A small molecule autophagy inducer exerts cytoprotection against α-synuclein toxicity

A small molecule autophagy inducer exerts cytoprotection against α-synuclein toxicity

Journal Pre-proof A small molecule autophagy inducer exerts cytoprotection against α-synuclein toxicity S.N. Suresh, Ravi Manjithaya PII: S0014-2999(...

1MB Sizes 0 Downloads 20 Views

Journal Pre-proof A small molecule autophagy inducer exerts cytoprotection against α-synuclein toxicity S.N. Suresh, Ravi Manjithaya PII:

S0014-2999(19)30587-4

DOI:

https://doi.org/10.1016/j.ejphar.2019.172635

Reference:

EJP 172635

To appear in:

European Journal of Pharmacology

Received Date: 19 May 2019 Revised Date:

25 August 2019

Accepted Date: 2 September 2019

Please cite this article as: Suresh, S.N., Manjithaya, R., A small molecule autophagy inducer exerts cytoprotection against α-synuclein toxicity, European Journal of Pharmacology (2019), doi: https:// doi.org/10.1016/j.ejphar.2019.172635. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Published by Elsevier B.V.

1

A small molecule autophagy inducer exerts cytoprotection against α-

2

synuclein toxicity

3

S. N. Suresh1,3, Ravi Manjithaya1,2*

4

Affiliations

5

1

6

Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur,

7

Bangalore, India.

8

3

9

Bangalore, India.

Molecular Biology and Genetics Unit (MBGU), and 2Neuroscience Unit (NSU),

Present address: Centre for Brain Research (CBR), Indian Institute of Science (IISc),

10 11

*

12

Correspondence to: Ravi Manjithaya ([email protected])

13 14 15 16 17 18 19 20

Corresponding author

21

Abstract

22

α-synucleopathies are protein-misfolding disorders occur primarily due to aggregation

23

and toxicity of α-synuclein. This study characterized the small molecule AGK2 as a

24

modifier of α-synuclein mediated toxicity in an autophagy dependent manner in both

25

yeast and mammalian cell line models. In yeast system, AGK2 enhances autophagy to

26

clear toxic α-synuclein aggregates in an autophagy dependent manner. Autophagy

27

flux analyses revealed that AGK2 induces autophagy especially autolysosomes.

28

Importantly, AGK2 induces autophagy in an mTOR independent manner. These

29

features enable AGK2 to exert cytoprotective potential against α-synuclein mediated

30

toxicity in different model systems.

31

Keywords

32

Protein misfolding diseases; AGK2; autophagy; small molecule screen; yeast;

33

neuronal models; toxic protein aggregates; neurodegeneration

34

1. Introduction

35

Protein misfolding diseases such as α-synucleopathies are lethal and drastically affect

36

the quality of life with no disease modifying medications. The cause of

37

neurodegeneration can be of genetic or of sporadic in nature. At intracellular level,

38

resulting protein aggregates cause toxicity by perturbing essential cell survival

39

pathways resulting in a cell death (Suresh et al., 2018b). These protein aggregates are

40

toxic as they sequester the key cellular proteins including transcription factors that are

41

necessary to maintain the upkeep of essential cellular pathways (Stefani and Dobson,

42

2003). Thus, in this protein aggregation driven neurodegeneration, most of such

43

cellular pathways become awry thereby perturbing cellular homeostasis (Stefani and

44

Dobson, 2003). Plethora’s of studies have highlighted the beneficial effects of

45

clearing these disease associated protein aggregates in terms of curbing proteotoxicity

46

and enhancing cell viability (Rajasekhar et al., 2015; Suresh et al., 2017; Suresh et al.,

47

2018a).

48

Proteostatic machineries such as chaperones, ubiquitin-proteasome system (UPS) and

49

autophagy related pathways helps in maintaining cellular as well as organismal

50

homeostasis (Labbadia and Morimoto, 2015). Under steady state conditions of a cell,

51

the proteins tend to misfold and these are mainly recognized by chaperones that refold

52

them ensuring functionality of such proteins is not lost due to misfolding (Klaips et

53

al., 2018). If chaperones fail to repair the misfolded protein or get or are overwhelmed

54

due to increased misfolded proteins numbers in certain conditions, pathways such as

55

Endoplasmic Reticulam Associated protein Degradation (ERAD) and UPS degrade

56

them to prevent intracellular aggregation (Klaips et al., 2018). In spite of these

57

available measures, due to various reasons, the toxic protein oligomers or aggregates

58

are seen to accumulate inside cells. Such protein oligomers and aggregates are cleared

59

by autophagy related pathways (Nixon, 2013).

60

Autophagy is an evolutionarily conserved intracellular pathway that clears

61

superfluous organelles, long-lived proteins, protein aggregates (Suresh et al., 2018b).

62

The specific form of autophagy that clears protein aggregates is called aggrephagy

63

(Suresh et al., 2018b). Aggrephagy pathway is essentially helps the cells to cope up

64

with aggregate burden by clearing them and thus ameliorate the cytotoxicity. As

65

neurons seldom divide, they depend heavily on autophagy to maintain proteostasis

66

(Nixon, 2013). Neuron specific genetic ablation of autophagy as done by knocking

67

out the key autophagy genes such as Atg5 and Atg7, lead to the manifestation of

68

neurodegenerative symptoms such as accumulation of ubiquitin positive aggregates,

69

neuronal loss, behavioral deficits and reduced survivability (Hara et al., 2006;

70

Komatsu et al., 2006). Such studies highlight the importance of basal autophagy in

71

attaining cellular proteostasis and eventually organismal homeostasis (Hara et al.,

72

2006). On the other hand, upregulation of autophagy by genetic intervention by

73

overexpressing core autophagy proteins such as Atg 5 or beclin 1 protein enhanced

74

lifespan of transgenic mice (Fernandez et al., 2018; Pyo et al., 2013). We and others

75

show that genetic and pharmacological upregulation of autophagy is beneficial in

76

curbing the pathogenesis of neurodegeneration (Sarkar et al., 2007; Suresh et al.,

77

2018a).

78

Previous work from our laboratory identified novel small molecule regulators of

79

autophagy through screening performed in a yeast model of proteotoxicity (Suresh et

80

al., 2017). In this screen, we identified AGK2 (2-Cyano-3 -[5-(2,5-dichlorophenyl)-2-

81

furanyl]-N-5-quinolinyl-2-propenamide) as one of the hits. α-synuclein

82

overexpression in the yeast, Saccharomyces cerevisiae, perturbs its growth and such

83

cells eventually die, a phenomenon similar to that seen in case of aggregate mediated

84

cytotoxicity in neurons (Khurana and Lindquist, 2010). Using this α-synuclein

85

mediated proteotoxicity model, we previously identified the novel small molecule

86

aggrephagy modulators such as 6-Bio and XCT790 (Suresh et al., 2017; Suresh et al.,

87

2018a). In this study, we characterized AGK2, one of the hits identified from our

88

previous screen as a potential aggrephagy modulator in a two model systems such as

89

yeast and mammalian cells.

90

2. Materials and methods

91

2.1. Plasmids, antibodies and chemical reagents

92

Plasmids used in this study are as follows; GFP-Atg8 [pRS316, a kind gift from Prof.

93

Yoshinori Oshumi (Tokyo Institute of Technology)], SNCA-GFP (pRS 306, a gift

94

from Prof. Paulo Ludovico) GFP-SNCA(Furlong et al., 2000) (a kind gift from Prof.

95

David Rubinzstein; Addgene, 40822).

96

From HiMedia we purchased dextrose (GRM077), galactose (RM101) peptone

97

(RM667), yeast extract (RM027), and amino acids [uracil (RM264), histidine

98

(RM051), leucine (GRM054), lysine (L5501) and methionine (GRM200)]. From

99

Sigma-Aldrich we purchased 3-MA (M9281), AGK2 (A8231), DMEM F-12

100

(D8900), DMEM (D5648), penicillin and streptomycin (P4333), DAB (3, 3′-

101

Diaminobenzidine, D3939), trypsin EDTA (59418C) and Atto 663 (41176).

102

From Cell Signaling Technology purchased, total P70S6K antibody (9202), Anti-p-

103

P70S6K T389 antibody (9862), anti-rabbit IgG horseradish peroxidase (HRP; 7074)

104

and total 4EBP1 antibody (9452) were purchased. From Sigma-Aldrich, anti-LC3B

105

antibody (L7543) was purchased. From Thermo Scientific, anti β-Tubulin (MA5-

106

16308) antibody was purchased. From Bio-Rad, anti-mouse IgG, HRP (172-1011)

107

antibody was purchased. CMAC-Blue (C2110) was purchased from Life

108

Technologies. Bafilomycin A1 (11038) was purchased from Cayman chemical.

109 110

2.2. Yeast culture

111

To culture WT GFP and autophagy mutant strains, YPD (yeast extract, peptone,

112

dextrose) media was used. To culture SNCA-EGFP and EGFP-Atg8 strains,

113

SD-Ura [synthetic dextrose without uracil] medium was used. To induce SNCA-

114

EGFP protein aggregates, cells were grown in SG-Ura (synthetic galactose without

115

uracil) medium.

116

All the above-mentioned strains were incubated at 250 g and 30°C.

117

2.3. Mammalian cell culture

118

HeLa cells were grown in DMEM medium containing 10% FBS (fetal bovine serum,

119

Pan-Biotech, P03-6510). We cultured and maintained undifferentiated neuroblastoma

120

SH-SY5Y cells in DMEM-F12 containing 10% FBS (fetal bovine serum, Life

121

Technologies, 12500062). All the cell lines were maintained at CO2 (5%) and 37°C.

122 123

2.4. Growth assays

124

Growth assays were performed using a multiplate reader in a high-throughput format.

125

Yeast strains (A600~0.06) were seeded in a 384-well plate and incubated (30°C, 420 g

126

and 80 µl) in a multiplate reader (Varioskan Flash, Thermo Scientific, USA) that

127

recorded absorbance (A600) automatically every 30 min for 72 h. Using GraphPad

128

Prism, the data were analysed and plotted the appropriate growth curves.

129 130

2.5. α-synuclein-EGFP protein induction

131

SNCA-EGFP strains were inoculated in a SD-Ura medium. From this, secondary

132

culture was inoculated (30°C, 250 g) till the absorbance (A600) reaches 0.6 - 0.8/ml.

133

Then, the cells were washed with autoclaved water and then incubated them (30°C,

134

250 g) with SG-Ura medium for 16 h for the induction of SNCA-EGFP protein

135

aggregates.

136 137

2.6. Yeast lysate preparation

138

The yeast strains (A600=3) were resuspended in a trichloroacetic acid (12.5%) and then

139

stored at -80°C for minimum of 30 min. Samples were thawed on ice and then

140

centrifuged (16,000 x g, 15 min). The pellets were washed twice using ice-cold

141

acetone (80%). Pellets were air dried and then resuspended in lysis (0.1 N NaOH and

142

1% SDS) solution, followed by the addition of Laemmli buffer and boiled it for 15

143

min.

144 145

2.7. Mammalian lysate preparation

146

The mammalian cells were collected in a Laemmli buffer (1X) to perform the LC3B

147

processing assay and other autophagy related signaling immunoblotting. For EGFP-

148

SNCA clearance assay, we scraped the cells in a growth medium. Cells were washed

149

twice with PBS (1X, phosphate buffer saline, 4°C, 2000 g) and lysed them using

150

Laemmli buffer and boiled for 15 min.

