Applied Mathematics and Computation 218 (2011) 707–712
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
A note on the modified q-Bernstein polynomials for functions of several variables and their reflections on q-Volkenborn integration _ Mehmet Açıkgöz a, Serkan Aracı a, Ismail Naci Cangül b,⇑ a b
University of Gaziantep, Faculty of Arts and Science, Department of Mathematics, 27310 Gaziantep, Turkey Uludag University, Faculty of Science, Department of Mathematics, Görükle, 16059 Bursa, Turkey
a r t i c l e
i n f o
a b s t r a c t In this paper, we consider the modified q-Bernstein polynomials for functions of several variables on q-Volkenborn integral and investigate some new interesting properties of these polynomials related to q-Stirling numbers, Hermite polynomials and Carlitz’s type q-Bernoulli numbers. Ó 2011 Elsevier Inc. All rights reserved.
Dedicated to Professor H. M. Srivastava on the Occasion of his Seventieth Birth Anniversary Keywords: Generating function Bernstein polynomials of several variables Bernstein operator of several variables Shift difference operator Q-difference operator q-Stirling numbers q-Volkenborn integration Hermite polynomials Carlitz’s type q-Bernoulli numbers
1. Introduction, definitions and notations The Bernstein polynomials have been studied by many researchers for a long time. The history of these polynomials goes back to Bernstein in 1904. Since then, these polynomials have been studied by many mathematicians [1–6,8,11–13]. But no result is given about the generating function of these polynomials. Throughout this paper C(DW) will denote the set of continuous functions on D = [0, 1]. Then Bernstein operator for functions f 2 C(DW) of several variables is defined as
Y nW w X ni kj k1 kw x ð1 xj Þnj kj f ;; n1 nw nj j j¼1 k1 ¼0 kW ¼0 n1 nW X X k1 kw Bk1 ;;kw ;n1 ;;nw ðx1 ; ; xw Þ; ¼ f ;; n1 nw k ¼0 k ¼0
Bn1 ;;nw ðf ; x1 ; ; xw Þ : ¼
n1 X
1
W
ð1Þ
P n ¼ nðn1Þðnkþ1Þ : Here Bn1 ;;nw ðf ; x1 ; ; xw Þ is called the Bernstein operator of several variables of order w l¼1 nl . k! k Let p be a fixed prime number. In this paper, we will use N; Zp ; Qp ; C and Cp to denote the set of natural numbers, the ring of p-adic integers, the field of p-adic rational numbers, the complex number field, and the completion of algebraic closure of Qp , respectively. Let UDðZp Þ be the space of uniformly differentiable functions on Zp . For
where
⇑ Corresponding author. _ E-mail addresses:
[email protected] (M. Açıkgöz),
[email protected] (S. Aracı),
[email protected] (I.N. Cangül). 0096-3003/$ - see front matter Ó 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2011.01.091
708
M. Açıkgöz et al. / Applied Mathematics and Computation 218 (2011) 707–712
f 2 UDðZp ; Cp Þ ¼ ff jf : Zp ! Cp is a uniformly differentiable functiong; the q-Volkenborn integral on Zp is defined by
Iq ðf Þ ¼
Z
f ðxÞdlq ðxÞ ¼ lim
N!1
Zp
pN 1 1 X f ðxÞqx ; ½pN q x¼0
qx , ½pN q
where lq ðx þ p Zp Þ ¼ (see [9,10] for details). Let q be regarded as either a complex number q 2 C or a p-adic number q 2 Cp . If q 2 C; then we assume that jqj < 1; and if 1 q 2 Cp , we assume that j1 qjp < pp1 , which yields to the relation qx = exp (xlogq) for jqj 6 1, (see [9]). Here, the symbol j.jp stands for the p-adic value on Cp with jpjp ¼ 1p. The q-analogue of n! is defined by N
(
1;
½nq ! ¼
if n ¼ 0;
½nq ½n 1q ½2q ½1q ; if n ¼ 1; 2; . . .
