A REMARK ON A BMO MARTINGALE

A REMARK ON A BMO MARTINGALE

2000,20B(4):511-514 .«,~cta,sRcientia 1'4mJJ1,m A REMARK ON A BMO MARTINGALE 1 Xiang Kainan ( ~*lfJ ) Institute of Applied Mathematics, Academia S...

233KB Sizes 32 Downloads 130 Views

2000,20B(4):511-514

.«,~cta,sRcientia

1'4mJJ1,m A REMARK ON A BMO MARTINGALE

1

Xiang Kainan ( ~*lfJ ) Institute of Applied Mathematics, Academia Sinica, Beijing 100080, China Department of probability and statistics, Peking University, Beijing 100871, China Abstract

In this paper, a negative answer to a question raised by Durrett(1984)[1] about

a BMO martingale is given.

Key words

Continuous martingale, uniformly integrable, BMO martingale

1991 MR Subject Classification

Let M 1 ::; p

= (Mt , Ft )

< 00, we set

60KIO

be a uniformly integrable continuous martingale with M o

IIMllBMO

p

= sup II[E[IMoo T

-

O. For

MTIPIFT]]l/Plloo,

where the supremum is taken over all stopping times T. Set BMO p = {M : Furthermore, all

11.IIBMO

IIMllBMO < oo}. It is well known that p

p

BMO p = BMO q ('V1 ::; p::; q).

norms are equivalent and

IIMII BMO p

sup T

IIMoo

MTllp 1 , P(T < oo)p -

where the supremum is taken over all stopping times T satisfying P(T

< 00) > O. In the later

we shall simply write BMO for BMOp • Let L oo be the class of all bounded continuous martingales. Let a(M) be the supremum of the set of all a such that sup E[eaIMoo-MTIIT

< 00] < 00,

T

where the supremum is taken over all stopping times T. Then there exist two constants c, C E

(0,00) such that C

a (M In fact

C

= ~,C =

2ee~11

)::;

inf 11M -

NEL oo

= 2.42. This

NIIBM0

1

::;

(C).

a M

is well known Garnett-Jones theorem. The following

example was discussed in [1] page 214.

Example 1

Let B = (B(t)) be a standard one-dimensional (Ft)-Brownian motion. Set

Ro = 0, and for n ~ 1, set N

n; =

inf{t

= inf{n; B(Rn)

> Rn- 1; IB(t) - B(Rn-1)1 > 1}. Let - B(Rn- 1) = -1}, X,

= B(t 1\ RN ) .

1 Received Oct.9,1998; revised Oct.10,1999. Research supported in part by CNSF, Tianyuan foundation, and the Mathematical Center of Ministry of Education

512

ACTA MATHEMATICA SCIENTIA

Vo1.20 Ser.B

Then X E BMO and IIXIIBM0 1 = ~. It is easy to see that a(X) = log 2 = 0.693, so the G~rnett-J ones theorem gives 0.537

1 = 0.693e

. f II II :::; Z~nLoo X - Z BM0 1

:::;

2.42 0.693

= 3.49.

After the above discussion, Richard Durrett raised the following unsolved question. Question Do we have inf z EL oo IIX - ZIIBM0 1 = IIXIIBMo 1 ? In this paper,we give a negative answer to the question as stated below. Theorem 1 Let X be as in Example 1, the following holds:

inf

ZEL oo

IIX - ZIIBM0 < IIXIIBMOI. 1

Proof Let 1 z, 2n [B(Rn /\ t) - B(Rn-l/\ t)]I[N?n)

= 'E

+ B(R1 /\ t) -

£[B(RN /\ t) - B(RN-l/\ t)],

n~2

where -21(, < e < O. Noticing [N 2: n] = nj~t[B(Rj) - B(Rj-1) = 1] E FRn _ 1 , and B(R n + .) - B(Rn) is independent of FRn ' we can see that Z = (Zt) is a martingale. Clearly, Z E L oo • We claim that 9

IIX - ZIIBM0
(1.1)

1

If T is a stopping time, then on {Rk :::; T order to prove (1.1), we calculate

< Rk+1, N > k}, XT

= k + a for some a E (-1,1). In

The calculation is devided into several steps. (i) Suppose k = 0, then XT = a. We have the following calculation.

