Commun Nonlinear Sci Numer Simulat 14 (2009) 3261–3265
Contents lists available at ScienceDirect
Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns
A note on the use of modified Adomian decomposition method for solving singular boundary value problems of higher-order ordinary differential equations q Yahya Qaid Hasan, Liu Ming Zhu * Department of Mathematics, Harbin Institute of Technology Harbin, 150001, PR China
a r t i c l e
i n f o
Article history: Received 9 November 2008 Accepted 5 December 2008 Available online 25 December 2008 PACS: 02.60.Lj Keywords: Adomian decomposition method Singular boundary value problems High-order ordinary differential equation Linear and non-linear ordinary differential equation
a b s t r a c t This paper extend the work [Yahya Qaid Hasan, Liu Ming Zhu. Solving singular boundary value problems of higher-order ordinary differential equations by modified Adomian decomposition method. Commun Nonlinear Sci Numer Simul. doi :10.1016/j.cnsns.2008.09.027] to high order of singular boundary value problems. Solution of these problems is considered by proposed modification of Adomian decomposition method. The proposed method can be applied to linear and nonlinear problems. Some examples are presented to show the ability of the method for linear and non-linear ordinary differential equation. Ó 2008 Elsevier B.V. All rights reserved.
1. Introduction Adomian’s decomposition method (ADM) [2–5,14] is a new and ingenious method for solving nonlinear equations of various kinds. In recent years, the ADM has been successfully applied to solve many nonlinear equations in applied sciences, see for example [6,7,11]. The purpose of this paper is to introduce a new reliable modification of ADM. For this reason, a new differential operator is defined which can be used for high-order singular boundary value problems. The theoretical treatment of the convergence of Adomian’s method has been considered in [1,8–10]. 2. Modified Adomian decomposition method Consider the singular boundary value problem of n þ 1 order-ordinary differential equation in the form
yðnþ1Þ þ mx yðnÞ þ Ny ¼ gðxÞ; yð0Þ ¼ a0 ; y0 ð0Þ ¼ a1 ; . . . ; yðn1Þ ð0Þ ¼ an1 ; y0 ðbÞ ¼ c;
ð1Þ
where N is a nonlinear differential operator of order less than n, gðxÞ is given function and a0 ; a1 ; . . . ; an1 ; c; b are given constants. We propose the new differential operator, as below q
This paper is supported by the National Natural Science Foundation of China (10471067). * Corresponding author. Fax: +86 451 86403055. E-mail addresses:
[email protected] (Y.Q. Hasan),
[email protected] (L.M. Zhu).
1007-5704/$ - see front matter Ó 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.cnsns.2008.12.015
3262
Y.Q. Hasan, L.M. Zhu / Commun Nonlinear Sci Numer Simulat 14 (2009) 3261–3265 n1
d
Lð:Þ ¼ x1
n1
dx
xnm
d mnþ1 d x ð:Þ; dx dx
ð2Þ
where m 6 n 1; n P 1, so, the problem (1) can be written as,
Ly ¼ gðxÞ Ny:
ð3Þ 1
The inverse operator L
L1 ð:Þ ¼
Z
x
xnm1
0
is therefore considered a n þ 1-fold integral operator, as below,
Z
x
xmn b
Z
Z x ... xð:Þdx . . . dx: 0 |fflfflfflfflfflffl ffl{zfflfflfflfflfflffl0ffl} x
ð4Þ
n1
1
By applying L
on (3), we have
yðxÞ ¼ UðxÞ þ L1 gðxÞ L1 Ny:
ð5Þ
such that
LUðxÞ ¼ 0: The Adomian decomposition method introduce the solution yðxÞ and the nonlinear function Ny by infinite series
yðxÞ ¼
1 X
yn ðxÞ;
ð6Þ
n¼0
and
Ny ¼
1 X
An ;
ð7Þ
n¼0
where the components yn ðxÞ of the solution yðxÞ will be determined recurrently. Specific algorithms were seen in [12,13] to formulate Adomian polynomials. The following algorithm:
A0 ¼ FðuÞ; A1 ¼ F 0 ðu0 Þu1 ; A2 ¼ F 0 ðu0 Þu2 þ 12 F 00 ðu0 Þu21 ;
ð8Þ
A3 ¼ F 0 ðu0 Þu3 þ F 00 ðu0 Þu1 u2 þ 3!1 F 000 ðu0 Þu31 ; .. . can be used to construct Adomian polynomials, when FðuÞ is a nonlinear function. By substituting (6) and (7) into (5), 1 X
yn ¼ UðxÞ þ L1 gðxÞ L1
n¼0
1 X
An :
ð9Þ
n¼0
Through using Adomian decomposition method, the components yn ðxÞ can be determined as
y0 ¼ UðxÞ þ L1 gðxÞ; ynþ1 ¼ L1 An ;
n P 0;
ð10Þ
which gives
y0 ¼ UðxÞ þ L1 gðxÞ; y1 ¼ L1 A0 ; y2 ¼ L1 A1 ;
ð11Þ
y3 ¼ L1 A3 ; .. . From (8) and (11), we can determine the components yn ðxÞ, and hence the series solution of yðxÞ in (6) can be immediately obtained. For numerical purposes, the n-term approximant
Wn ¼
n1 X
yk ;
ð12Þ
n¼0
can be used to approximate the exact solution. The approach presented above can be validated by testing it on a variety of several linear and nonlinear initial value problems.
