3, Bunkyo-cho, Hirosaki, 036 Japan Communicated by Walter Feit Received December 18, 1995

1. INTRODUCTION Let p be a prime and G the symplectic group SpŽ4, q . where q s p n. The decomposition numbers of G in characteristics other than p are almost determined by White w5, 6x. But in case the characteristic divides q q 1, one position in the decomposition matrix of the principal block remains as a variable. We will determine this variable a under some conditions. All calculations of the scalar products in Section 6 are done by ‘‘Mathematica’’ w3x.

2. NOTATION An odd prime r which divides q q 1 is fixed in this paper. Thus there are numbers d and s such that q q 1 s r d s and s is not divisible by r. Let P be the parabolic subgroup of G. The order of P is q 4 Ž q y 1. 2 Ž q q 1.. The subgroup H of G which is denoted by K in Srinivasan w2x is isomorphic to SLŽ2, q . = SLŽ2, q .. The order of H is q 2 Ž q 2 y 1. 2 . We can see the fusion map between G and H in Table III. We use the same notation of White w5, 6x for the ordinary characters of G. The irreducible ordinary characters of P can be found in Enomoto w1x. The ordinary characters and conjugacy classes of G are given in Srinivasan w2x and Enomoto w1x. The group Cn denotes the cyclic group of order n. 105 0021-8693r96 $18.00 Copyright Q 1996 by Academic Press, Inc. All rights of reproduction in any form reserved.

106

KATSUSHI WAKI

3. A RESULT OF WHITE THEOREM 3.1 ŽWhite w5, 6x.. The decomposition matrix for the principal r-block is as follows. The unknown entry a is an integer satisfying 1 F a F Ž q y 1.r2 Ž or qr2 if p s 2.. Degrees

Chars.

No. of chars.

1 q Ž q y 1. 2r2 q Ž q 2 q 1.r2 q Ž q 2 q 1.r2 q4 Ž q 2 q 1.Ž q y 1. 2 Ž q 2 q 1.Ž q y 1. q Ž q 2 q 1.Ž q y 1. Ž q 2 q 1.Ž q y 1. q Ž q 2 q 1.Ž q y 1.

1G Ž x 1 . u 10 Ž x 5 . u 11 Ž x 3 . u 12 Ž x4 . u 13 Ž x6 . x4 Ž x 19 . x6 Ž x 9 . x 7 Ž x 10 . j 1 Ž x 13 . j 1X Ž x 14 .

1 1 1 1 1

1

a ay2 1 ay1 1 ay1

1

1 1 1 1

1 1

1 1 1 1

1 1 1 1 1 Ž r d y 1.Ž r d y 3.r8 Ž r d y 1.r2 Ž r d y 1.r2 Ž r d y 1.r2 Ž r d y 1.r2

The parentheses in the table mean the name of characters in case p s 2.

4. A MAIN RESULT THEOREM 4.1. Ži. Žii.

In Theorem 3.1, we ha¨ e the following.

If p is e¨ en than a F Ž r d y 1.r2. If p is odd then a F Ž r d y 1. 2rŽ r d q 1..

COROLLARY 4.1. From Theorem 4.1, we can determine the ¨ alue of a in the two special cases. Ži. If a 3-Sylow subgroup of SpŽ4, q . is isomorphic to the elementary abelian group of order 3 2 , then a s 1 for r s 3. Žii. If a 5-Sylow subgroup of SpŽ4, q . is isomorphic to the elementary abelian group of order 5 2 , then a s 2 for r s 5. Proof. It is easy to check that an r-Sylow to Cr d = Cr d . Thus the assumption means r d a F 1 if r d s 3. Since a G 1, a must be 1. If a F 2 and Theorem 4.1Žii. shows a F 8r3. a G 2. Thus corollary is proved.

subgroup of G is isomorphic is 3 or 5. From Theorem 4.1, r d s 5, Theorem 4.1Ži. shows In case r d is bigger than 3,

Remark 4.1. If either r / 3 or d / 1, then d G 2. Thus Theorem 4.1Ži. is the only case that a s 1.