In this study, we use notation for the Gaussian binomial coefficients in the form of
n k
½nq ! ½nq :½n 1q ½n k þ 1q ¼ : ½kq ! ½n kq !½kq !
¼
q
Note that limq!1
n n ¼ ¼ nðn1Þðnkþ1Þ , (see [7] for details). k! k q k
Carlitz’s q-Bernoulli number bk,q can be defined with the relations
b0;q ¼ 1; qðqb þ 1Þk bk;q ¼
1; if k ¼ 1; 0; if k > 1
with the usual convention of replacing bi by b i,q, (see [9]). As shown in [8] and [9], Carlitz’s q-Bernoulli numbers can be represented by q-Volkenborn integral on Zp as follows:
bn;q ¼
Z
½xnq dlq ðxÞ ¼ lim
N!1
Zp
pN 1 1 X n x ½x q ; ½pN x¼0 q
n 2 N0 :
The k-th order factorial of a q-number [x]q defined by
½xk;q ¼ ½xq ½x 1q ½x k þ 1q
½x x ¼ ½kk;q! . q k q In this study, we consider modified q-Bernstein polynomials for functions of several variables on Zp Zp Zp and we investigate some interesting properties of these polynomials related to q-Stirling numbers, Hermite polynomials and Carlitz’s q -Bernoulli numbers.
is called the q-factorial of x of order k, (see [9]). We note that
2. Main results In this section, we shall study the modified q-Bernstein polynomials for functions of several variables on q-Volkenborn integral and investigate some new interesting properties of these polynomials related to q-Stirling numbers and Carlitz’s 1 type q-Bernoulli numbers. Here we assume that q 2 Cp with j1 qjp < pp1 : For
f 2 UDðZp Zp ; Cp Þ ¼ ff jf : Zp Zp ! Cp is a uniformly differentiable functiong; we define q-Volkenborn integral on Zp Zp :
Dq ðf Þ ¼
Z Zp
Z
f ðx1 ; ; xw Þdlq ðx1 Þ dlq ðxw Þ ¼
Zp
lim
N 1 ;...;Nw !1
w Y d¼1
Nw 1 Pw p 1 1 pX 1 X x f ðx1 ; ; xw Þq y¼1 y ; N d ½p x ¼0 x ¼0 N
1
w
Pw Q xy 1 y¼1 where lq ðx1 þ pN Zp Þ lq ðxw þ pN Zp Þ ¼ w : d¼1 ½pNd q We consider q-Bernstein type operator for functions of several variables on Zp Zp as follows:
Bn1 ;...;nw ;q ðf ; x1 ; . . . ; xw Þ ¼
n1 X k1 ¼0
nw X kw ¼0
f
½k1 q ½kw q ;...; ½n1 q ½nw q
!
Bk1 ;...kw ;n1 ;...;nw ðx1 ; . . . ; xw ; qÞ
for nj ; mj 2 N0 ; j 2 f1; 2; . . . ; wg, where Bk1 kw ;n1 ;;nw ðx1 ; ; xw ; qÞ are called modified q-Bernstein polynomials of several variP ables of degree w d¼1 nd . Let (Eh)(x) = h(x + 1) be the shift operator. Consider the q-difference operator as follows:
Dnq ¼
n Y
ðE qi1 IÞ;
i¼1
where I is the identity operator. By (2),
ð2Þ
M. Açıkgöz et al. / Applied Mathematics and Computation 218 (2011) 707–712
f ðxÞ ¼
Xx n
nP0
Dnq f ð0Þ;
709
ð3Þ
q
where
Dnq f ð0Þ ¼
k
Xx n
nP0
ð4Þ
ð1Þk q 2 f ðn kÞ:
q
The q-Stirling numbers of the first and second kind are respectively defined as n n X Y ð1 þ ½kq zÞ ¼ S1 ðn; k; qÞzk k¼1
ð5Þ
k¼0
and n Y k¼1
1 1 þ ½kq z
! ¼
n X
S2 ðn; k; qÞzk :
ð6Þ
k¼0
(see [9] for details). By (2), (3)–(6), we see that
k
S2 ðn; k; qÞ ¼
q
2
½kq !