151 152

2.8. Immunoblotting

153

The appropriated yeast lysates were electrophoresed on SDS-PAGE (8-15%) and

154

transfered the proteins to PVDF membrane (Bio-Rad, 162-0177) using Transblot

155

turbo (Bio-Rad). Membranes were probed with appropriate primary antibodies

156

overnight at 4°C and then incubated with HRP-conjugated secondary antibody at

157

room temperature for 2 h. The signals from blots were developed using enhanced

158

chemiluminescence substrate (Clarity, Bio-Rad) and image were captured using a gel

159

documentation system (G-Box, Syngene, UK). The bands were quantified using

160

ImageJ software (NIH).

161 162 163 164

2.9. Microscopy To image the yeast cultures, after appropriate treatments, the cells were washed with autoclaved water and mounted on an agarose pad (2%).

165

To image the mammalian cells, after appropriate treatments, the cells in

166

coverslips were fixed using paraformaldehyde (4%, PFA; Sigma, 158127),

167

permeabilized using triton X-100 (0.2%; HiMedia, MB031) and mounted using

168

Vectashield (Vector laboratories, H-1000). For immunofluorescence, coverslips were

169

incubated with appropriate primary antibody [in 5% BSA (Sigma, RM105)] at 4°C

170

for overnight. Then, the coverslips were incubated with fluorescent-conjugated

171

antibody room temperature for 2 h. Then, the coverslips were mounted using

172

Vectashield (Vector laboratories, H-1000).

173

The images were acquired using DeltaVision Elite widefield microscope (API,

174

GE, USA) with following filters: Cy5 (632/22 and 676/34), TRITC (542/27 and

175

594/45), FITC (490/20 and 529/38) and DAPI (390/18 and 435/48). The images were

176

processed using DV SoftWoRX or ImageJ software for further analysis.

177 178

2.10. EGFP-Atg8 processing assay

179

Yeast strain expressing EGFP-Atg8 plasmid was grown in SD-U medium at 30°C

180

and 250 g. From this, the secondary culture inoculated and grown under the above-

181

mentioned conditions till their absorbance (A600) reaches 0.6-0.8. Cells were washed

182

twice and incubated in starvation medium with or without AGK2. Samples were

183

collected for 0, 2, 4 and 6 h time points. The yeast lysates were prepared as mentioned

184

above and electrophoresed with SDS-PAGE (10%) and immunoblotting was

185

performed.

186 187

2.11. α-synuclein-EGFP degradation assay

188

SNCA-EGFP aggregates were induced by incubating the cells with galactose for 16 h.

189

The aggregate induction was turned-off by addition of dextrose medium and then

190

treated with AGK2 for 24 h. We analyze the SNCA-EGFP levels using

191

immunoblotting.

192 193

2.12. Tandem RFP-EGFP-LC3 processing assay

194

HeLa cells were seeded in 60-mm dishes, transfected them with tandem RFP-GFP-

195

LC3B plasmid construct and allowed the protein to express for 24 h. Then, the cells

196

were trypsinized and seeded them on cover slips placed either in 12-well or 24 well

197

plates. Cells were treated with AGK2 for 2 h and processed the cover slips for

198

imaging.

199 200

2.13. LC3 processing and autophagy related signaling assays

201

To perform these assays, equal numbers of HeLa cells were seeded in 6-well plates

202

and allowed to attach overnight. Cells were treated with AGK2 and/or bafA1 (100

203

nM), EBSS and LiCl (25 mM) in growth medium for 2 h. EBSS induced mTOR

204

dependent autophagy and LiCl induced mTOR independent autophagy were used as

205

controls for the same. Mammalian lysates were prepared as mentioned above and

206

analysed the LC3 processing, levels of mTOR substrates using SDS-PAGE (8-15%)

207

electrophoresis and immunoblotting.

208 209

2.14. Cell viability assay

210

SH-SY5Y cells were seeded on a 96-well plate and transfected them with a EGFP-

211

SNCA plasmid. Cells were treated with AGK2 and/or 3-MA (5 mM) for 24 h after 48

212

h of transfection. Then, the cell viability was measured using the CellTitre-Glo®

213

(Promega, G7570) by measuring luminescence using a multiplate reader (Varioskan

214

Flash, Thermo Scientific).

215 216

2.15. Statistics

217

The unpaired Student t test and ANOVA (one-way or two-way) followed by the post-

218

hoc Bonferroni test in GraphPad Prism were used for statistical analyses. Error bars

219

represent mean ± S.E.M.

220 221

3. Results

222

3.1. Cytoprotection potential of AGK2 is dependent on autophagy in a yeast

223

model of α-synuclein proteotoxicity

224

In an α-synuclein overexpressing wild-type yeast strain, we observed a growth lag

225

(WT-EGFP versus WT α-syn-EGFP, P < 0.001, Fig. 2B). Upon AGK2 treatment to

226

wild-type α-synuclein overexpressing strain, growth was significantly enhanced than

227

untreated (P < 0.01, versus untreated, Fig. 2A). In addition, AGK2 (50 μM) did not

228

perturb the growth of wild-type yeast cells and was not cytotoxic (Fig. S1).

229

Autophagy is one of the cellular defense mechanism to combat the aggregate

230

mediated toxicity (Nixon, 2013). To examine the dependency of AGK2 on autophagy,

231

we performed the growth assay in an α-synuclein overexpressing, core autophagy

232

mutant (atg1∆) strain.

233

When α-synuclein was overexpressed in atg1∆ strain, its growth was significantly

234

affected as observed in WT cells. Upon treatment of AGK2 to atg1∆ cells

235

overexpressing α-synuclein, its growth was not significantly changed than untreated

236

(untreated versus AGK2 treated, P > 0.05, Fig. 3A). The ability of AGK2 to

237

ameliorate α-synuclein toxicity is lost in an autophagy mutant strain indicating the

238

essentiality of autophagy for its mechanism of action.

239

These results show that AGK2 cytoprotects yeast cells from the α-synuclein mediated

240

toxicity in an autophagy dependent manner.

241

3.2. AGK2 is an inducer of autophagy in yeast

242

In the yeast system, the EGFP-Atg8 processing assay is employed to assess the

243

autophagy status of cells (Klionsky et al., 2016). In starvation conditions, we noted

244

significant increase in free EGFP accumulation in untreated cells over time,

245

confirming that the nitrogen starvation induced autophagy. AGK2 treatment

246

significantly increased release of free EGFP temporally than that of untreated (2, 4

247

and 6 h time points, P < 0.001 versus untreated; Fig. 1). This result demonstrates that

248

AGK2 augments starvation-induced autophagy.

249

3.3. AGK2 induces autophagy in mammalian cells

250

To understand if AGK2 regulates autophagy in mammalian cells, we undertook two

251

assays: 1) tandem RFP-EGFP-LC3 assay (fluorescence based) and 2) LC3 processing

252

immunoblotting experiment (Kimura et al., 2007).

253

RFP-EGFP tandemly tagged LC3 allowed autophagosomes to visualize as yellow and

254

autolysosomes as red, as lysosomal acidic pH quenches EGFP fluorescence (Klionsky

255

et al., 2016). AGK2 (5 µM) treated HeLa cells showed increased number of

256

autophagosomes (~2 fold, P < 0.001, compared to control; Fig. 4A) and

257

autolysosomes (~4 fold, P < 0.001, compared to control; Fig. 4A) than that of

258

untreated cells. The high numbers of autolysosomes suggested that AGK2 promoted

259

autophagy flux.

260

AGK2 treatment to HeLa cells enhanced the processing of LC3-I to LC3-II

261

significantly than untreated (P < 0.001, versus untreated, Fig. 4B). Upon co-addition

262

of bafilomycin A1 (flux inhibitor) and AGK2, LC3-II levels were significantly more

263

than either bafilomycin A1 or AGK2 only treatments (P < 0.001, versus untreated,

264

Fig. 4B). Notably, treatment of AGK2 to HeLa cells was not toxic (Fig. S3). These

265

results confirm that AGK2 is indeed an autophagy enhancer.

266

3.4. AGK2 induces autophagy in an mTOR independent manner

267

Autophagy modulators can induce autophagy by either mTOR dependent or

268

independent signaling pathways (Suresh et al., 2018a). We tested if AGK2 regulates

269

autophagy by modulating mTOR by analyzing its substrate levels such as P70S6K

270

and 4EBP1. When mTOR is active, its phosphorylated substrates levels will be

271

enhanced (Suresh et al., 2018a). Upon AGK2 treatment to HeLa cells, we observed

272

the presence of phosphorylated substrates with concomitant increase in LC3-II

273

accumulation (Fig. 5A). Also, it was noted that AGK2 was not toxic to cells at 5 μM

274

(Fig. S1). This result indicates that AGK2 is an mTOR independent autophagy

275

enhancer.

276

3.5. AGK2 degrades alpha-synuclein in an autophagy dependent manner

277

One of the cellular defense mechanisms to ameliorate the aggregate mediated toxicity

278

is by degrading the toxic α-synuclein protein aggregates through autophagy to elicit

279

cyto/neuroprotection (Sarkar et al., 2007). We tested the efficacy of AGK2 in clearing

280

α-synuclein protein aggregates by performing immunoblotting based α-synuclein-

281

EGFP degradation assays.

282

Upon AGK2 treatment to wild-type α-synuclein-EGFP overexpressing yeast strain,

283

the level of α-synuclein-EGFP protein (P < 0.001, versus untreated, Fig. 3A) was

284

significantly lesser than untreated. Also, the fluorescence microscopy showed that

285

AGK2 significantly cleared α-synuclein-EGFP protein that resulted in the increased

286

presence of free EGFP in vacuole (P < 0.001, versus untreated, Fig. S2).

287

Does α-synuclein clearance potential of AGK2 is autophagy dependent? To answer

288

this question, we performed the immunoblotting based α-synuclein-EGFP degradation

289

assays in an α-synuclein-GFP overexpressing atg1∆ cells.

290

Upon AGK2 treatment to α-synuclein-EGFP overexpressing atg1∆ cells, the level of

291

α-synuclein-EGFP protein level was not significantly different from that of untreated

292

(P > 0.05, versus untreated, Fig. 3B).

293

These results confirm that AGK2 clears toxic α-synuclein-EGFP protein levels in an

294

autophagy dependent manner.

295

3.6. In mammalian cells, cytoprotection against α-synuclein toxicity by AGK2 is

296

autophagy-dependent

297

We analysed the ability of AGK2 in eliciting cytoprotection against α-synuclein

298

toxicity model of SH-SY5Y (the human neuroblastoma) and HeLa cells.

299

Upon EGFP-α-synuclein overexpression, the cellular viability was affected

300

significantly than either untransfected or vector control cells. AGK2 treatment to

301

EGFP-α-synuclein overexpressing cells significantly increased the viability of cells

302

than untreated (P < 0.001, versus untreated, Fig. 5B and Fig. S4). The cell viability

303

in AGK2 and 3-methyladenine (a pharmacological autophagy inhibitor) co-treatment

304

in EGFP-α-synuclein overexpressing cells was significantly lesser compared to

305

AGK2 treatment (P > 0.5, versus 3-MA, Fig. 5B and Fig. S4). Thus, we demonstrate

306

that AGK2 cytoprotects neuronal cells from EGFP-α-synuclein toxicity in an

307

autophagy dependent mechanism.

308

4. Discussion

309

We identified and characterized the AGK2 as an aggrephagy modulator in diverse

310

models such as yeast and mammalian cells. In yeast, small molecules enhanced the

311

starvation-induced autophagy and also cleared α-synuclein aggregates in an

312

autophagy dependent manner. In mammalian cells, AGK2 induced autophagy

313

precisely by enhancing the autolysosome formation. AGK2 cytoprotects neuronal

314

cells from α-synuclein mediated toxicity that was autophagy-dependent.

