A semiclassical approximation for the Wigner distribution function. Application to planar channeling

A semiclassical approximation for the Wigner distribution function. Application to planar channeling

V~ume 94A, numb~ 9 A ~M~LA~AL PHYSICS LETTERS A~ROX~A~ON 4 Ap~ 1983 FOR THE ~ G N E R ~ S T R ~ U T ~ N FUNC~O~ APPL~A~ON TO PLANAR CHANNEL~G ~...

167KB Sizes 3 Downloads 59 Views

V~ume 94A, numb~ 9

A ~M~LA~AL

PHYSICS LETTERS

A~ROX~A~ON

4 Ap~ 1983

FOR THE ~ G N E R ~ S T R ~ U T ~ N

FUNC~O~

APPL~A~ON TO PLANAR CHANNEL~G ~ c t o r G. NOVffZKY

~s~u~ ~ M e ~ ~ i c s , ~

Kie~ USSR

ReceNed 7 Janu~y 1983

WffNn the ~amework of ~e W~n~ approach to ~e quamum mechaN~ of a s~#e p~fide the ~ m i d ~ c M approfim~ fion %r the ~ f i b m ~ n ~ n ~ n ~ the c~e of pNn~ channe~ng g obtMne~ ba~d on Rera~on of the dasNcM ~ t ~ n . Application of ~ m~hod m o ~ oneMimen~onM ~Nution NoNems N NoFo~&

Nn~e-particle ~ o ~ t i o n N one of the ~ m N e ~ phys~N probbms. At the same time its e x i t quantum-mechan~N sNution ~ known oNy ~ a ~ w c ~ (harrnoNc ~ c N ~ m , e~.) so l h ~ even one~imenNonN peneUation of a w a v e ~ k e t through a b ~ r i ~ m u ~ be sN~ed numericN~ [ 1]. N tNs ~ t u ~ n one must ~ o k for some app r o ~ m a ~ anNytic sNutiom A promiNng poss~flit~ appearing with the ~ o d u c f i o n of the Wigner d~tr~ufiom ~nction approach [2], win be conNde~d here with the application to the continuum model of N a n ~ channeling [3]. This m o d ~ ~ads to the proNem of de~rmining the evNufion of the initiN flux ~ an exactly perio~c on~ ~ m e n ~ o n ~ effective po~nti~. Quantum-mechaNcNly tNs m o d d w ~ derived ~ ~ [4], and the quantummechaNc~ sNution for a ~N~tic modal po~ntiN w ~ Nven ~ ~ [5] for the c ~ e cf a m o n o c h r o m ~ inifiN flux of channebd protons. Later an exact d ~ c ~ sdution ~ r ~ N t r g y ~ r p l a n ~ potentiN and nonmonochr~ matic initiN flux was constructed ~ ~ ~ ] . AccorSng to re£ [5], the effect of proton channefing d e m o n ~ s egenfia~y d ~ c N ~ u ~ s . This means that the ~miclassicN reset, if R N obtNnaNe, win pro~de a good a ~ procreation to the exact quantum-mechan~N sNution. Such r ~ t may p ~ s ~ s ~ n t i ~ l y quantum-mecha~cN properti~ in the case of the channe~ng of hght p ~ f i ~ . ~ the p N ~ n t p a p ~ the ~miclassic~ cor~ction to the ~ N c N sNution w ~ be obtNned ~ terms of the Wigner ~ t i b u t i o n function [2,7], wNch estab~sh~ the most n~urN ~nk between ~as~cN and quantum mec h a ~ . A ~cent ~ e w of Rs properti~ may be ~ u n d ~ ~ £ [8-10]. The sinNe~article one-~mensionN Wigner function ~ defined by f ( ~ ~ 0 = (gh)-I hs ~ u f i o n

~

f @ ~p@N~)ff*~

~ ~m~

by the ~ e r

_N 05~

(1)

+Y, O .

e ~

+ (p/m)Sff~ = L ~ = 0 ~ 2 ~ 1 f f

~ ~ ~p[N~

- p~]

[V(x +y) - V ~ - y ~ f ~ ~ O.