k j n X k q 2 ð1Þj q 2 ½k jnq ¼ Dkq 0n : ½k ! j q q j¼0
ð7Þ
For 0 < q < 1, consider the q-extension as follows: w P w 1 1 w Y X X Y ðt½xj q Þkj t ½1xs t nj F k1 ;...;kw ðt; q; x1 ; . . . ; xw Þ ¼ ¼ Bk1 ;...;kw ;n1 ;...;nw ðx1 ; . . . ; xw ; qÞ e s¼1 : kj ! nj ! j¼1 j¼1 n ¼k n ¼k 1
Qw
kj
ðt½xq Þ j¼1 kj !
Thus, we note that F k1 ;...;kw ðt; q; x1 ; . . . ; xw Þ ¼ mials of several variables. It is easy to show that w Y
½1 xd nqd kd ¼
1 X t 1 ¼0
d¼1
1 nX 1 k1 X
t w ¼0 l1 ¼0
nX w kw lw ¼0
e
t
1
Pw
s¼1
w
½1xs
w
is the generating function of modified q-Bernstein polyno-
w Y ld þ t d 1 d¼1
td
nd kd ld
Pw Pw Pw l ½xd lqd þtd ð1Þ s¼1 ls þts q y¼1 y ðq 1Þ k¼1 rk :
ð8Þ
By (8), we obtain the following results: Theorem 2.1. For nj ; kj 2 N0 with nj P kj for j 2 {1, 2, . . . , w}, we have
Z
Zp
Z Zp
nX 1 1 nX 1 k1 w kw Y X X ld þ t d 1 Bk1 ;...;kw ;n1 ;...;nw ðx1 ; . . . ; xw ; qÞ w dlq ðx1 Þ dlq ðxw Þ ¼ d¼1 Qw nd td t ¼0 t ¼0 l ¼0 l ¼0 1
d¼1 kd Pw Pw Pw nd kd l btd þld þkd ;q ð1Þ s¼1 ls þts q y¼1 y ðq 1Þ k¼1 rk ; ld
w
1
w
where bn,q are the nth Carlitz q-Bernoulli numbers. For x; t 2 C, the Hermite polynomials are defined by the following generating function 2
e2txt ¼
1 X
Hn ðxÞ
n¼0
tn : n!
ð9Þ
By (9), we have
e2xt ¼
1 X t 2n n! n¼0
!
1 X n¼0
Hn ðxÞ
! tn : n!
Applying Cauchy product to above relation, we obtain
710
M. Açıkgöz et al. / Applied Mathematics and Computation 218 (2011) 707–712
e2xt ¼
! 1 n X X n t 2nl Hl ðxÞ : n! l n¼0 l¼0
ð10Þ
By substituting x = [1 y]q into (10), we have
Hn ð½1 yq Þ ¼
k!2n Bk;nþk ðy; qÞ: yk ðn þ kÞ!