315

Under cellular steady state conditions, the α-synuclein is acetylated to prevent it from

316

attaining the toxic oligomer conformation (de Oliveira et al., 2017). Upon various

317

factors such as ageing and pathological conditions, sirtuin2 activity is upregulated to

318

generate the deacetylated forms of α-synuclein (de Oliveira et al., 2017). AGK2, the

319

sirtuin2 inhibitor has been shown to be neuroprotective in a Drosophila model of

320

Parkinson’s disease (PD) (Outeiro et al., 2007). Sirtuin2 is a NAD+ dependent

321

deacetylase that is predominantly expressed in brain and its levels are known increase

322

with ageing (de Oliveira et al., 2012). In PD, increased sirtuin2 activity aggravates

323

proteotoxicity by deacetylating α-synuclein at various lysine residues (Singh et al.,

324

2017). Acetylation of α-synuclein prevents its aggregation and thus is shown to be

325

neuroprotective in primary cortical neurons (de Oliveira et al., 2017). On the other

326

hand, dopaminergic neuronal loss is observed when acetylation of α-synuclein is

327

blocked. Genetic down regulation of sirtuin2 suppresses the α-synuclein aggregation

328

and its toxicity. Transgenic sirtuin2 knock out mice are protected from either α-

329

synuclein or MPTP mediated toxicities. In addition, sirtuin2 knock down cells show

330

increased accumulation of LC3-II with concomitant degradation of p62 suggesting

331

enhanced autophagic activity (de Oliveira et al., 2017). In addition to the post-

332

translational aspects of this protein, we investigated how sirtuin2 inhibition using a

333

small molecule (AGK2) regulates autophagy and we also tested its cytoprotection

334

potential. Our results, in particular show that in mammalian cells, the AGK2

335

enhanced autophagosome lysosome fusion.

336

α-synuclein is an intrinsically disordered protein (IDP) and upon overexpression

337

forms aggregates (Ghosh et al., 2017). These aggregates a) sequester essential cellular

338

proteins, b) get glued on to the endocytic vesicles perturbing their function, when

339

misfolded to impart cytotoxicity (Ghosh et al., 2017; Lautenschlager et al., 2017).

340

Thus, we and others demonstrated that degrading the toxic α-synuclein protein

341

aggregates exerts neuroprotection in various models such as yeast, mammalian cells

342

and mice. This clearance potential is dependent on autophagy as we demonstrated by

343

both pharmacological and genetic means.

344

AGK2 induces autophagy in an mTOR independent manner. mTOR is an essential

345

player that regulates vital cellular survival pathways and inhibiting it would result in

346

evident side effects such as immune suppression and so on (Ruiz-Torres et al., 2018).

347

So, pharmacologically mTOR independent autophagy enhancers are preferred to

348

conduct the clinical trials.

349

In our study, we showed that small molecule AGK2 cleared toxic α-synuclein protein

350

aggregates in an autophagy dependent manner to exert cytoprotection potential in two

351

model systems such as yeast and mammalian cell lines such as HeLa and SH-SY5Y.

352 353

Acknowledgements

354

We thank David Rubinzstein, Tamotsu Yoshimori and Y. Ohsumi for the kind gift of

355

plasmids. This work was supported by the Wellcome Trust/DBT India Alliance

356

Intermediate Fellowship (500159-Z-09-Z), DBT (BT/INF/22/SP27679/2018), DST-

357

SERB Grant (EMR/2015/001946), JNCASR intramural funds to RM.

358 359

References

360

de Oliveira, R.M., Sarkander, J., Kazantsev, A.G., Outeiro, T.F., 2012. SIRT2 as a

361

Therapeutic Target for Age-Related Disorders. Front Pharmacol 3, 82.

362

de Oliveira, R.M., Vicente Miranda, H., Francelle, L., Pinho, R., Szego, E.M.,

363

Martinho, R., Munari, F., Lazaro, D.F., Moniot, S., Guerreiro, P., Fonseca-Ornelas,

364

L., Marijanovic, Z., Antas, P., Gerhardt, E., Enguita, F.J., Fauvet, B., Penque, D.,

365

Pais, T.F., Tong, Q., Becker, S., Kugler, S., Lashuel, H.A., Steegborn, C.,

366

Zweckstetter, M., Outeiro, T.F., 2017. The mechanism of sirtuin 2-mediated

367

exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS

368

biology 15, e2000374.

369

Fernandez, A.F., Sebti, S., Wei, Y., Zou, Z., Shi, M., McMillan, K.L., He, C., Ting,

370

T., Liu, Y., Chiang, W.C., Marciano, D.K., Schiattarella, G.G., Bhagat, G., Moe,

371

O.W., Hu, M.C., Levine, B., 2018. Disruption of the beclin 1-BCL2 autophagy

372

regulatory complex promotes longevity in mice. Nature 558, 136-140.

373

Furlong, R.A., Narain, Y., Rankin, J., Wyttenbach, A., Rubinsztein, D.C., 2000.

374

Alpha-synuclein overexpression promotes aggregation of mutant huntingtin. Biochem

375

J 346 Pt 3, 577-581.

376

Ghosh, D., Mehra, S., Sahay, S., Singh, P.K., Maji, S.K., 2017. alpha-synuclein

377

aggregation and its modulation. International journal of biological macromolecules

378

100, 37-54.

379

Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-

380

Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., Mizushima, N.,

381

2006. Suppression of basal autophagy in neural cells causes neurodegenerative

382

disease in mice. Nature 441, 885-889.

383

Khurana, V., Lindquist, S., 2010. Modelling neurodegeneration in Saccharomyces

384

cerevisiae: why cook with baker's yeast? Nat Rev Neurosci 11, 436-449.

385

Kimura, S., Noda, T., Yoshimori, T., 2007. Dissection of the autophagosome

386

maturation process by a novel reporter protein, tandem fluorescent-tagged LC3.

387

Autophagy 3, 452-460.

388

Klaips, C.L., Jayaraj, G.G., Hartl, F.U., 2018. Pathways of cellular proteostasis in

389

aging and disease. The Journal of cell biology 217, 51-63.

390

Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo

391

Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., Adhihetty, P.J.,

392

Adler, S.G., Agam, G., Agarwal, R., Aghi, M.K., Agnello, M., Agostinis, P., Aguilar,

393

P.V., Aguirre-Ghiso, J., Airoldi, E.M., Ait-Si-Ali, S., Akematsu, T., Akporiaye, E.T.,

394

Al-Rubeai, M., Albaiceta, G.M., Albanese, C., Albani, D., Albert, M.L., Aldudo, J.,

395

Algul, H., Alirezaei, M., Alloza, I., Almasan, A., Almonte-Beceril, M., Alnemri, E.S.,

396

Alonso, C., Altan-Bonnet, N., Altieri, D.C., Alvarez, S., Alvarez-Erviti, L., Alves, S.,

397

Amadoro, G., Amano, A., Amantini, C., Ambrosio, S., Amelio, I., Amer, A.O.,

398

Amessou, M., Amon, A., An, Z., Anania, F.A., Andersen, S.U., Andley, U.P.,

399

Andreadi, C.K., Andrieu-Abadie, N., Anel, A., Ann, D.K., Anoopkumar-Dukie, S.,

400

Antonioli, M., Aoki, H., Apostolova, N., Aquila, S., Aquilano, K., Araki, K., Arama,

401

E., Aranda, A., Araya, J., Arcaro, A., Arias, E., Arimoto, H., Ariosa, A.R.,

402

Armstrong, J.L., Arnould, T., Arsov, I., Asanuma, K., Askanas, V., Asselin, E.,

403

Atarashi, R., Atherton, S.S., Atkin, J.D., Attardi, L.D., Auberger, P., Auburger, G.,

404

Aurelian, L., Autelli, R., Avagliano, L., Avantaggiati, M.L., Avrahami, L., Awale, S.,

405

Azad, N., Bachetti, T., Backer, J.M., Bae, D.H., Bae, J.S., Bae, O.N., Bae, S.H.,

406

Baehrecke, E.H., Baek, S.H., Baghdiguian, S., Bagniewska-Zadworna, A., Bai, H.,

407

Bai, J., Bai, X.Y., Bailly, Y., Balaji, K.N., Balduini, W., Ballabio, A., Balzan, R.,

408

Banerjee, R., Banhegyi, G., Bao, H., Barbeau, B., Barrachina, M.D., Barreiro, E.,

409

Bartel, B., Bartolome, A., Bassham, D.C., Bassi, M.T., Bast, R.C., Jr., Basu, A.,

410

Batista, M.T., Batoko, H., Battino, M., Bauckman, K., Baumgarner, B.L., Bayer,

411

K.U., Beale, R., Beaulieu, J.F., Beck, G.R., Jr., Becker, C., Beckham, J.D., Bedard,

412

P.A., Bednarski, P.J., Begley, T.J., Behl, C., Behrends, C., Behrens, G.M., Behrns,

413

K.E., Bejarano, E., Belaid, A., Belleudi, F., Benard, G., Berchem, G., Bergamaschi,

414

D., Bergami, M., Berkhout, B., Berliocchi, L., Bernard, A., Bernard, M., Bernassola,

415

F., Bertolotti, A., Bess, A.S., Besteiro, S., Bettuzzi, S., Bhalla, S., Bhattacharyya, S.,

416

Bhutia, S.K., Biagosch, C., Bianchi, M.W., Biard-Piechaczyk, M., Billes, V.,

417

Bincoletto, C., Bingol, B., Bird, S.W., Bitoun, M., Bjedov, I., Blackstone, C., Blanc,

418

L., Blanco, G.A., Blomhoff, H.K., Boada-Romero, E., Bockler, S., Boes, M., Boesze-

419

Battaglia, K., Boise, L.H., Bolino, A., Boman, A., Bonaldo, P., Bordi, M., Bosch, J.,

420

Botana, L.M., Botti, J., Bou, G., Bouche, M., Bouchecareilh, M., Boucher, M.J.,

421

Boulton, M.E., Bouret, S.G., Boya, P., Boyer-Guittaut, M., Bozhkov, P.V., Brady, N.,

422

Braga, V.M., Brancolini, C., Braus, G.H., Bravo-San Pedro, J.M., Brennan, L.A.,

423

Bresnick, E.H., Brest, P., Bridges, D., Bringer, M.A., Brini, M., Brito, G.C., Brodin,

424

B., Brookes, P.S., Brown, E.J., Brown, K., Broxmeyer, H.E., Bruhat, A., Brum, P.C.,

425

Brumell, J.H., Brunetti-Pierri, N., Bryson-Richardson, R.J., Buch, S., Buchan, A.M.,

426

Budak, H., Bulavin, D.V., Bultman, S.J., Bultynck, G., Bumbasirevic, V., Burelle, Y.,

427

Burke, R.E., Burmeister, M., Butikofer, P., Caberlotto, L., Cadwell, K., Cahova, M.,

428

Cai, D., Cai, J., Cai, Q., Calatayud, S., Camougrand, N., Campanella, M., Campbell,

429

G.R., Campbell, M., Campello, S., Candau, R., Caniggia, I., Cantoni, L., Cao, L.,

430

Caplan, A.B., Caraglia, M., Cardinali, C., Cardoso, S.M., Carew, J.S., Carleton, L.A.,

431

Carlin, C.R., Carloni, S., Carlsson, S.R., Carmona-Gutierrez, D., Carneiro, L.A.,

432

Carnevali, O., Carra, S., Carrier, A., Carroll, B., Casas, C., Casas, J., Cassinelli, G.,

433

Castets, P., Castro-Obregon, S., Cavallini, G., Ceccherini, I., Cecconi, F., Cederbaum,

434

A.I., Cena, V., Cenci, S., Cerella, C., Cervia, D., Cetrullo, S., Chaachouay, H., Chae,

435

H.J., Chagin, A.S., Chai, C.Y., Chakrabarti, G., Chamilos, G., Chan, E.Y., Chan,

436

M.T., Chandra, D., Chandra, P., Chang, C.P., Chang, R.C., Chang, T.Y., Chatham,

437

J.C., Chatterjee, S., Chauhan, S., Che, Y., Cheetham, M.E., Cheluvappa, R., Chen,