(2)

In the fimit ~ = 0 t~s equation c ~ n d d ~ with the Houfine equation for the d ~ f i c ~ phase~pace d~tribution function of an en~mNe of n o ~ n t ~ t ~ g particles in an extern~ p o ~ n t i ~ V~):

bfc~t + (P/m)bfc/bX = L c f e = V ' ~ ) b f e ~ P .

O)

Fo~owing the m ~ h o d used ~ re~ [6], the Green function G c ~ r thg equation can be con~ructed ~ r an ~ b R ~ r y on~dimengonN p ~ e n t i ~ . Th~ e n a N ~ one to ~ansform the Cauchy proNem for eq. (2) with lhe i~tiN v~ue 0 031 ~ 163/83/0000-0000/$ 03.00 © 1983 North-Holland

437

Vo~me 94A, numb~ 9

PHYSICS LETTERS

4 April 1983

f ( ~ a o) = ~ ( ~ x)

~)

~ t o the following ~ N

equation

t

f=fc + f dtl Gc(t- tl)(Lq - L c ) f Q 1 ) ,

(5)

0 when fc( N ~ 0) = f 0 ( ~ x). A ~micl~NcN approximation ~ now obtNned by iterat~g eq. (5) OMs idea bdonN to SNmkov [9]) t ~ =fc + f l ,

f l = f dtlGcQ - t l ) ( t q - L c ) f c ~ l ) " 0

(6)

~ the case of Nan~ channeling V~) = Voo@),

f 0 ( ~ x) = / 0 ( P ) ,

o~) = ~

~ exp(~nx~),

where v(0) = Omin = 0, o ~ ) = Vm~ = 1, ~ = V_n, and 2a is the ~ r ~ a n ~

x ~,

p~m~)~p,

(7) spacing. In ~men~oN~s variables

t~/2~)~2at,

(8)

the das~cN ~ncaons are Nven by [6] ~

1

dq f dyGc( N q ; ~ y ; t ) ~ ) ,

~ ( N x, Q= f --~

O)

--1

Gc( p, q;x, y; t) = ~ {O(Eqy - 1)8(p - u)8(t - T(q, y, x) - nr) n

+O(1-~)[6(p-u)b(t-~x)-2nr)+6(p+u)b~+T~,-y,x)-(2n+

1)r)l)/lul,

(10)

where 0 g the stop ~ncfion, ~ y = q2 + o(y), u =u~G

x) = M Y - o ~ V 2

~gn~),

(11)

x

1

f eo%y y

(12, 13)

1 1

L(gat)

=fd~Sq+~-nrl)[O H -1

~ -

1)~O1)+0(1-~)0~-o~-l~u~ull.

(14)

Here u 1 = u ( ~ ~ ~, ~ = ~ ~ ~L rl = r ( ~ x) as defined ~ eqs. ( 1 1 ) ~ 1 3 ~ It shouN be noted ~ a eq. (10) and r~e O~ by wNch tNs Green ~ncfion can be ~ e d , are v ~ d oNy ~ r Ix l ~ 1 and ~ r Nn~ions pefio~c ~ coordinate ~ace (wMch g the case in the present d ~ u s ~ o n ~ ~ t h tMs in ~ n d and ~Mng ~ m account that ~ r the pommM (7) and variaNm ~ the owrator Lq (2) takes the ~ r m L q [ ( N x) = ( g / 2 ~ ~ ~ s i n ~ x ~ ( p n

438

- ng, x),

(15)

V~ume 94A, numb~ 9 ~e

g=( ~ m

PHYSICSLETTERS ~ ,

the ~m~hsfic~ correction to the d a t u m c o o ~ v s p ~ e t ~ 1 dtl 0

+ 0(1 - ~

~

4 April 1983

f

f dY [uIM ~m

-~

-1

denfi~ b ~ o m ~

{O~y-1)6Q-tl-T~x)-mr)

[~ Q - t 1 - T ~ ~ x ) - 2mr) + 6 Q - t 1 + T ~ , ~ , x ) - (2m + 1)~] }

- o~

X ~ ~ fin~)~n

~

tl)~ +nO~

~ tl)~q ] .