ð11Þ
By (11) and using the definition of modified q-Bernstein polynomials for several variables, we obtain the following theorem: Theorem 2.2. Let n be a positive integer with kj < nj for j 2 {1, 2, . . . , w} and Hn(x) denote the Hermite polynomials. Then we have
Bk1 ;...;kw ;n1 þk1 ;...;nw þkw ðx1 ; . . . ; xw ; qÞ ¼ 2
Pw s¼1
ns
k w Y xdd ðnd þ kd Þ! Hnd ð½1 xd q Þ: kd d¼1
By [5], it is known that w Y
!i ½xj q
¼
j¼1
n1 X
k1 ¼i1
w Y
1
s¼1
ð½1 xs q þ ½xs q Þns ls
nw X
w Y
ð12Þ
;
kd
i Bk1 ;...;kw ;n1 ;...;nw ðx1 ; . . . ; xw ; qÞ; nd
kw ¼i1 d¼1
ð13Þ
i
for i 2 N and w Y
!i ½xj q
¼
j¼1
i X
k1 ¼0
i X
Pw y¼1
q
kd ¼0
ky 2
w Y xd d¼1
kd
½kd q !S2 ði; kd ; qÞ:
q
Moreover, we know that
Z Zp
Z
Pw
w Y xm
Zp m¼1
km
k d¼1 d
q
ð1Þ dlq ðx1 Þ dlq ðxm Þ ¼ Qw q s¼1 ½ks þ 1q
w
Pw l¼1
kl 2
:
ð14Þ
By (13) and (14), we have
w bw i;q ¼ q
i X
k1 ¼0
i X
Pw q
d¼1
kw ¼0
kn kn w 1 Y ð1Þ 2 q 2 ½k !S ði; k ; qÞ: q n q 2 n ½kn þ 1q n¼1
kd
We know that
S2 ðn; k; qÞ ¼
k X jþn kj k þ n ð1Þ kj q j ð1 qÞk j¼0 q 1
ð15Þ
and that
n X n n ¼ ðq 1Þjk S2 ðk; j k; qÞ: k q j j¼0 By simple calculation, we obtain
qnx
k ( ) n n n X X X n n 2 k ½xk;q ¼ S1 ðk; m; qÞ ½xm ¼ ðq 1Þ qq ðq 1Þkq q k k m¼0 k¼0 k¼m
ð16Þ
and
Z Zp
qnx dlq ðxÞ ¼
1 X n ðq 1Þm bm;q : m m¼0
By (16) and (17), we can write
ð17Þ
M. Açıkgöz et al. / Applied Mathematics and Computation 218 (2011) 707–712
n
n X n ðq 1Þmþk S1 ðk; m; qÞ: q k q k¼m
¼
m
711
Theorem 2.3. For nj ; kj 2 N0 with nj P kj where j 2 {1, 2, . . . , w}, we have n1 X
Bk1 ;...;kw ;n1 ;n2 ;...;nw ðx1 ; . . . ; xw ; qÞ ¼
l1 ¼k1
w Y ny ly
y¼1
Pw ðq 1Þ d¼1 kd þld ;
nw X lw ¼kw
S1 ðly ; ky ; qÞ½xy kqy ½1 xy nqy ky :
q
From the definition of the q-Stirling numbers of the first kind,
n n n X x 2 q ½nq ! ¼ ½xn;q q 2 ¼ S1 ðn; k; qÞ½xkq : n q k¼0
ð18Þ
Theorem 2.4. For nj ; mj 2 N0 ; j 2 f1; 2; . . . ; wg and i 2 N; we have w Y s¼1
1 ns ls
ð½1 xs q þ ½xs q Þ
w Y
d¼1
kd
n1 X
k1 ¼i1
nw X
;
kw ¼i1
k1 kw Y i i w X X X X i Bk1 ;...;kw ;n1 ;...;nw ðx1 ; . . . ; xw ; qÞ ¼ S1 ðnd ; ld ; qÞS2 ði; kd ; qÞ½xd lqd : nd k ¼0 l ¼0 k ¼0 l ¼0 d¼1 1
i
1
w
w
Corollary 2.5. For i 2 N, we have
bi;q ¼
k1 i X X
k1 ¼0 l1 ¼0
kw Y i w X X
!w1 S1 ðnd ; ld ; qÞS2 ði; kd ; qÞbld ;q
;
kw ¼0 lw ¼0 d¼1
where bi,q are the i-th Carlitz q-Bernoulli numbers. In [9], the q-Bernoulli polynomials of order k 2 N0 are defined by ðkÞ bn;q ðxÞ ¼
Z Z n Pk X n ix 1 ð1Þi q l¼1 ðklþiÞxl dlq ðx1 Þ dlq ðxk Þ: q n ð1 qÞ i¼0 i Zp Zp |fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð19Þ
ktimes
By (19), we note that ðkÞ bn;q ðxÞ ¼
n X n ði þ kÞ ði þ 1Þ ix 1 ð1Þi q : n ð1 qÞ i¼0 i ½i þ kq ½i þ 1q
The inverse q-Bernoulli polynomials of order k are also defined by
ðkÞ bn;q ðxÞ ¼
1 ð1 qÞn
n X i¼0
ð1Þi Z
n xi q i
Z ; Pk q l¼1 ðklþiÞxl dlq ðx1 Þ dlq ðxk Þ Zp Zp |fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð20Þ
ktimes
ðkÞ ðkÞ ðkÞ ðkÞ (see [9]). In the special case of x = 0, bn;q ¼ bn;q ð0Þ are called the n-th q-Bernoulli numbers of order k and bn;q ¼ bn;q ð0Þ are called the n-th inverse q-Bernoulli numbers of order k. By using (20), we obtain