438

C.J., Chen, G., Chen, G.C., Chen, G., Chen, H., Chen, J.W., Chen, J.K., Chen, M.,

439

Chen, M., Chen, P., Chen, Q., Chen, Q., Chen, S.D., Chen, S., Chen, S.S., Chen, W.,

440

Chen, W.J., Chen, W.Q., Chen, W., Chen, X., Chen, Y.H., Chen, Y.G., Chen, Y.,

441

Chen, Y., Chen, Y., Chen, Y.J., Chen, Y.Q., Chen, Y., Chen, Z., Chen, Z., Cheng, A.,

442

Cheng, C.H., Cheng, H., Cheong, H., Cherry, S., Chesney, J., Cheung, C.H., Chevet,

443

E., Chi, H.C., Chi, S.G., Chiacchiera, F., Chiang, H.L., Chiarelli, R., Chiariello, M.,

444

Chieppa, M., Chin, L.S., Chiong, M., Chiu, G.N., Cho, D.H., Cho, S.G., Cho, W.C.,

445

Cho, Y.Y., Cho, Y.S., Choi, A.M., Choi, E.J., Choi, E.K., Choi, J., Choi, M.E., Choi,

446

S.I., Chou, T.F., Chouaib, S., Choubey, D., Choubey, V., Chow, K.C., Chowdhury,

447

K., Chu, C.T., Chuang, T.H., Chun, T., Chung, H., Chung, T., Chung, Y.L., Chwae,

448

Y.J., Cianfanelli, V., Ciarcia, R., Ciechomska, I.A., Ciriolo, M.R., Cirone, M.,

449

Claerhout, S., Clague, M.J., Claria, J., Clarke, P.G., Clarke, R., Clementi, E., Cleyrat,

450

C., Cnop, M., Coccia, E.M., Cocco, T., Codogno, P., Coers, J., Cohen, E.E.,

451

Colecchia, D., Coletto, L., Coll, N.S., Colucci-Guyon, E., Comincini, S., Condello,

452

M., Cook, K.L., Coombs, G.H., Cooper, C.D., Cooper, J.M., Coppens, I., Corasaniti,

453

M.T., Corazzari, M., Corbalan, R., Corcelle-Termeau, E., Cordero, M.D., Corral-

454

Ramos, C., Corti, O., Cossarizza, A., Costelli, P., Costes, S., Cotman, S.L., Coto-

455

Montes, A., Cottet, S., Couve, E., Covey, L.R., Cowart, L.A., Cox, J.S., Coxon, F.P.,

456

Coyne, C.B., Cragg, M.S., Craven, R.J., Crepaldi, T., Crespo, J.L., Criollo, A.,

457

Crippa, V., Cruz, M.T., Cuervo, A.M., Cuezva, J.M., Cui, T., Cutillas, P.R., Czaja,

458

M.J., Czyzyk-Krzeska, M.F., Dagda, R.K., Dahmen, U., Dai, C., Dai, W., Dai, Y.,

459

Dalby, K.N., Dalla Valle, L., Dalmasso, G., D'Amelio, M., Damme, M., Darfeuille-

460

Michaud, A., Dargemont, C., Darley-Usmar, V.M., Dasarathy, S., Dasgupta, B.,

461

Dash, S., Dass, C.R., Davey, H.M., Davids, L.M., Davila, D., Davis, R.J., Dawson,

462

T.M., Dawson, V.L., Daza, P., de Belleroche, J., de Figueiredo, P., de Figueiredo,

463

R.C., de la Fuente, J., De Martino, L., De Matteis, A., De Meyer, G.R., De Milito, A.,

464

De Santi, M., de Souza, W., De Tata, V., De Zio, D., Debnath, J., Dechant, R.,

465

Decuypere, J.P., Deegan, S., Dehay, B., Del Bello, B., Del Re, D.P., Delage-

466

Mourroux, R., Delbridge, L.M., Deldicque, L., Delorme-Axford, E., Deng, Y.,

467

Dengjel, J., Denizot, M., Dent, P., Der, C.J., Deretic, V., Derrien, B., Deutsch, E.,

468

Devarenne, T.P., Devenish, R.J., Di Bartolomeo, S., Di Daniele, N., Di Domenico, F.,

469

Di Nardo, A., Di Paola, S., Di Pietro, A., Di Renzo, L., DiAntonio, A., Diaz-Araya,

470

G., Diaz-Laviada, I., Diaz-Meco, M.T., Diaz-Nido, J., Dickey, C.A., Dickson, R.C.,

471

Diederich, M., Digard, P., Dikic, I., Dinesh-Kumar, S.P., Ding, C., Ding, W.X., Ding,

472

Z., Dini, L., Distler, J.H., Diwan, A., Djavaheri-Mergny, M., Dmytruk, K., Dobson,

473

R.C., Doetsch, V., Dokladny, K., Dokudovskaya, S., Donadelli, M., Dong, X.C.,

474

Dong, X., Dong, Z., Donohue, T.M., Jr., Doran, K.S., D'Orazi, G., Dorn, G.W., 2nd,

475

Dosenko, V., Dridi, S., Drucker, L., Du, J., Du, L.L., Du, L., du Toit, A., Dua, P.,

476

Duan, L., Duann, P., Dubey, V.K., Duchen, M.R., Duchosal, M.A., Duez, H., Dugail,

477

I., Dumit, V.I., Duncan, M.C., Dunlop, E.A., Dunn, W.A., Jr., Dupont, N., Dupuis, L.,

478

Duran, R.V., Durcan, T.M., Duvezin-Caubet, S., Duvvuri, U., Eapen, V., Ebrahimi-

479

Fakhari, D., Echard, A., Eckhart, L., Edelstein, C.L., Edinger, A.L., Eichinger, L.,

480

Eisenberg, T., Eisenberg-Lerner, A., Eissa, N.T., El-Deiry, W.S., El-Khoury, V.,

481

Elazar, Z., Eldar-Finkelman, H., Elliott, C.J., Emanuele, E., Emmenegger, U.,

482

Engedal, N., Engelbrecht, A.M., Engelender, S., Enserink, J.M., Erdmann, R.,

483

Erenpreisa, J., Eri, R., Eriksen, J.L., Erman, A., Escalante, R., Eskelinen, E.L., Espert,

484

L., Esteban-Martinez, L., Evans, T.J., Fabri, M., Fabrias, G., Fabrizi, C., Facchiano,

485

A., Faergeman, N.J., Faggioni, A., Fairlie, W.D., Fan, C., Fan, D., Fan, J., Fang, S.,

486

Fanto, M., Fanzani, A., Farkas, T., Faure, M., Favier, F.B., Fearnhead, H., Federici,

487

M., Fei, E., Felizardo, T.C., Feng, H., Feng, Y., Feng, Y., Ferguson, T.A., Fernandez,

488

A.F., Fernandez-Barrena, M.G., Fernandez-Checa, J.C., Fernandez-Lopez, A.,

489

Fernandez-Zapico, M.E., Feron, O., Ferraro, E., Ferreira-Halder, C.V., Fesus, L.,

490

Feuer, R., Fiesel, F.C., Filippi-Chiela, E.C., Filomeni, G., Fimia, G.M., Fingert, J.H.,

491

Finkbeiner, S., Finkel, T., Fiorito, F., Fisher, P.B., Flajolet, M., Flamigni, F., Florey,

492

O., Florio, S., Floto, R.A., Folini, M., Follo, C., Fon, E.A., Fornai, F., Fortunato, F.,

493

Fraldi, A., Franco, R., Francois, A., Francois, A., Frankel, L.B., Fraser, I.D., Frey, N.,

494

Freyssenet, D.G., Frezza, C., Friedman, S.L., Frigo, D.E., Fu, D., Fuentes, J.M.,

495

Fueyo, J., Fujitani, Y., Fujiwara, Y., Fujiya, M., Fukuda, M., Fulda, S., Fusco, C.,

496

Gabryel, B., Gaestel, M., Gailly, P., Gajewska, M., Galadari, S., Galili, G., Galindo,

497

I., Galindo, M.F., Galliciotti, G., Galluzzi, L., Galluzzi, L., Galy, V., Gammoh, N.,

498

Gandy, S., Ganesan, A.K., Ganesan, S., Ganley, I.G., Gannage, M., Gao, F.B., Gao,

499

F., Gao, J.X., Garcia Nannig, L., Garcia Vescovi, E., Garcia-Macia, M., Garcia-Ruiz,

500

C., Garg, A.D., Garg, P.K., Gargini, R., Gassen, N.C., Gatica, D., Gatti, E., Gavard,

501

J., Gavathiotis, E., Ge, L., Ge, P., Ge, S., Gean, P.W., Gelmetti, V., Genazzani, A.A.,

502

Geng, J., Genschik, P., Gerner, L., Gestwicki, J.E., Gewirtz, D.A., Ghavami, S.,

503

Ghigo, E., Ghosh, D., Giammarioli, A.M., Giampieri, F., Giampietri, C.,

504

Giatromanolaki, A., Gibbings, D.J., Gibellini, L., Gibson, S.B., Ginet, V., Giordano,

505

A., Giorgini, F., Giovannetti, E., Girardin, S.E., Gispert, S., Giuliano, S., Gladson,

506

C.L., Glavic, A., Gleave, M., Godefroy, N., Gogal, R.M., Jr., Gokulan, K., Goldman,

507

G.H., Goletti, D., Goligorsky, M.S., Gomes, A.V., Gomes, L.C., Gomez, H., Gomez-

508

Manzano, C., Gomez-Sanchez, R., Goncalves, D.A., Goncu, E., Gong, Q., Gongora,

509

C., Gonzalez, C.B., Gonzalez-Alegre, P., Gonzalez-Cabo, P., Gonzalez-Polo, R.A.,

510

Goping, I.S., Gorbea, C., Gorbunov, N.V., Goring, D.R., Gorman, A.M., Gorski,

511

S.M., Goruppi, S., Goto-Yamada, S., Gotor, C., Gottlieb, R.A., Gozes, I., Gozuacik,

512

D., Graba, Y., Graef, M., Granato, G.E., Grant, G.D., Grant, S., Gravina, G.L., Green,

513

D.R., Greenhough, A., Greenwood, M.T., Grimaldi, B., Gros, F., Grose, C., Groulx,

514

J.F., Gruber, F., Grumati, P., Grune, T., Guan, J.L., Guan, K.L., Guerra, B., Guillen,

515

C., Gulshan, K., Gunst, J., Guo, C., Guo, L., Guo, M., Guo, W., Guo, X.G., Gust,

516

A.A., Gustafsson, A.B., Gutierrez, E., Gutierrez, M.G., Gwak, H.S., Haas, A., Haber,

517

J.E., Hadano, S., Hagedorn, M., Hahn, D.R., Halayko, A.J., Hamacher-Brady, A.,

518

Hamada, K., Hamai, A., Hamann, A., Hamasaki, M., Hamer, I., Hamid, Q.,

519

Hammond, E.M., Han, F., Han, W., Handa, J.T., Hanover, J.A., Hansen, M., Harada,

520

M., Harhaji-Trajkovic, L., Harper, J.W., Harrath, A.H., Harris, A.L., Harris, J.,

521

Hasler, U., Hasselblatt, P., Hasui, K., Hawley, R.G., Hawley, T.S., He, C., He, C.Y.,

522

He, F., He, G., He, R.R., He, X.H., He, Y.W., He, Y.Y., Heath, J.K., Hebert, M.J.,