DECOMPOSITION NUMBERS OF

SpŽ4, q .

107

5. PROOF OF THEOREM 4.1Ži. We fix the prime p s 2 in this section. Since an r-Sylow subgroup of P is a cycle of order r d, it’s easy to determine the r-decomposition matrix of P. We can check the next two lemmas from the character table of SpŽ4, q . in Enomoto w1x. LEMMA 5.1. There are irreducible characters u 3 Ž0., u 3 Ž1., x6 Ž k . of P which make an r-block of P where k s s, 2 s, . . . , ŽŽ r d y 1.r2. s. Moreo¨ er there are 2 irreducible Brauer characters w 1 and w 2 and the decomposition matrix of this block is as follows. Degrees

Chars.

w1

q Ž q y 1 r2 q Ž q y 1. 2r2 q Ž q y 1. 2 .. .

u 3 Ž0. u 3 Ž1. x6 Ž s . .. .

1

.2

x6

q Ž q y 1. 2

ž

rd y 1 2

s

/

w2

1 .. .

1 1 .. .

1

1

LEMMA 5.2. The restriction of the character x 5 of G to P is equal to the character u 3 Ž1. of P. Proof of Theorem 4.1Ži.. From Table I 1

Ž u 3 Ž 1 . , x6 x P . s < P <

ž

q Ž q y 1.

2

= q4 y

2

q 2

= q 3 Ž q y 1. = Ž q y 1. = q

s0 1

Ž x6 Ž k . , x6 x P . s < P <

ž

2

q Ž q y 1. = q 4 y q 3 Ž q y 1. = Ž q y 1. qr2

ž Ý // ž Ý // bi k

=q

is1

s

1 < P<

qr2

ž

2

q Ž q y 1. y q Ž q y 1. 5

4

2

j i k q jyi k

is1

/

a of classes

ik

qj

yi k

1 q y1 qy1 Ž q y 1.Ž q 2 y 1. q Ž q 2 y 1. q Ž q y 1.Ž q 2 y 1. q 2 Ž q y 1.Ž q 2 y 1.r2 q 2 Ž q y 1.Ž q 2 y 1.r2 q 4 Ž q q 1. q 4 Ž q y 1. q 3 Ž q q 1. q 3 Ž q q 1. q3 q 3 Ž q y 1. q 3 Ž q 2 y 1. q 3 Ž q 2 y 1. q 3 Ž q 2 y 1. q 3 Ž q y 1. 2 2

a of elements in this class

where j [ expŽ2p'y 1 rŽ q q 1...

1 1 1 1 1 1 1 1 Ž q y 2.Ž q y 4.r2 q Ž q y 2.r2 qy2 Ž q y 2.r2 qy2 qr2 qy2 Ž q y 2.r2 qy2 qr2

Note. bi k s j

A1 A2 A 31 A 32 A 31 A 32 A 41 A 42 B1Ž i, j . B2 Ž i . C1Ž i . C2 Ž i . C2 Ž i . C4 Ž i . D 1Ž i . D2 Ž i. D2 Ž i. D4 Ž i .

Class of G

u 3 Ž1.

x6 Ž k .

qy1

y1

qy1

y1

ybi k

Ž q y 1. bi k

q Ž q y 1. 2r2 q Ž q y 1. 2r2 q Ž q y 1. 2 yq Ž q y 1.r2 yq Ž q y 1.r2 yq Ž q y 1. yq Ž q y 1.r2 yq Ž q y 1.r2 yq Ž q y 1. qr2 qr2 q q Ž q y 1.r2 yq Ž q y 1.r2 yqr2 qr2 yqr2 qr2 qr2 yqr2

u 3 Ž0.

TABLE I The Restriction to P in Case p s 2

1 y1 q q q yq

q4

x6

108 KATSUSHI WAKI

SpŽ4, q .

DECOMPOSITION NUMBERS OF

s s s

109

qr2

1 < P< 1 < P< 1 < P<

ž ž

2

q 5 Ž q y 1. y q 4 Ž q y 1.