ðnÞ bk;q
( ) k k X X ½j þ nq ½j þ 1q ½nq ! jþn 1 j k j kþn : ¼ ð1Þ ð1Þ ¼ kþn j ðj þ nÞ ðj þ 1Þ kj q n q ð1 qÞk j¼0 ð1 qÞk j¼0 n! n 1
712
M. Açıkgöz et al. / Applied Mathematics and Computation 218 (2011) 707–712
By (19), we have
S2 ðn; k; qÞ ¼
kþn
n
n! ðnÞ b : ½nq ! k;q
ð21Þ
By (21), we obtain the following theorem: Theorem 2.6. Let nj ; mj 2 N0 for j 2 {1, 2, . . . , w} and i 2 N. Then we have
bi;q ¼ q
d i w X Y ½iq ! kd þ i ð1Þkd ðiÞ ½kd q ! bkd ;q ½k þ 1 i! k d d q ¼0 k ¼0 d¼1
i i X X k1 ¼0 k2
!w1 :
w
Acknowledgement The third author is supported by the Commission of Scientific Research Projects of Uludag University, Project numbers 2006/40, 2008/31 and 2008/54. References [1] M. Acıkgoz, S. Araci, On the generating function of Bernstein polynomials, in Proceedings of the 8th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), AIP, Rhodes, Greece, 2010. [2] M. Acıkgoz, S. Araci, New generating function of Bernstein type polynomials for two variables, in Proceedings of the 8th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), AIP, Rhodes, Greece, 2010. [3] M. Açıkgöz, S. Aracı, A study on the integral of the product of several type Bernstein polynomials, IST Transaction of Applied Mathematics Modelling and Simulation, 2010, vol. 1, no. 1(2), ISSN: 1913-8342, pp. 10–14. [4] M. Açıkgöz, S. Aracı, The relations between Bernoulli, Bernstein and Euler polynomials, in Proceedings of the 8th International conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), AIP, Rhodes, Greece, 2010. [5] M. Açıkgöz, S. Aracı, A new approach to modified q-Bernstein polynomials for functions of two variables with their generating function and interpolation function, in: International Congress in Honour of Prof. H.M. Srivastava on his 70th Birth Anniversary, 18–21 August 2010, Uludag˘ University, Bursa Turkey, submitted for publication. _ Buyukyazici, E. Ibikli, _ [6] I. The approximation properties of generalized Bernstein polynomials of two variables, Appl. Math. Comput. 156 (2004) 367–380. [7] V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002. ISBN 0-387-95341-8. [8] T. Kim, L.-C. Jang, H. Yi, Note on the modified q-Bernstein polynomials, Discrete. Dyn. Nat. Soc. (2010) 12 (Article ID 706483). [9] T. Kim, J. Choi, Y.-H. Kim, Some identities on the q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli numbers, Adv. Stud. Contemp. Math. 20 (2010) 335–341. no. 3. [10] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002) 288–299. no. 3. [11] H. Oruc, G.M. Phillips, A generalization of the Bernstein polynomials, Proc. Edinburgh Math. Soc. 42 (1999) 403–413. [12] G.M. Phillips, A survey of results on the q-Bernstein polynomials, IMA Journal of Numerical Analysis, 2009, pp. 1–12 (published online on June 23). [13] Y. Simsek, M. Açıkgöz, A new generating function of q-Bernstein-type polynomials and their interpolation function, Abstr. Appl. Anal. vol. 2010, Article ID 769095, p. 12. doi:10.1155/2010/769095.01-313.