523

Heinzen, R.A., Helgason, G.V., Hensel, M., Henske, E.P., Her, C., Herman, P.K.,

524

Hernandez, A., Hernandez, C., Hernandez-Tiedra, S., Hetz, C., Hiesinger, P.R.,

525

Higaki, K., Hilfiker, S., Hill, B.G., Hill, J.A., Hill, W.D., Hino, K., Hofius, D.,

526

Hofman, P., Hoglinger, G.U., Hohfeld, J., Holz, M.K., Hong, Y., Hood, D.A.,

527

Hoozemans, J.J., Hoppe, T., Hsu, C., Hsu, C.Y., Hsu, L.C., Hu, D., Hu, G., Hu, H.M.,

528

Hu, H., Hu, M.C., Hu, Y.C., Hu, Z.W., Hua, F., Hua, Y., Huang, C., Huang, H.L.,

529

Huang, K.H., Huang, K.Y., Huang, S., Huang, S., Huang, W.P., Huang, Y.R., Huang,

530

Y., Huang, Y., Huber, T.B., Huebbe, P., Huh, W.K., Hulmi, J.J., Hur, G.M., Hurley,

531

J.H., Husak, Z., Hussain, S.N., Hussain, S., Hwang, J.J., Hwang, S., Hwang, T.I.,

532

Ichihara, A., Imai, Y., Imbriano, C., Inomata, M., Into, T., Iovane, V., Iovanna, J.L.,

533

Iozzo, R.V., Ip, N.Y., Irazoqui, J.E., Iribarren, P., Isaka, Y., Isakovic, A.J.,

534

Ischiropoulos, H., Isenberg, J.S., Ishaq, M., Ishida, H., Ishii, I., Ishmael, J.E., Isidoro,

535

C., Isobe, K., Isono, E., Issazadeh-Navikas, S., Itahana, K., Itakura, E., Ivanov, A.I.,

536

Iyer, A.K., Izquierdo, J.M., Izumi, Y., Izzo, V., Jaattela, M., Jaber, N., Jackson, D.J.,

537

Jackson, W.T., Jacob, T.G., Jacques, T.S., Jagannath, C., Jain, A., Jana, N.R., Jang,

538

B.K., Jani, A., Janji, B., Jannig, P.R., Jansson, P.J., Jean, S., Jendrach, M., Jeon, J.H.,

539

Jessen, N., Jeung, E.B., Jia, K., Jia, L., Jiang, H., Jiang, H., Jiang, L., Jiang, T., Jiang,

540

X., Jiang, X., Jiang, X., Jiang, Y., Jiang, Y., Jimenez, A., Jin, C., Jin, H., Jin, L., Jin,

541

M., Jin, S., Jinwal, U.K., Jo, E.K., Johansen, T., Johnson, D.E., Johnson, G.V.,

542

Johnson, J.D., Jonasch, E., Jones, C., Joosten, L.A., Jordan, J., Joseph, A.M., Joseph,

543

B., Joubert, A.M., Ju, D., Ju, J., Juan, H.F., Juenemann, K., Juhasz, G., Jung, H.S.,

544

Jung, J.U., Jung, Y.K., Jungbluth, H., Justice, M.J., Jutten, B., Kaakoush, N.O.,

545

Kaarniranta, K., Kaasik, A., Kabuta, T., Kaeffer, B., Kagedal, K., Kahana, A.,

546

Kajimura, S., Kakhlon, O., Kalia, M., Kalvakolanu, D.V., Kamada, Y., Kambas, K.,

547

Kaminskyy, V.O., Kampinga, H.H., Kandouz, M., Kang, C., Kang, R., Kang, T.C.,

548

Kanki, T., Kanneganti, T.D., Kanno, H., Kanthasamy, A.G., Kantorow, M.,

549

Kaparakis-Liaskos, M., Kapuy, O., Karantza, V., Karim, M.R., Karmakar, P., Kaser,

550

A., Kaushik, S., Kawula, T., Kaynar, A.M., Ke, P.Y., Ke, Z.J., Kehrl, J.H., Keller,

551

K.E., Kemper, J.K., Kenworthy, A.K., Kepp, O., Kern, A., Kesari, S., Kessel, D.,

552

Ketteler, R., Kettelhut Ido, C., Khambu, B., Khan, M.M., Khandelwal, V.K., Khare,

553

S., Kiang, J.G., Kiger, A.A., Kihara, A., Kim, A.L., Kim, C.H., Kim, D.R., Kim,

554

D.H., Kim, E.K., Kim, H.Y., Kim, H.R., Kim, J.S., Kim, J.H., Kim, J.C., Kim, J.H.,

555

Kim, K.W., Kim, M.D., Kim, M.M., Kim, P.K., Kim, S.W., Kim, S.Y., Kim, Y.S.,

556

Kim, Y., Kimchi, A., Kimmelman, A.C., Kimura, T., King, J.S., Kirkegaard, K.,

557

Kirkin, V., Kirshenbaum, L.A., Kishi, S., Kitajima, Y., Kitamoto, K., Kitaoka, Y.,

558

Kitazato, K., Kley, R.A., Klimecki, W.T., Klinkenberg, M., Klucken, J., Knaevelsrud,

559

H., Knecht, E., Knuppertz, L., Ko, J.L., Kobayashi, S., Koch, J.C., Koechlin-

560

Ramonatxo, C., Koenig, U., Koh, Y.H., Kohler, K., Kohlwein, S.D., Koike, M.,

561

Komatsu, M., Kominami, E., Kong, D., Kong, H.J., Konstantakou, E.G., Kopp, B.T.,

562

Korcsmaros, T., Korhonen, L., Korolchuk, V.I., Koshkina, N.V., Kou, Y.,

563

Koukourakis, M.I., Koumenis, C., Kovacs, A.L., Kovacs, T., Kovacs, W.J., Koya, D.,

564

Kraft, C., Krainc, D., Kramer, H., Kravic-Stevovic, T., Krek, W., Kretz-Remy, C.,

565

Krick, R., Krishnamurthy, M., Kriston-Vizi, J., Kroemer, G., Kruer, M.C., Kruger, R.,

566

Ktistakis, N.T., Kuchitsu, K., Kuhn, C., Kumar, A.P., Kumar, A., Kumar, A., Kumar,

567

D., Kumar, D., Kumar, R., Kumar, S., Kundu, M., Kung, H.J., Kuno, A., Kuo, S.H.,

568

Kuret, J., Kurz, T., Kwok, T., Kwon, T.K., Kwon, Y.T., Kyrmizi, I., La Spada, A.R.,

569

Lafont, F., Lahm, T., Lakkaraju, A., Lam, T., Lamark, T., Lancel, S., Landowski,

570

T.H., Lane, D.J., Lane, J.D., Lanzi, C., Lapaquette, P., Lapierre, L.R., Laporte, J.,

571

Laukkarinen, J., Laurie, G.W., Lavandero, S., Lavie, L., LaVoie, M.J., Law, B.Y.,

572

Law, H.K., Law, K.B., Layfield, R., Lazo, P.A., Le Cam, L., Le Roch, K.G., Le

573

Stunff, H., Leardkamolkarn, V., Lecuit, M., Lee, B.H., Lee, C.H., Lee, E.F., Lee,

574

G.M., Lee, H.J., Lee, H., Lee, J.K., Lee, J., Lee, J.H., Lee, J.H., Lee, M., Lee, M.S.,

575

Lee, P.J., Lee, S.W., Lee, S.J., Lee, S.J., Lee, S.Y., Lee, S.H., Lee, S.S., Lee, S.J.,

576

Lee, S., Lee, Y.R., Lee, Y.J., Lee, Y.H., Leeuwenburgh, C., Lefort, S., Legouis, R.,

577

Lei, J., Lei, Q.Y., Leib, D.A., Leibowitz, G., Lekli, I., Lemaire, S.D., Lemasters, J.J.,

578

Lemberg, M.K., Lemoine, A., Leng, S., Lenz, G., Lenzi, P., Lerman, L.O., Lettieri

579

Barbato, D., Leu, J.I., Leung, H.Y., Levine, B., Lewis, P.A., Lezoualc'h, F., Li, C., Li,

580

F., Li, F.J., Li, J., Li, K., Li, L., Li, M., Li, M., Li, Q., Li, R., Li, S., Li, W., Li, W., Li,

581

X., Li, Y., Lian, J., Liang, C., Liang, Q., Liao, Y., Liberal, J., Liberski, P.P., Lie, P.,

582

Lieberman, A.P., Lim, H.J., Lim, K.L., Lim, K., Lima, R.T., Lin, C.S., Lin, C.F., Lin,

583

F., Lin, F., Lin, F.C., Lin, K., Lin, K.H., Lin, P.H., Lin, T., Lin, W.W., Lin, Y.S., Lin,

584

Y., Linden, R., Lindholm, D., Lindqvist, L.M., Lingor, P., Linkermann, A., Liotta,

585

L.A., Lipinski, M.M., Lira, V.A., Lisanti, M.P., Liton, P.B., Liu, B., Liu, C., Liu,

586

C.F., Liu, F., Liu, H.J., Liu, J., Liu, J.J., Liu, J.L., Liu, K., Liu, L., Liu, L., Liu, Q.,

587

Liu, R.Y., Liu, S., Liu, S., Liu, W., Liu, X.D., Liu, X., Liu, X.H., Liu, X., Liu, X.,

588

Liu, X., Liu, Y., Liu, Y., Liu, Z., Liu, Z., Liuzzi, J.P., Lizard, G., Ljujic, M., Lodhi,

589

I.J., Logue, S.E., Lokeshwar, B.L., Long, Y.C., Lonial, S., Loos, B., Lopez-Otin, C.,

590

Lopez-Vicario, C., Lorente, M., Lorenzi, P.L., Lorincz, P., Los, M., Lotze, M.T.,

591

Lovat, P.E., Lu, B., Lu, B., Lu, J., Lu, Q., Lu, S.M., Lu, S., Lu, Y., Luciano, F.,

592

Luckhart, S., Lucocq, J.M., Ludovico, P., Lugea, A., Lukacs, N.W., Lum, J.J., Lund,

593

A.H., Luo, H., Luo, J., Luo, S., Luparello, C., Lyons, T., Ma, J., Ma, Y., Ma, Y., Ma,

594

Z., Machado, J., Machado-Santelli, G.M., Macian, F., MacIntosh, G.C., MacKeigan,

595

J.P., Macleod, K.F., MacMicking, J.D., MacMillan-Crow, L.A., Madeo, F., Madesh,

596

M., Madrigal-Matute, J., Maeda, A., Maeda, T., Maegawa, G., Maellaro, E., Maes,

597

H., Magarinos, M., Maiese, K., Maiti, T.K., Maiuri, L., Maiuri, M.C., Maki, C.G.,

598

Malli, R., Malorni, W., Maloyan, A., Mami-Chouaib, F., Man, N., Mancias, J.D.,

599

Mandelkow, E.M., Mandell, M.A., Manfredi, A.A., Manie, S.N., Manzoni, C., Mao,

600

K., Mao, Z., Mao, Z.W., Marambaud, P., Marconi, A.M., Marelja, Z., Marfe, G.,

601

Margeta, M., Margittai, E., Mari, M., Mariani, F.V., Marin, C., Marinelli, S., Marino,

602

G., Markovic, I., Marquez, R., Martelli, A.M., Martens, S., Martin, K.R., Martin, S.J.,

603

Martin, S., Martin-Acebes, M.A., Martin-Sanz, P., Martinand-Mari, C., Martinet, W.,

604

Martinez, J., Martinez-Lopez, N., Martinez-Outschoorn, U., Martinez-Velazquez, M.,

605

Martinez-Vicente, M., Martins, W.K., Mashima, H., Mastrianni, J.A., Matarese, G.,

606

Matarrese, P., Mateo, R., Matoba, S., Matsumoto, N., Matsushita, T., Matsuura, A.,