2

žÝ

Žj k.

i

q Žj k.

qq1yi

is1 q

2

q Ž q y 1. y q Ž q y 1. 5

4

2

//

i

ž Ý Ž . // jk

is1

Ž q 5 Ž q y 1. 2 q q 4 Ž q y 1. 2 .

s1 since j k / 1 for each k s 2, 2 s, . . . , ŽŽ r d y 1.r2. s. These scalar products show that the multiplicity of w 2 in the restricted character x6 as a Brauer character is Ž r d y 1.r2 from Lemma 5.1. By the way, the number a is the multiplicity of x 5 in x6 as a Brauer character. Thus Theorem 4.1Ži. follows from Lemma 5.2.

6. PROOF OF THEOREM 4.1Žii. We fix an odd prime p. Let H s Ha = Hb ( SLŽ2, q . = SLŽ2, q .. We can find the character table of SLŽ2, q . in Table II. There is an r-block ˜ b1 in SLŽ2, q . such that this block has the following decomposition matrix, Degrees

Chars.

w1

Ž q y 1.r2 Ž q y 1.r2

x ˜5 x ˜6

1

qy1

x ˜8 Ž k .

1

w2

No. of chars.

1

1 1 rd y 1

1

2

where k g I [  sr2, sr2 q s, . . . , sr2 q ŽŽ r d y 3.r2. s4 . There is an r-block b1 which is constructed by the irreducible characters of H

 xŽ5, 5. , xŽ5 , 6. , xŽ5 , 8. Ž k . , xŽ6 , 5. , xŽ6 , 6. , xŽ6 , 8. Ž k . , xŽ8, 5. Ž k . , xŽ8 , 6. Ž k . , xŽ8 , 8. Ž k , l . 4 , where xŽ i, j. s x ˜i Ž h a . x˜j Ž h b . for each h a g Ha and h b g Hb and k, l g I. We can get the following lemma from Tables II and III.

y 2 2 Ž q q 1. Žy1. k Ž q q 1. Ž q y 1. Žy1. k Ž q y 1.

'

2 1 y1

'

2 1 y1

'

2 y1 q eq

'

2 y1 y eq

'

'

2 1 q eq

1 y eq

1 0

P2 1 Ž q 2 y 1.r2

2 y1 y eq

2 y1 q eq

'

'

2 1 y eq

1 q eq

1 0

P1 1 Ž q 2 y 1.r2 1 0

P2 Z 1 Ž q 2 y 1.r2

2 2 2

2 Žy1. k yŽy1. k

2 Žy1. k yŽy1. k

Ž 1 q 'eq . e Ž 1 y 'eq . e

2

Ž 1 y 'eq . e Ž 1 q 'eq . e

2

Ž 1 y 'eq . e Ž 1 q 'eq . e

2

Ž 1 q 'eq . e Ž 1 y 'eq . e

1 0

P1 Z 1 Ž q 2 y 1.r2

Note. e [ Žy1.Ž qy1.r2 ; z [ expŽ2p'y 1 rŽ q y 1..; j [ expŽ2p'y 1 rŽ q q 1...

x ˜7 Ž k . x ˜8 Ž k .

x ˜6

x ˜5 2 Ž q y 1. e

2 Ž q y 1. e

2 qy1

x ˜4 y

2 Ž q q 1. e

2 qq1

2 qy1

Ž q q 1. e

qq1

x˜3

1 q

1 q

x ˜1 x˜2

Z 1 1

I 1 1

SL 2 Ž q . a of classes a of elem.

TABLE II The Character Table of SLŽ2, q . in Case q Is Odd

yŽy1. i

yŽy1. i

0

0

1 y1

z i k q zyi k 0 0 yj i k y jyi k

0

0

Žy1. i

Žy1. i

1 1

Ci Di Ž q y 3.r2 Ž q y 1.r2 q Ž q q 1. q Ž q y 1.

110 KATSUSHI WAKI

DECOMPOSITION NUMBERS OF

SpŽ4, q .