(16)

~ ~ncfion, ~ ~h ~ ~ ~ s the ~ d a ~ c ~ ~ ~ ~ ~ ~ ~ t ~g pm~om ~ to the ~ a n c e ~om ~ ~ sur~ce. It ~ ~so ~ n g m d ~ m ~ e the ~ ~ ~ n ~ y , whi~ ~ n be done by m~ng the ~ a c e ~ e [I1] ofeq. (16): d t P l ~ , 0 = s~ m 0 s S dt e- a P l ~ 0 .

0

(17)

0

(~e c~n~g d~fic~ ~ncfion is ~ven ~ re~ [6].) E ~ n g necessary now to de~rm~e a ~ ~rm S=s

Sdt e-~t ft dtl 0

0

~

6 Q - tl _

T1 _

the ~

dependence from eq. (16), R is

mZl)6Q1 _ T2 - n z 2 ) ,

m,~

where I~1 ~ ~ ~ = 1,2~ ~ r ~ r m ~ g the ~ e g r ~ , S =s H ~ p ( ~ + n ~ + n ~ -i=1,2 n

~ obt~n the pmdu~ ~ ~ o ~ o m e ~ c ~ series:

=s H ~ p ( ~ ( ~ + ~ x p ~ u ) - l ] - l } . i=1,2

For s ~ 0 this ~ncfion b e h ~ l~e S = ~-1 +~rl f i ~ ( ~ ) _

~ +½r2 f i ~ ( ~ ) _

~ +O~1~

"

(18)

The ~ # ~ term ~ n g ~ m v ~ ~ f i c ~ y after ~ e ~ t ~egr~s over ~ and y. ~Mng ~ o accoum the ~ m m e t ~ p m ~ of the ~egrand and the demema~ rdafion 0~) + 0 ( ~ ) = 1, we obtain ~om eqs. ( 1 6 ~ 1 ~ the finM reset ~ r the ~ c M c ~ t ~ u ~ n to the d e c l a i m e d d e n n y ~

1

=

-

--~

X~

sin~)~(p

oe

O

y

-

-

÷

-

--1

- q +ng)~ 4 ~

- p)]~(u2)~2Zl~

[q ,

(19)

n

where u 1 = u(q, y, x ~ u 2 = u ( p , y, ~), 71 = r(q, y ~ r 2 = r ( p , y ~ T 1 = T(q, y, x ~ T 2 = T(p, y, ~). The term with the 6-functions in eq. (19) ori#n~es from the operator Lq - L c. ~ w~ ~ff unintegrated for convenience. Owing to complexity of the prob~m (periodic potenti~), the qu~itafive an~y~s of the semiclas~c~ solutions (16) and (19) ~ a difficult task. Th~ task may be fimp~fied in the d~cus~on of problems with a fine,humped p~ tenfi~ [1,12]. In condufion ff mum be emphafized that the proposed method can be applied to any on~dimension~ prob~m, or to any problem for which the dasfic~ sdufion ~ ava~able. The numeric~ ~sul~ concerning the channeling eft ~ct will be #yen hte~ 439

V o ~ m e 94A, n u m b ~ 9 R [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

440

PHYSICS LETTERS

~ R.A. Sacks and J.E. R~hardson, Phy~ Rev. B21 (1980) 1449. E. Wigner, Phys. Rev. 40 (1932) 749. J. Lindhard, K. Dan. Vid. Sdsk. Mat. Fys. Medd. 34, no. 14 (1965). Yu. Kagan and Yu.V. Konone~, Zh. Eksp. Teor. F~. 58 (1970) 226. Yu. Kagan, Yu.V. Kononets and A.A. Mamonto~ Phys. LetL 72A (1979) 247. V.G. Nofi~ky, Phys. Lett. 85A (1981) 38. J.E. Moy~, Pro~ Cambridge Philos. Soc. 45 (1949) 99. C.R. de Groot and L.G. Suttorp, Foundations of electrodynamics (North-Holland, Amsmrdam, 1972). Yu.M. Shirokov, Part. Nucl. 10 (1979) 5. G.J. Ia~ate, H.L. Grubin and D.K. Ferry, Phys. Lett. 87A (1982) 145. W. Kohn and J.M. Lutfinger, Phys. Rev. 108 (1957) 590. A. Har~ein, Z.A. Wdnberg and D.J. DiMaria, Phys. Rev. B25 (1982) 7174.

4 Apdl 1983