607

Matsuzawa, T., Mattson, M.P., Matus, S., Maugeri, N., Mauvezin, C., Mayer, A.,

608

Maysinger, D., Mazzolini, G.D., McBrayer, M.K., McCall, K., McCormick, C.,

609

McInerney, G.M., McIver, S.C., McKenna, S., McMahon, J.J., McNeish, I.A.,

610

Mechta-Grigoriou, F., Medema, J.P., Medina, D.L., Megyeri, K., Mehrpour, M.,

611

Mehta, J.L., Mei, Y., Meier, U.C., Meijer, A.J., Melendez, A., Melino, G., Melino, S.,

612

de Melo, E.J., Mena, M.A., Meneghini, M.D., Menendez, J.A., Menezes, R., Meng,

613

L., Meng, L.H., Meng, S., Menghini, R., Menko, A.S., Menna-Barreto, R.F., Menon,

614

M.B., Meraz-Rios, M.A., Merla, G., Merlini, L., Merlot, A.M., Meryk, A., Meschini,

615

S., Meyer, J.N., Mi, M.T., Miao, C.Y., Micale, L., Michaeli, S., Michiels, C.,

616

Migliaccio, A.R., Mihailidou, A.S., Mijaljica, D., Mikoshiba, K., Milan, E., Miller-

617

Fleming, L., Mills, G.B., Mills, I.G., Minakaki, G., Minassian, B.A., Ming, X.F.,

618

Minibayeva, F., Minina, E.A., Mintern, J.D., Minucci, S., Miranda-Vizuete, A.,

619

Mitchell, C.H., Miyamoto, S., Miyazawa, K., Mizushima, N., Mnich, K., Mograbi, B.,

620

Mohseni, S., Moita, L.F., Molinari, M., Molinari, M., Moller, A.B., Mollereau, B.,

621

Mollinedo, F., Mongillo, M., Monick, M.M., Montagnaro, S., Montell, C., Moore,

622

D.J., Moore, M.N., Mora-Rodriguez, R., Moreira, P.I., Morel, E., Morelli, M.B.,

623

Moreno, S., Morgan, M.J., Moris, A., Moriyasu, Y., Morrison, J.L., Morrison, L.A.,

624

Morselli, E., Moscat, J., Moseley, P.L., Mostowy, S., Motori, E., Mottet, D., Mottram,

625

J.C., Moussa, C.E., Mpakou, V.E., Mukhtar, H., Mulcahy Levy, J.M., Muller, S.,

626

Munoz-Moreno, R., Munoz-Pinedo, C., Munz, C., Murphy, M.E., Murray, J.T.,

627

Murthy, A., Mysorekar, I.U., Nabi, I.R., Nabissi, M., Nader, G.A., Nagahara, Y.,

628

Nagai, Y., Nagata, K., Nagelkerke, A., Nagy, P., Naidu, S.R., Nair, S., Nakano, H.,

629

Nakatogawa, H., Nanjundan, M., Napolitano, G., Naqvi, N.I., Nardacci, R., Narendra,

630

D.P., Narita, M., Nascimbeni, A.C., Natarajan, R., Navegantes, L.C., Nawrocki, S.T.,

631

Nazarko, T.Y., Nazarko, V.Y., Neill, T., Neri, L.M., Netea, M.G., Netea-Maier, R.T.,

632

Neves, B.M., Ney, P.A., Nezis, I.P., Nguyen, H.T., Nguyen, H.P., Nicot, A.S., Nilsen,

633

H., Nilsson, P., Nishimura, M., Nishino, I., Niso-Santano, M., Niu, H., Nixon, R.A.,

634

Njar, V.C., Noda, T., Noegel, A.A., Nolte, E.M., Norberg, E., Norga, K.K., Noureini,

635

S.K., Notomi, S., Notterpek, L., Nowikovsky, K., Nukina, N., Nurnberger, T.,

636

O'Donnell, V.B., O'Donovan, T., O'Dwyer, P.J., Oehme, I., Oeste, C.L., Ogawa, M.,

637

Ogretmen, B., Ogura, Y., Oh, Y.J., Ohmuraya, M., Ohshima, T., Ojha, R., Okamoto,

638

K., Okazaki, T., Oliver, F.J., Ollinger, K., Olsson, S., Orban, D.P., Ordonez, P.,

639

Orhon, I., Orosz, L., O'Rourke, E.J., Orozco, H., Ortega, A.L., Ortona, E., Osellame,

640

L.D., Oshima, J., Oshima, S., Osiewacz, H.D., Otomo, T., Otsu, K., Ou, J.H., Outeiro,

641

T.F., Ouyang, D.Y., Ouyang, H., Overholtzer, M., Ozbun, M.A., Ozdinler, P.H.,

642

Ozpolat, B., Pacelli, C., Paganetti, P., Page, G., Pages, G., Pagnini, U., Pajak, B., Pak,

643

S.C., Pakos-Zebrucka, K., Pakpour, N., Palkova, Z., Palladino, F., Pallauf, K., Pallet,

644

N., Palmieri, M., Paludan, S.R., Palumbo, C., Palumbo, S., Pampliega, O., Pan, H.,

645

Pan, W., Panaretakis, T., Pandey, A., Pantazopoulou, A., Papackova, Z.,

646

Papademetrio, D.L., Papassideri, I., Papini, A., Parajuli, N., Pardo, J., Parekh, V.V.,

647

Parenti, G., Park, J.I., Park, J., Park, O.K., Parker, R., Parlato, R., Parys, J.B.,

648

Parzych, K.R., Pasquet, J.M., Pasquier, B., Pasumarthi, K.B., Patschan, D., Patterson,

649

C., Pattingre, S., Pattison, S., Pause, A., Pavenstadt, H., Pavone, F., Pedrozo, Z., Pena,

650

F.J., Penalva, M.A., Pende, M., Peng, J., Penna, F., Penninger, J.M., Pensalfini, A.,

651

Pepe, S., Pereira, G.J., Pereira, P.C., Perez-de la Cruz, V., Perez-Perez, M.E., Perez-

652

Rodriguez, D., Perez-Sala, D., Perier, C., Perl, A., Perlmutter, D.H., Perrotta, I.,

653

Pervaiz, S., Pesonen, M., Pessin, J.E., Peters, G.J., Petersen, M., Petrache, I., Petrof,

654

B.J., Petrovski, G., Phang, J.M., Piacentini, M., Pierdominici, M., Pierre, P.,

655

Pierrefite-Carle, V., Pietrocola, F., Pimentel-Muinos, F.X., Pinar, M., Pineda, B.,

656

Pinkas-Kramarski, R., Pinti, M., Pinton, P., Piperdi, B., Piret, J.M., Platanias, L.C.,

657

Platta, H.W., Plowey, E.D., Poggeler, S., Poirot, M., Polcic, P., Poletti, A., Poon,

658

A.H., Popelka, H., Popova, B., Poprawa, I., Poulose, S.M., Poulton, J., Powers, S.K.,

659

Powers, T., Pozuelo-Rubio, M., Prak, K., Prange, R., Prescott, M., Priault, M., Prince,

660

S., Proia, R.L., Proikas-Cezanne, T., Prokisch, H., Promponas, V.J., Przyklenk, K.,

661

Puertollano, R., Pugazhenthi, S., Puglielli, L., Pujol, A., Puyal, J., Pyeon, D., Qi, X.,

662

Qian, W.B., Qin, Z.H., Qiu, Y., Qu, Z., Quadrilatero, J., Quinn, F., Raben, N.,

663

Rabinowich, H., Radogna, F., Ragusa, M.J., Rahmani, M., Raina, K., Ramanadham,

664

S., Ramesh, R., Rami, A., Randall-Demllo, S., Randow, F., Rao, H., Rao, V.A.,

665

Rasmussen, B.B., Rasse, T.M., Ratovitski, E.A., Rautou, P.E., Ray, S.K., Razani, B.,

666

Reed, B.H., Reggiori, F., Rehm, M., Reichert, A.S., Rein, T., Reiner, D.J., Reits, E.,

667

Ren, J., Ren, X., Renna, M., Reusch, J.E., Revuelta, J.L., Reyes, L., Rezaie, A.R.,

668

Richards, R.I., Richardson, D.R., Richetta, C., Riehle, M.A., Rihn, B.H., Rikihisa, Y.,

669

Riley, B.E., Rimbach, G., Rippo, M.R., Ritis, K., Rizzi, F., Rizzo, E., Roach, P.J.,

670

Robbins, J., Roberge, M., Roca, G., Roccheri, M.C., Rocha, S., Rodrigues, C.M.,

671

Rodriguez, C.I., de Cordoba, S.R., Rodriguez-Muela, N., Roelofs, J., Rogov, V.V.,

672

Rohn, T.T., Rohrer, B., Romanelli, D., Romani, L., Romano, P.S., Roncero, M.I.,

673

Rosa, J.L., Rosello, A., Rosen, K.V., Rosenstiel, P., Rost-Roszkowska, M., Roth,

674

K.A., Roue, G., Rouis, M., Rouschop, K.M., Ruan, D.T., Ruano, D., Rubinsztein,

675

D.C., Rucker, E.B., 3rd, Rudich, A., Rudolf, E., Rudolf, R., Ruegg, M.A., Ruiz-

676

Roldan, C., Ruparelia, A.A., Rusmini, P., Russ, D.W., Russo, G.L., Russo, G., Russo,

677

R., Rusten, T.E., Ryabovol, V., Ryan, K.M., Ryter, S.W., Sabatini, D.M., Sacher, M.,

678

Sachse, C., Sack, M.N., Sadoshima, J., Saftig, P., Sagi-Eisenberg, R., Sahni, S.,

679

Saikumar, P., Saito, T., Saitoh, T., Sakakura, K., Sakoh-Nakatogawa, M., Sakuraba,

680

Y., Salazar-Roa, M., Salomoni, P., Saluja, A.K., Salvaterra, P.M., Salvioli, R.,

681

Samali, A., Sanchez, A.M., Sanchez-Alcazar, J.A., Sanchez-Prieto, R., Sandri, M.,

682

Sanjuan, M.A., Santaguida, S., Santambrogio, L., Santoni, G., Dos Santos, C.N.,

683

Saran, S., Sardiello, M., Sargent, G., Sarkar, P., Sarkar, S., Sarrias, M.R., Sarwal,

684

M.M., Sasakawa, C., Sasaki, M., Sass, M., Sato, K., Sato, M., Satriano, J., Savaraj,

685

N., Saveljeva, S., Schaefer, L., Schaible, U.E., Scharl, M., Schatzl, H.M., Schekman,

686

R., Scheper, W., Schiavi, A., Schipper, H.M., Schmeisser, H., Schmidt, J., Schmitz, I.,

687

Schneider, B.E., Schneider, E.M., Schneider, J.L., Schon, E.A., Schonenberger, M.J.,

688

Schonthal, A.H., Schorderet, D.F., Schroder, B., Schuck, S., Schulze, R.J., Schwarten,

689

M., Schwarz, T.L., Sciarretta, S., Scotto, K., Scovassi, A.I., Screaton, R.A., Screen,

690

M., Seca, H., Sedej, S., Segatori, L., Segev, N., Seglen, P.O., Segui-Simarro, J.M.,

691

Segura-Aguilar, J., Seki, E., Sell, C., Seiliez, I., Semenkovich, C.F., Semenza, G.L.,

692

Sen, U., Serra, A.L., Serrano-Puebla, A., Sesaki, H., Setoguchi, T., Settembre, C.,

693

Shacka, J.J., Shajahan-Haq, A.N., Shapiro, I.M., Sharma, S., She, H., Shen, C.K.,

694

Shen, C.C., Shen, H.M., Shen, S., Shen, W., Sheng, R., Sheng, X., Sheng, Z.H.,

695

Shepherd, T.G., Shi, J., Shi, Q., Shi, Q., Shi, Y., Shibutani, S., Shibuya, K., Shidoji,

