Discrete Mathematics North-Holland
111 (1993) 421-422
421
A short proof of Fisher’s inequality Renaud U.P.R.
Received
Pal&e,
Palisse
175 -
Universitl Pierre et Marie Curie
22 July 1991
R., A short proof of Fisher’s inequality,
Discrete
Mathematics
111 (1993) 421422
Nous donnons ici une dtmonstration nouvelle, trts courte, de I’iGgaliti de Fisher, qui gCntralise un rCsultat bien connu de de Bruijn et ErdGs. Cette dtmonstration utilise essentiellement une id&e de Tverberg (1982) pour dt-montrer un autre tnonct combinatoire.
We prove
the following
result.
a,> be a finite
Theorem. Let E=jal,,... n subsets of E such that
fori#j
IEinEjI=3.
and
set of cardinal&y
m and let El,
. . , E, be
1Eil > 1. for all i.
Then man. that j_#O. Let x1, . .., x, be real variables.
Proof. We may assume we may write
a,EEinEj)=J-
C
Since )Ein Ej/ = A,
XiXj,
i
Hence,
If we had m
akFE xi=o
(ldkdm)
Correspondence to: Renaud Africa. Elsevier Science Publishers
system
Palisse,
B.V.
Mission
Cooperation,
B.P. 510, Ovagadougou,
Burkina
Fasso,
422
R. Palisse
would have a nonzero
solution
(~ 12=~ Xi
i=l
a contradiction.
X and, consequently,
(l-IEil/A)%~
i=l
Thus, m > n.
0
For the usual proof of this inequality, For similar
methods
see [3].
of proof for other combinatorial
results, see [l, 2,4,5].
[I] Q. Huang, On the decomposition of K, into complete m-partite graphs, J. Graph Theory 15 (1991) 1-6. [2] D. Pritikin, Applying a proof of Tverberg to complete bipartite decompositions of digraphs and multigraphs, J. Graph Theory 10 (1986) 197-201. [3] H.J. Ryser, An extension of a theorem of de Bruijn and Erdiis on combinatorial designs, J. Algebra 10 (1968) 246-261. [4] P. Seymour, On 2-colourings of hypergraphs, Quart. J. Math. Oxford 25 (1974) 303-312. [5] H. Tverberg, On the decomposition of K, into complete bipartite graphs, J. Graph Theory 6 (1982) 4933494.