Y.Q. Hasan, L.M. Zhu / Commun Nonlinear Sci Numer Simulat 14 (2009) 3261–3265
3263
3. Numerical examples Example 1. We consider the linear boundary value problem:
y00 þ qx y0 ¼ x1q cos x ð2 qÞxq sin x; q
yð0Þ ¼ 0; y0 ðbÞ ¼ b ð1 qÞ cos b b
1q
ð13Þ
sin b:
We put
Lð:Þ ¼ xq
d q d x ð:Þ; dx dx
so
L1 ð:Þ ¼
Z
x
x q
Z
0
x
xq ð:Þdxdx:
b
In an operator form, Eq. (13) becomes
Ly ¼ x1q cos x ð2 qÞxq sin x: 1
By applying L
ð14Þ
to both sides of (14) we have q
b y0 ðbÞx1q þ L1 ðx1q cos x ð2 qÞxq sin xÞ 1q Z x Z x ðð1 qÞ cos b b sin bÞx1q þ x q ðx1q cos x ð2 qÞxq sin xÞdxdx;
y ¼ yð0Þ þ ¼
1 1q
0
b
and it implies,
yðxÞ ¼
1 1 ðð1 qÞ cos b b sin bÞx1q þ ðð1 qÞ cos b þ b sin bÞx1q þ x1q cos x ¼ x1q cos x: 1q 1q
so, the exact solution is easily obtained by this method. Example 2. We consider the non-linear boundary value problem: 2
y00 1x y0 ¼ x3 y5 ; yð0Þ ¼ 1; y0 ð1Þ ¼ 0:216506:
ð15Þ
We put
Lð:Þ ¼ x
d 1 d x ð:Þ; dx dx
so
L1 ð:Þ ¼
Z
x
x 0
Z
x
x1 ð:Þdxdx:
1
In an operator form, Eq. (15) becomes
Ly ¼
x2 5 y : 3
ð16Þ
Applying L1 on both sides of (16) we find
y ¼ 1 0:108253x2 þ
x2 1 5 L y : 3
Proceeding as before we obtained the recursive relationship
y0 ¼ 1 0:108253x2 ; 2
ynþ1 ¼ x3 L1 An ;
n P 0:
ð17Þ
Where An ’s are Adomian polynomials of nonlinear term y5 , as below,
A0 ¼ y50 ; A1 ¼ 5y40 y1 ; A2 ¼ 5y2 y40 þ 10y30 y21 ; .. .
ð18Þ
3264
Y.Q. Hasan, L.M. Zhu / Commun Nonlinear Sci Numer Simulat 14 (2009) 3261–3265
So, by substituting (18) into (17), we have y0 ¼ 1 0:108253x2 ; y1 ¼ 0:063782x2 þ 0:0416666x4 0:0075176x6 þ 0:0008138x8 0:000053x10 þ 1:9073486 106 x12 2:94966494 108 x14 ; y2 ¼ 0:0062577x2 0:0044294x6 þ 0:00240574x8 0:0006259x10 þ 0:000101699x12 0:0000115x14 þ . .. ; y3 ¼ 0:0010668x2 þ 0:00043456x6 þ 0:00018843x8 0:0003596x10 þ 0:0001864x12 0:000055x14 þ . .. ;
This means that the solution in a series form is given by
y ¼ y0 þ y1 þ y2 þ y3 ¼ 1 0:1668451x2 þ 0:04166666x4 0:0115124x6 þ 0:00340798x8 0:0010384x10 þ 0:0002900x12 0:00006677x14 þ ...: 1 ffi Note that, the Taylor series of exact solution yðxÞ ¼ pffiffiffiffiffiffiffi with order 14 is as below, x2 1þ 3
yðxÞ ¼ 1 0:166667x2 þ 0:0416667x4 0:0115741x6 þ 0:00337577x8 0:00101273x10 þ 0:000309446x12 0:0000957808x14 þ . . . : Example 3. Consider the non-linear boundary value problems:
y000 2x y00 y3 ¼ gðxÞ; yð0Þ ¼ 0; y0 ð0Þ ¼ 0; y0 ð1Þ ¼ 10:8731:
ð19Þ
Where
gðxÞ ¼ 7x2 ex þ 6xex 6ex x9 e3x þ x3 ex : Here, we use Taylor series of g(x)with order 10,
gðxÞ 6 þ 10x2 þ 10x3 þ
21 4 28 5 1 6 3 7 11 8 3769 9 100787 10 x þ x þ x þ x þ x x x : 4 15 2 28 576 3780 33600
We put
d 4 d 3 d x x ð:Þ: dx dx dx
Lð:Þ ¼ x1 So
L1 ð:Þ ¼
Z
x
x3
Z
0
x
x4
1
Z
x
xð:Þdxdxdx:
0
In an operator form, Eq. (19) becomes
Ly ¼ gðxÞ þ y3 : 1
Applying L
ð20Þ
on both sides of (20) we find
y ¼ 2:71828x4 þ L1 gðxÞ þ L1 y3 : Proceeding as before we obtained the recursive relationship
y0 ¼ 2:71828x4 þ L1 gðxÞ; ynþ1 ¼ L1 An ;
ð21Þ
n P 0:
Where An ’s are Adomian polynomials of nonlinear term y3 , as below,
A0 ¼ y30 ; A1 ¼ 3y20 y1 ; A2 ¼ 3y2 y30 þ 3y0 y21 ; .. . So, by substituting (22) into (21), we have
ð22Þ
Y.Q. Hasan, L.M. Zhu / Commun Nonlinear Sci Numer Simulat 14 (2009) 3261–3265
3265
y0 ¼ x3 þ 1:00978x4 þ 0:5x5 þ 0:166667x6 þ 0:0416667x7 þ 0:00833333x8 þ 0:00138889x9 þ 0:000198413x10 þ 0:0000248016x11 0:000944214x12 0:00213648x13 þ . . . ; y1 ¼ 0:0348465x4 þ 0:00094697x12 þ 0:00215765x13 þ 0:00250492x14 þ 0:00197358x15 þ . . . ; y2 ¼ 0:000667923x4 0:000129061x10 0:0000913954x11 0:0000329986x12 8:27314 106 x13 1:59553 106 x14 þ . . . ; y3 ¼ 0:0000229991x4 þ 4:72245 106 x10 þ 3:34423 106 x11 þ 1:20744 106 x12 þ 3:02721 107 x13 þ 5:83819 108 x14 þ . . . ; .. . This means that the solution in a series form is given by y ¼ y0 þ y1 þ y2 þ y3 ¼ x3 þ 0:975577x4 þ 0:5x5 þ 0:1666666x6 þ 0:0416667x7 þ 0:0083333x8 þ 0:00138889x9 þ 0:0000740741x10 þ . ..:
Note that, the Taylor series of exact solution yðxÞ ¼ x3 ex with order 10 is as below
yðxÞ ¼ x3 þ x4 þ 0:5x5 þ 0:166666x6 þ 0:04166666x7 þ 0:008333x8 þ 0:0013888x9 þ 0:000198x10 þ . . . : References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]
Abbaoui K, Cherruault Y. New ideas for proving convergence of decomposition methods. Comput Math Appl 1995;29:103–8. Adomian G, Rach R. Modified decomposition solution of linear and nonlinear boundary-value problems. Nonlinear Anal 1994;23(5):615–9. Adomian G. A review of the decomposition method and some recent results for nonlinear equation. Math Comput Model 1992;13(7):17–43. Adomain G. Differential equations with singular coefficients. Appl Math Comput 1992;47:179–84. Adomian G. Solving frontier problems of physics: the decomposition method. Boston, MA: Kluwer; 1994. Babolian E, Biazar J. Solving the problem of biological species living together by Adomian decomposition method. Appl Math Comput 2002;129:339–43. Deeba E, Dibeh G, Xie S. An algorithm for solving bond pricing problem. Appl Math Comput 2002;128:81–94. Cherruault Y, Adomian G, Abbaoui K, Rach R. Further remarks on convergence of decomposition method. Bio-Med Comput 1995;38:89–93. Hosseini MM, Nasabzadeh H. On the convergence of Adomian decomposition method. Appl Math Comput 2006;182:536–43. Lesnic D. Convergence of Adomian decomposition method: Preiodic temperatures. Comput Math Appl 2002;44:13–24. Wazwaz AM. Exact solutions for variable coefficients fourth-order parabolic partial differential equations in higher-dimensional spaces. Appl Math Comput 2002;130:415–24. Wazwaz AM. A first course in integral equation. Singapore: World Scientific; 1997. Wazwaz AM. A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl Math Comput 2000;111(1):53–69. Hasan Yahya Qaid, Zhu Liu Ming. Solving singular boundary value problems of higher-order ordinary differential equations by modified Adomian decomposition method. Commun Nonlinear Sci Numer Simul. 2009;14:2592–6.