696

Y., Shieh, J.J., Shih, C.M., Shimada, Y., Shimizu, S., Shin, D.W., Shinohara, M.L.,

697

Shintani, M., Shintani, T., Shioi, T., Shirabe, K., Shiri-Sverdlov, R., Shirihai, O.,

698

Shore, G.C., Shu, C.W., Shukla, D., Sibirny, A.A., Sica, V., Sigurdson, C.J.,

699

Sigurdsson, E.M., Sijwali, P.S., Sikorska, B., Silveira, W.A., Silvente-Poirot, S.,

700

Silverman, G.A., Simak, J., Simmet, T., Simon, A.K., Simon, H.U., Simone, C.,

701

Simons, M., Simonsen, A., Singh, R., Singh, S.V., Singh, S.K., Sinha, D., Sinha, S.,

702

Sinicrope, F.A., Sirko, A., Sirohi, K., Sishi, B.J., Sittler, A., Siu, P.M., Sivridis, E.,

703

Skwarska, A., Slack, R., Slaninova, I., Slavov, N., Smaili, S.S., Smalley, K.S., Smith,

704

D.R., Soenen, S.J., Soleimanpour, S.A., Solhaug, A., Somasundaram, K., Son, J.H.,

705

Sonawane, A., Song, C., Song, F., Song, H.K., Song, J.X., Song, W., Soo, K.Y.,

706

Sood, A.K., Soong, T.W., Soontornniyomkij, V., Sorice, M., Sotgia, F., Soto-Pantoja,

707

D.R., Sotthibundhu, A., Sousa, M.J., Spaink, H.P., Span, P.N., Spang, A., Sparks,

708

J.D., Speck, P.G., Spector, S.A., Spies, C.D., Springer, W., Clair, D.S., Stacchiotti,

709

A., Staels, B., Stang, M.T., Starczynowski, D.T., Starokadomskyy, P., Steegborn, C.,

710

Steele, J.W., Stefanis, L., Steffan, J., Stellrecht, C.M., Stenmark, H., Stepkowski,

711

T.M., Stern, S.T., Stevens, C., Stockwell, B.R., Stoka, V., Storchova, Z., Stork, B.,

712

Stratoulias, V., Stravopodis, D.J., Strnad, P., Strohecker, A.M., Strom, A.L.,

713

Stromhaug, P., Stulik, J., Su, Y.X., Su, Z., Subauste, C.S., Subramaniam, S., Sue,

714

C.M., Suh, S.W., Sui, X., Sukseree, S., Sulzer, D., Sun, F.L., Sun, J., Sun, J., Sun,

715

S.Y., Sun, Y., Sun, Y., Sun, Y., Sundaramoorthy, V., Sung, J., Suzuki, H., Suzuki, K.,

716

Suzuki, N., Suzuki, T., Suzuki, Y.J., Swanson, M.S., Swanton, C., Sward, K.,

717

Swarup, G., Sweeney, S.T., Sylvester, P.W., Szatmari, Z., Szegezdi, E., Szlosarek,

718

P.W., Taegtmeyer, H., Tafani, M., Taillebourg, E., Tait, S.W., Takacs-Vellai, K.,

719

Takahashi, Y., Takats, S., Takemura, G., Takigawa, N., Talbot, N.J., Tamagno, E.,

720

Tamburini, J., Tan, C.P., Tan, L., Tan, M.L., Tan, M., Tan, Y.J., Tanaka, K., Tanaka,

721

M., Tang, D., Tang, D., Tang, G., Tanida, I., Tanji, K., Tannous, B.A., Tapia, J.A.,

722

Tasset-Cuevas, I., Tatar, M., Tavassoly, I., Tavernarakis, N., Taylor, A., Taylor, G.S.,

723

Taylor, G.A., Taylor, J.P., Taylor, M.J., Tchetina, E.V., Tee, A.R., Teixeira-Clerc, F.,

724

Telang, S., Tencomnao, T., Teng, B.B., Teng, R.J., Terro, F., Tettamanti, G., Theiss,

725

A.L., Theron, A.E., Thomas, K.J., Thome, M.P., Thomes, P.G., Thorburn, A.,

726

Thorner, J., Thum, T., Thumm, M., Thurston, T.L., Tian, L., Till, A., Ting, J.P.,

727

Titorenko, V.I., Toker, L., Toldo, S., Tooze, S.A., Topisirovic, I., Torgersen, M.L.,

728

Torosantucci, L., Torriglia, A., Torrisi, M.R., Tournier, C., Towns, R., Trajkovic, V.,

729

Travassos, L.H., Triola, G., Tripathi, D.N., Trisciuoglio, D., Troncoso, R., Trougakos,

730

I.P., Truttmann, A.C., Tsai, K.J., Tschan, M.P., Tseng, Y.H., Tsukuba, T., Tsung, A.,

731

Tsvetkov, A.S., Tu, S., Tuan, H.Y., Tucci, M., Tumbarello, D.A., Turk, B., Turk, V.,

732

Turner, R.F., Tveita, A.A., Tyagi, S.C., Ubukata, M., Uchiyama, Y., Udelnow, A.,

733

Ueno, T., Umekawa, M., Umemiya-Shirafuji, R., Underwood, B.R., Ungermann, C.,

734

Ureshino, R.P., Ushioda, R., Uversky, V.N., Uzcategui, N.L., Vaccari, T., Vaccaro,

735

M.I., Vachova, L., Vakifahmetoglu-Norberg, H., Valdor, R., Valente, E.M., Vallette,

736

F., Valverde, A.M., Van den Berghe, G., Van Den Bosch, L., van den Brink, G.R.,

737

van der Goot, F.G., van der Klei, I.J., van der Laan, L.J., van Doorn, W.G., van

738

Egmond, M., van Golen, K.L., Van Kaer, L., van Lookeren Campagne, M.,

739

Vandenabeele, P., Vandenberghe, W., Vanhorebeek, I., Varela-Nieto, I., Vasconcelos,

740

M.H., Vasko, R., Vavvas, D.G., Vega-Naredo, I., Velasco, G., Velentzas, A.D.,

741

Velentzas, P.D., Vellai, T., Vellenga, E., Vendelbo, M.H., Venkatachalam, K.,

742

Ventura, N., Ventura, S., Veras, P.S., Verdier, M., Vertessy, B.G., Viale, A., Vidal,

743

M., Vieira, H.L., Vierstra, R.D., Vigneswaran, N., Vij, N., Vila, M., Villar, M., Villar,

744

V.H., Villarroya, J., Vindis, C., Viola, G., Viscomi, M.T., Vitale, G., Vogl, D.T.,

745

Voitsekhovskaja, O.V., von Haefen, C., von Schwarzenberg, K., Voth, D.E., Vouret-

746

Craviari, V., Vuori, K., Vyas, J.M., Waeber, C., Walker, C.L., Walker, M.J., Walter,

747

J., Wan, L., Wan, X., Wang, B., Wang, C., Wang, C.Y., Wang, C., Wang, C., Wang,

748

C., Wang, D., Wang, F., Wang, F., Wang, G., Wang, H.J., Wang, H., Wang, H.G.,

749

Wang, H., Wang, H.D., Wang, J., Wang, J., Wang, M., Wang, M.Q., Wang, P.Y.,

750

Wang, P., Wang, R.C., Wang, S., Wang, T.F., Wang, X., Wang, X.J., Wang, X.W.,

751

Wang, X., Wang, X., Wang, Y., Wang, Y., Wang, Y., Wang, Y.J., Wang, Y., Wang,

752

Y., Wang, Y.T., Wang, Y., Wang, Z.N., Wappner, P., Ward, C., Ward, D.M., Warnes,

753

G., Watada, H., Watanabe, Y., Watase, K., Weaver, T.E., Weekes, C.D., Wei, J.,

754

Weide, T., Weihl, C.C., Weindl, G., Weis, S.N., Wen, L., Wen, X., Wen, Y.,

755

Westermann, B., Weyand, C.M., White, A.R., White, E., Whitton, J.L., Whitworth,

756

A.J., Wiels, J., Wild, F., Wildenberg, M.E., Wileman, T., Wilkinson, D.S., Wilkinson,

757

S., Willbold, D., Williams, C., Williams, K., Williamson, P.R., Winklhofer, K.F.,

758

Witkin, S.S., Wohlgemuth, S.E., Wollert, T., Wolvetang, E.J., Wong, E., Wong,

759

G.W., Wong, R.W., Wong, V.K., Woodcock, E.A., Wright, K.L., Wu, C., Wu, D.,

760

Wu, G.S., Wu, J., Wu, J., Wu, M., Wu, M., Wu, S., Wu, W.K., Wu, Y., Wu, Z.,

761

Xavier, C.P., Xavier, R.J., Xia, G.X., Xia, T., Xia, W., Xia, Y., Xiao, H., Xiao, J.,

762

Xiao, S., Xiao, W., Xie, C.M., Xie, Z., Xie, Z., Xilouri, M., Xiong, Y., Xu, C., Xu, C.,

763

Xu, F., Xu, H., Xu, H., Xu, J., Xu, J., Xu, J., Xu, L., Xu, X., Xu, Y., Xu, Y., Xu, Z.X.,

764

Xu, Z., Xue, Y., Yamada, T., Yamamoto, A., Yamanaka, K., Yamashina, S.,

765

Yamashiro, S., Yan, B., Yan, B., Yan, X., Yan, Z., Yanagi, Y., Yang, D.S., Yang,

766

J.M., Yang, L., Yang, M., Yang, P.M., Yang, P., Yang, Q., Yang, W., Yang, W.Y.,

767

Yang, X., Yang, Y., Yang, Y., Yang, Z., Yang, Z., Yao, M.C., Yao, P.J., Yao, X.,

768

Yao, Z., Yao, Z., Yasui, L.S., Ye, M., Yedvobnick, B., Yeganeh, B., Yeh, E.S.,

769

Yeyati, P.L., Yi, F., Yi, L., Yin, X.M., Yip, C.K., Yoo, Y.M., Yoo, Y.H., Yoon, S.Y.,

770

Yoshida, K., Yoshimori, T., Young, K.H., Yu, H., Yu, J.J., Yu, J.T., Yu, J., Yu, L.,

771

Yu, W.H., Yu, X.F., Yu, Z., Yuan, J., Yuan, Z.M., Yue, B.Y., Yue, J., Yue, Z., Zacks,

772

D.N., Zacksenhaus, E., Zaffaroni, N., Zaglia, T., Zakeri, Z., Zecchini, V., Zeng, J.,

773

Zeng, M., Zeng, Q., Zervos, A.S., Zhang, D.D., Zhang, F., Zhang, G., Zhang, G.C.,

774

Zhang, H., Zhang, H., Zhang, H., Zhang, H., Zhang, J., Zhang, J., Zhang, J., Zhang,

775

J., Zhang, J.P., Zhang, L., Zhang, L., Zhang, L., Zhang, L., Zhang, M.Y., Zhang, X.,

776

Zhang, X.D., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Y., Zhao, M.,

777

Zhao, W.L., Zhao, X., Zhao, Y.G., Zhao, Y., Zhao, Y., Zhao, Y.X., Zhao, Z., Zhao,

778

Z.J., Zheng, D., Zheng, X.L., Zheng, X., Zhivotovsky, B., Zhong, Q., Zhou, G.Z.,

779

Zhou, G., Zhou, H., Zhou, S.F., Zhou, X.J., Zhu, H., Zhu, H., Zhu, W.G., Zhu, W.,

780

Zhu, X.F., Zhu, Y., Zhuang, S.M., Zhuang, X., Ziparo, E., Zois, C.E., Zoladek, T.,

781

Zong, W.X., Zorzano, A., Zughaier, S.M., 2016. Guidelines for the use and

782

interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222.