IXoo -

(XT - ZT)I

Zoo -

-1

-(l-a)£

o

1+£-212 1 23

1

+e

2 (ii) Suppose k = 1, then XT

0

1+a1 2 2

1+a(!)2 2

2

j(O a) = 1 + a (1 + ~

X oo

2

2

l+a(!)n+l

n

,

probability 1-a

_ ~ + ~) _ (1 - a)2e < 1 < ~.

2 22 24 = 1 + a. We have

IXoo

-

2

Zoo -

2

(XT - ZT)I

1(1 ~ 212 )(1 + a) + e - a£1

1

1(1 - 2\)a + 213 + £1

2

1- (1 - 2\)a + 1 - ~ + 2~ - £1

n

-(1- 212 ) a + (n-1) - ~ + 2n3+2 - £

8

probability 1-a

-2

1+a1 2 2 1 +a(!)2 2 2

l+a(!t 2

2

513

Xiang: A REMARK ON A BMO MARTINGALE

No.4

/(1, a)

= -£ +

a(1 - a) 2 e

< -2£ < 1 <

s·9

3 e ~ - e - 214 2 (1 - 2£ - 213 ) 2 1 e /(1 a) = -( - - -)(a ) + + 1 - -22 + -2 , 8 2 ~ - e 6 8£ 4 (1 - 2£ - 213)2 6 - 8£

<

+ 1-

1 2

-2

e

1

+ -2 + -24

1

+ -24

9 = b1 (c) < -. 8

(4) If a > a3, then 1 e e 3 1 1 e 1 a2 /(1, a) = -(1 - 22) 22 + (2 - 2 + 22 - 26 )a + 1 - 22 - 22 + 2 e 3 3 a(1 - a) + 22 + 24 - 26 2 e 9 e e 9

< - + - - - < -.

8 2 8 8 (iii) Suppose k = 2, then ~T = 2 + a. We have

Xoo

IXoo

1(1 - 213 ) (1 + a)

1

3 n

+e -

1(1 - 213)a + 214

2

I-

probability 1-a -2 1+a1 --2 2

Zoo - (XT - ZT)I

-

ae 1

+ eI

(1 - 2~)a + 1 - 212

+ 23"

-(1 - "!")a 23 + n - 2 _ ..!.. 22

-

1 + a (!)2 2 2

£1

+ _3_ 2 +2 n

£

1+a(!t- 1 2

2

Now similarly to step (ii), we can prove that /(2, a) :S b2 (£) < ~ for a function b2 (£) depending on e. (iv) Let k

~

3. Then XT X oo

= k + a". We have IXoo

k-1

-

Zoo - (XT - ZT)I

1(1 - 2k~1 )(1

+ a) + e -

1(1 - 2k~1)a + 2k~2

k k+1

I-

k+n

-(1 - 2k~1)a

(1 - 2k~1)a

+1-

+n -

2\ 21k

a£1

+ £1

+ 2k~3

- £1

+ 2k+3n +2 -

£

probability 1-a -2 1+a1 --2 2 1 + a (!)2 2 2 1 + a (!t+ 1 2 2

514

ACTA MATHEMATICA SCIENTIA

Vo1.20 Ser.B

Similarly to step (ii), we have the following estimations. 1 - -1- +e (1) If a < - 1 - ~-e = a1, then 2k

+1

f(k, a)

= -[ +

a(l - a) 9 2 e < -2£ < 1 <



£2

f( k a) < 1 + , 3

(4) If a3 < a < 1, then

9 8

f(k a) < ,

e

9

e

9

- -8 < -. 8

e

+ -2 - -8 < -. 8

(vi) By (i)-(iv), we have

Furthermore, for any stopping time T,

Thus we can prove for any stopping time T,

E[lXoo - Zoo - (XT - ZT)IIT < 00] ~ b < this shows that IIX - ZIIBM0 1 < ~, namely infz EL oo /IX

-

ZIIBMo 1

9

S' <

/lXIIBMo 1 •

References 1 Durrett R. Brownian motion and martingales in analysis. Wadsworth Mathematics Series,1984 2 He S W, Wang J G, Yan J A. Semartingale theory and stochastic caculus. Science Press and CRC Press INC, 1992