111

TABLE III The Fusion Map between G and H in Case q Is Odd I

Z

P1

P2

I A1 D1 A 21 A 22 X Z D1 A1 D 23 D 24 P1 A 21 D 23 A 31 A 32 P2 A 22 D 24 A 32 A 31 X P1 Z D 21 A 21 D 31 D 33 X P2 Z D 22 A 22 D 32 D 34 X Ci C3 Ž i . C3 Ž i . C41Ž i . C42 Ž i . X Dj C1Ž j . C1Ž j . C21Ž j . C22 Ž j .

P1 Z

P2 Z

Ck

Dl

D 21 X A 21 D 31 D 33 X A 31 X A 32 X C41Ž i . X C21Ž j .

D 22 X A 22 D 32 D 34 X A 32 X A 31 X C42 Ž i . X C22 Ž j .

C3 Ž k . X C3 Ž k . C41Ž k . C42 Ž k . X C41Ž k . X C42 Ž k . B3 Ž i, k . B5 Ž k, j .

C1Ž l . X C1Ž l . C21Ž l . C22 Ž l . X C21Ž l . X C22 Ž l . B5 Ž i, l . B4 Ž j, l .

Note. These entires of the table are names of the conjugacy classes of G in case q ' 1 mod 4. Note that B3 Ž i, i . means B8 Ž i . and B4 Ž j, j . means X X B6 Ž j .. We should exchange A 31 to A 32 and A 31 to A 32 in case q ' 3 mod 4.

LEMMA 6.1.

Ž xŽ5, 6. , u 10 x H . s 1

Ž xŽ5, 8. Ž k . , u 10 x H . s 0 Ž xŽ8, 6. Ž k . , u 10 x H . s 0 Ž xŽ8, 8. Ž k , l . , u 10 x H . s

½

1, 0,

ksl k/l

1, 0,

ksl k/l

Ž xŽ5, 6. , u 11 x H . s 0

Ž xŽ5, 8. Ž k . , u 11 x H . s 0 Ž xŽ8, 6. Ž k . , u 11 x H . s 0 Ž xŽ8, 8. Ž k , l . , u 11 x H . s

½

Ž xŽ5, 6. , u 12 x H . s 0

Ž xŽ5 , 8. Ž k . , u 12 x H . s 0 Ž xŽ8 , 6. Ž k . , u 12 x H . s 0 Ž xŽ8, 8. Ž k, l . , u 12 x H . s 0 Ž xŽ5, 6. , u 13 x H . s 1

Ž xŽ5, 8. Ž k . , u 13 x H . s 1

112

KATSUSHI WAKI

Ž xŽ8, 6. Ž k . , u 13 x H . s 1 Ž xŽ8, 8. Ž k , l . , u 13 x H . s

½

1, 2,

ksl k / l,

where k, l g I. Proof of Theorem 4.1Žii.. It is easy to define the decomposition matrix of b1 by ˜ b1. From the above lemma, the multiplicities of the Brauer character wŽ1, 2. [ xŽ5, 6. of H in u 10 x H , u 11 x H , u 12 x H , and u 13 x H are Ž r d q 1.r2, Ž r d y 1.r2, 0, and r d Ž r d y 1.r2, respectively. Thus we can get r d Ž r d y 1.r2 G a ŽŽ r d q 1.r2. q Ž r d y 1.r2.

REFERENCES 1. H. Enomoto, The characters of the finite symplectic group SpŽ4, q ., q s 2 f , Osaka J. Math. 9, Ž1972., 75]94. 2. B. Srinivasan, The characters of the finite symplectic group SpŽ4, q ., Trans. Amer. Math. Soc. 131 Ž1968., 488]525. 3. S. Wolfram, ‘‘Mathematica: A System for Doing Mathematics by Computer,’’ Addison]Wesley, Reading, MA, 1988. 4. D. L. White, ‘‘The 2-Blocks and Decomposition Numbers of SpŽ4, q ., q Odd,’’ Ph.D. Thesis, Yale University, 1987. 5. D. L. White, Decomposition numbers of SpŽ4, q . for primes dividing q " 1, J. Algebra 132 Ž1990., 488]500. 6. D. L. White, Decomposition numbers of Sp4 Ž2 a . in odd characteristics, J. Algebra 177 Ž1995., 264]276.