783

Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike,

784

M., Uchiyama, Y., Kominami, E., Tanaka, K., 2006. Loss of autophagy in the central

785

nervous system causes neurodegeneration in mice. Nature 441, 880-884.

786

Labbadia, J., Morimoto, R.I., 2015. The biology of proteostasis in aging and disease.

787

Annual review of biochemistry 84, 435-464.

788

Lautenschlager, J., Kaminski, C.F., Kaminski Schierle, G.S., 2017. alpha-Synuclein -

789

Regulator of Exocytosis, Endocytosis, or Both? Trends in cell biology 27, 468-479.

790

Nixon, R.A., 2013. The role of autophagy in neurodegenerative disease. Nat Med 19,

791

983-997.

792

Outeiro, T.F., Kontopoulos, E., Altmann, S.M., Kufareva, I., Strathearn, K.E., Amore,

793

A.M., Volk, C.B., Maxwell, M.M., Rochet, J.C., McLean, P.J., Young, A.B.,

794

Abagyan, R., Feany, M.B., Hyman, B.T., Kazantsev, A.G., 2007. Sirtuin 2 inhibitors

795

rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science

796

317, 516-519.

797

Pyo, J.O., Yoo, S.M., Ahn, H.H., Nah, J., Hong, S.H., Kam, T.I., Jung, S., Jung, Y.K.,

798

2013. Overexpression of Atg5 in mice activates autophagy and extends lifespan.

799

Nature communications 4, 2300.

800

Rajasekhar, K., Suresh, S.N., Manjithaya, R., Govindaraju, T., 2015. Rationally

801

designed peptidomimetic modulators of abeta toxicity in Alzheimer's disease.

802

Scientific reports 5, 8139.

803

Ruiz-Torres, V., Losada-Echeberria, M., Herranz-Lopez, M., Barrajon-Catalan, E.,

804

Galiano, V., Micol, V., Encinar, J.A., 2018. New Mammalian Target of Rapamycin

805

(mTOR) Modulators Derived from Natural Product Databases and Marine Extracts by

806

Using Molecular Docking Techniques. Marine drugs 16.

807

Sarkar, S., Perlstein, E.O., Imarisio, S., Pineau, S., Cordenier, A., Maglathlin, R.L.,

808

Webster, J.A., Lewis, T.A., O'Kane, C.J., Schreiber, S.L., Rubinsztein, D.C., 2007.

809

Small molecules enhance autophagy and reduce toxicity in Huntington's disease

810

models. Nature chemical biology 3, 331-338.

811

Singh, P., Hanson, P.S., Morris, C.M., 2017. Sirtuin-2 Protects Neural Cells from

812

Oxidative Stress and Is Elevated in Neurodegeneration. Parkinsons Dis 2017,

813

2643587.

814

Stefani, M., Dobson, C.M., 2003. Protein aggregation and aggregate toxicity: new

815

insights into protein folding, misfolding diseases and biological evolution. Journal of

816

molecular medicine 81, 678-699.

817

Suresh, S.N., Chavalmane, A.K., Dj, V., Yarreiphang, H., Rai, S., Paul, A., Clement,

818

J.P., Alladi, P.A., Manjithaya, R., 2017. A novel autophagy modulator 6-Bio

819

ameliorates SNCA/alpha-synuclein toxicity. Autophagy 13, 1221-1234.

820

Suresh, S.N., Chavalmane, A.K., Pillai, M., Ammanathan, V., Vidyadhara, D.J.,

821

Yarreiphang, H., Rai, S., Paul, A., Clement, J.P., Alladi, P.A., Manjithaya, R., 2018a.

822

Modulation of Autophagy by a Small Molecule Inverse Agonist of ERRalpha Is

823

Neuroprotective. Front Mol Neurosci 11, 109.

824

Suresh, S.N., Verma, V., Sateesh, S., Clement, J.P., Manjithaya, R., 2018b.

825

Neurodegenerative diseases: model organisms, pathology and autophagy. J Genet 97,

826

679-701.

827 828 829 830 831 832 833 834 835 836 837 838 839 840

841

Figure legends

842

Figure 1: AGK2 enhances starvation induced autophagy. A) Representative

843

immunoblots (n=3) of EGFP-Atg8 processing assay. Wild type cells expressing

844

EGFP-Atg8 were treated with AGK2 and samples were collected at various time

845

points (0,2,4 and 6 h) to analyse the autophagy flux. B) Quantitation indicating the

846

fold change of autophagy flux measured by the release of free EGFP from EGFP-

847

Atg8 protein. Statistical analysis was performed using one-way ANOVA and the

848

post-hoc Bonferroni test. Error bars, mean ± S.E.M. ***-P < 0.001.

849

Figure 2: AGK2 cytoprotects yeast cells against α-synuclein mediated toxicity.

850

Growth curves of α-synuclein overexpressing wild-type (A) and autophagy mutant

851

(B) yeast strains treated with or without AGK2. Statistical analysis was performed

852

using one-way ANOVA and the post-hoc Bonferroni test. n=6, Error bars, mean ±

853

S.E.M. ns-non significant, **-P < 0.01, ***-P < 0.001.

854

Figure 3: AGK2 clears α-synuclein-EGFP in an autophagy dependent manner.

855

Both wild type (A) and autophagy mutant (B) strains overexpressing α-synuclein-

856

EGFP treated with AGK2 and analysed for total α-synuclein-EGFP protein levels.

857

Statistical analysis was performed using one-way ANOVA and the post-hoc

858

Bonferroni test. n=6, Error bars, mean ± S.E.M. ns-non significant, ***-P < 0.001.

859

Figure 4: AGK2 induces autophagy in mammalian cells. (A) Microscopy images

860

of HeLa cells transiently expressing RFP-EGFP-LC3 were treated with AGK2 for 2 h.

861

Graphs indicating the fold change or number of puncta per cell of autophagosomes

862

and autolysosomes upon appropriate small molecule treatments. n=75 cells, three

863

independent experiments. Statistical analysis was performed using one-way ANOVA

864

and the post-hoc Bonferroni test. (B) Blots indicating LC3 processing upon AGK2

865

treatment with or without bafilomycin A1. LC3-II protein levels were quantified

866

(n=3). Statistical analysis was performed using one-way ANOVA and the post-hoc

867

Bonferroni test. Error bars, mean ± S.E.M. *-P < 0.05, ***-P < 0.001.

868

Figure 5: AGK2 is an mTOR independent autophagy inducer and cytoprotects

869

neuronal cells from α-synuclein mediated toxicity. (A) Western blots of autophagy

870

related protein levels such as LC3, phospho and total P70S6K and 4EBP1. (B) SH-

871

SY5Y cells were transiently overexpressed with α-synuclein for 48 h. We then treated

872

them with autophagy enhancer such as AGK2 with or without autophagy inhibitor (3-

873

MA) for 24 h. After 72 h, the cell viability was measured of all treatments and plotted

874

the same. Three independent experiments were carried out. Statistical analysis was

875

performed using one-way ANOVA and the post-hoc Bonferroni test. Error bars, mean

876

± S.E.M. ns-non significant, ***-P < 0.001.

877 878

Supplementary figure legends

879

Figure S1: AGK2 is not toxic to yeast cells. WT cells were treated with and without

880

AGK2 (50 µM) and absorbance (A600) was recorded at 72 h. Statistical analysis was

881

performed unpaired Student t-test. Error bars, mean ± S.E.M. ns-non significant.

882 883

Figure S2: α-synuclein clearance assay. Microscopic images of yeast expressing α-

884

synuclein-EGFP treated with and without AGK2 (50 µM). The cells with free EGFP

885

were quantitated (the measure of free EGFP in vacuole indicate the vacuole mediated

886

clearance of α-synuclein-EGFP). Statistical analysis was performed unpaired Student

887

t-test (n=75 cells). Error bars, mean ± S.E.M. ***-P < 0.001.

888

Figure S3: AGK2 is not toxic to mammalian cells. HeLa cells were treated with

889

AGK2 (5 µM) for 72 h and cell viability was measured (n=3). Statistical analysis was

890

performed unpaired Student t-test. Error bars, mean ± S.E.M. ns-non significant.

891

Figure S4: α-synuclein toxicity assay. HeLa cells were overexpressed with α-

892

synuclein for 48 h transiently. Cells were treated with AGK2 with or without 3-MA

893

for 24 h. After 72 h, the cell viability was assayed and plotted the same. Statistical

894

analysis was performed using one-way ANOVA and the post-hoc Bonferroni test

895

(Three independent experiments). Error bars, mean ± S.E.M. ns-non significant, ***-

896

P < 0.001.

897 898 899 900 901 902 903 904 905 906 907

Figure 1 A Starvation (h))

0

Untreated 2 4

6

AGK2 2 4

0

EGFP-Atg8

Free EGFP

Gapdh

Fold change

B

60

909 910 911 912 913 914 915 916

*** ***

40 ***

20 0

908

Control AGK2

0

2

4

Time (h)

6

6

Figure 2 A 1.0

***

0.8

A

A600

** 0.6 0.4 0.2 0.0

WT EGFP

WT α -syn-EGFP WT α -syn-EGFP + AGK2

B *** 1.0 0.8

A600

ns 0.6 0.4 0.2 0.0

917 918 919 920 921

atg1∆ ∆ EGFP

∆ α -syn-EGFP atg1∆ ∆ α -syn-EGFP atg1∆ + AGK2

A

Fold (α -syn-EGFP/Gapdh)

Figure 3 ***

1.5

*** 1.0

0.5

0.0

AGK2

0

24

24

-

-

+

α-syn EGFP Gapdh

Fold (α -syn-EGFP/Gapdh)

B ns 1.0

0.5

0.0

AGK2

α-syn EGFP Gapdh 922 923 924 925 926

ns

1.5

0

24

24

-

-

+

Figure 4 A MERGE

No. of puncta/cell

AGK2

Control

RFP LC3 EGFP LC3

AGK2

B

927 928 929 930 931 932 933 934

Autophagosomes Autolysosomes

120 100

***

80

***

60 40 20 0

-

+

-

+

Figure 5 A GM

EBSS AGK2

LC3-I LC3-II p-P70S6K t-P70S6K t- 4EBP1 β-tubulin

B ***

935

***

***

936 937

Figure S1 ns

1.0

A600

0.8 0.6 0.4 0.2 0.0

Control

938 939 940 941 942 943 944 945 946 947 948 949 950

AGK2

951 952

Figure S2 Control

AGK2

Fold change (cells with free EGFP)

8

*** 6 4 2 0

Control

953 954 955 956 957 958 959 960 961 962

AGK2

963 964

Figure S3

800000

ns

RLU

600000

400000

200000

0 Control

965 966 967 968 969 970 971 972 973

AGK2

974 975

Figure S4 ***

800000.0

***

***

RLU

600000.0

400000.0

200000.0

0.0

Vector control α -synuclein AGK2 3-MA

976 977 978 979 980 981 982 983 984

-

+ -

+ + -

+ +

+ -

+ +

+ + -

+ + +

Jawaharlal Nehru Center for Advanced Scientific Research (Autonomous Body under the Department of Science & Technology, Government of India)

Jakkur Campus, Jakkur Post Bengaluru 560 064, INDIA Email: [email protected]

Office Tel: +91 (80) 2208 2924 Office Fax: +91 (80) 2208 2766 +91 (80) 2208 2767

19th Aug 2019 The author contributions for this manuscript: SNS - Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Roles/Writing - original draft. RM - Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing.

Best regards, Dr. Ravi Manjithaya Associate Professor Molecular Biology and Genetics Unit NeuroScience Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore 560 064 INDIA Office 91 80 2208 2924