Journal Pre-proof A small molecule autophagy inducer exerts cytoprotection against α-synuclein toxicity S.N. Suresh, Ravi Manjithaya PII:
S0014-2999(19)30587-4
DOI:
https://doi.org/10.1016/j.ejphar.2019.172635
Reference:
EJP 172635
To appear in:
European Journal of Pharmacology
Received Date: 19 May 2019 Revised Date:
25 August 2019
Accepted Date: 2 September 2019
Please cite this article as: Suresh, S.N., Manjithaya, R., A small molecule autophagy inducer exerts cytoprotection against α-synuclein toxicity, European Journal of Pharmacology (2019), doi: https:// doi.org/10.1016/j.ejphar.2019.172635. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Published by Elsevier B.V.
1
A small molecule autophagy inducer exerts cytoprotection against α-
2
synuclein toxicity
3
S. N. Suresh1,3, Ravi Manjithaya1,2*
4
Affiliations
5
1
6
Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur,
7
Bangalore, India.
8
3
9
Bangalore, India.
Molecular Biology and Genetics Unit (MBGU), and 2Neuroscience Unit (NSU),
Present address: Centre for Brain Research (CBR), Indian Institute of Science (IISc),
10 11
*
12
Correspondence to: Ravi Manjithaya (
[email protected])
13 14 15 16 17 18 19 20
Corresponding author
21
Abstract
22
α-synucleopathies are protein-misfolding disorders occur primarily due to aggregation
23
and toxicity of α-synuclein. This study characterized the small molecule AGK2 as a
24
modifier of α-synuclein mediated toxicity in an autophagy dependent manner in both
25
yeast and mammalian cell line models. In yeast system, AGK2 enhances autophagy to
26
clear toxic α-synuclein aggregates in an autophagy dependent manner. Autophagy
27
flux analyses revealed that AGK2 induces autophagy especially autolysosomes.
28
Importantly, AGK2 induces autophagy in an mTOR independent manner. These
29
features enable AGK2 to exert cytoprotective potential against α-synuclein mediated
30
toxicity in different model systems.
31
Keywords
32
Protein misfolding diseases; AGK2; autophagy; small molecule screen; yeast;
33
neuronal models; toxic protein aggregates; neurodegeneration
34
1. Introduction
35
Protein misfolding diseases such as α-synucleopathies are lethal and drastically affect
36
the quality of life with no disease modifying medications. The cause of
37
neurodegeneration can be of genetic or of sporadic in nature. At intracellular level,
38
resulting protein aggregates cause toxicity by perturbing essential cell survival
39
pathways resulting in a cell death (Suresh et al., 2018b). These protein aggregates are
40
toxic as they sequester the key cellular proteins including transcription factors that are
41
necessary to maintain the upkeep of essential cellular pathways (Stefani and Dobson,
42
2003). Thus, in this protein aggregation driven neurodegeneration, most of such
43
cellular pathways become awry thereby perturbing cellular homeostasis (Stefani and
44
Dobson, 2003). Plethora’s of studies have highlighted the beneficial effects of
45
clearing these disease associated protein aggregates in terms of curbing proteotoxicity
46
and enhancing cell viability (Rajasekhar et al., 2015; Suresh et al., 2017; Suresh et al.,
47
2018a).
48
Proteostatic machineries such as chaperones, ubiquitin-proteasome system (UPS) and
49
autophagy related pathways helps in maintaining cellular as well as organismal
50
homeostasis (Labbadia and Morimoto, 2015). Under steady state conditions of a cell,
51
the proteins tend to misfold and these are mainly recognized by chaperones that refold
52
them ensuring functionality of such proteins is not lost due to misfolding (Klaips et
53
al., 2018). If chaperones fail to repair the misfolded protein or get or are overwhelmed
54
due to increased misfolded proteins numbers in certain conditions, pathways such as
55
Endoplasmic Reticulam Associated protein Degradation (ERAD) and UPS degrade
56
them to prevent intracellular aggregation (Klaips et al., 2018). In spite of these
57
available measures, due to various reasons, the toxic protein oligomers or aggregates
58
are seen to accumulate inside cells. Such protein oligomers and aggregates are cleared
59
by autophagy related pathways (Nixon, 2013).
60
Autophagy is an evolutionarily conserved intracellular pathway that clears
61
superfluous organelles, long-lived proteins, protein aggregates (Suresh et al., 2018b).
62
The specific form of autophagy that clears protein aggregates is called aggrephagy
63
(Suresh et al., 2018b). Aggrephagy pathway is essentially helps the cells to cope up
64
with aggregate burden by clearing them and thus ameliorate the cytotoxicity. As
65
neurons seldom divide, they depend heavily on autophagy to maintain proteostasis
66
(Nixon, 2013). Neuron specific genetic ablation of autophagy as done by knocking
67
out the key autophagy genes such as Atg5 and Atg7, lead to the manifestation of
68
neurodegenerative symptoms such as accumulation of ubiquitin positive aggregates,
69
neuronal loss, behavioral deficits and reduced survivability (Hara et al., 2006;
70
Komatsu et al., 2006). Such studies highlight the importance of basal autophagy in
71
attaining cellular proteostasis and eventually organismal homeostasis (Hara et al.,
72
2006). On the other hand, upregulation of autophagy by genetic intervention by
73
overexpressing core autophagy proteins such as Atg 5 or beclin 1 protein enhanced
74
lifespan of transgenic mice (Fernandez et al., 2018; Pyo et al., 2013). We and others
75
show that genetic and pharmacological upregulation of autophagy is beneficial in
76
curbing the pathogenesis of neurodegeneration (Sarkar et al., 2007; Suresh et al.,
77
2018a).
78
Previous work from our laboratory identified novel small molecule regulators of
79
autophagy through screening performed in a yeast model of proteotoxicity (Suresh et
80
al., 2017). In this screen, we identified AGK2 (2-Cyano-3 -[5-(2,5-dichlorophenyl)-2-
81
furanyl]-N-5-quinolinyl-2-propenamide) as one of the hits. α-synuclein
82
overexpression in the yeast, Saccharomyces cerevisiae, perturbs its growth and such
83
cells eventually die, a phenomenon similar to that seen in case of aggregate mediated
84
cytotoxicity in neurons (Khurana and Lindquist, 2010). Using this α-synuclein
85
mediated proteotoxicity model, we previously identified the novel small molecule
86
aggrephagy modulators such as 6-Bio and XCT790 (Suresh et al., 2017; Suresh et al.,
87
2018a). In this study, we characterized AGK2, one of the hits identified from our
88
previous screen as a potential aggrephagy modulator in a two model systems such as
89
yeast and mammalian cells.
90
2. Materials and methods
91
2.1. Plasmids, antibodies and chemical reagents
92
Plasmids used in this study are as follows; GFP-Atg8 [pRS316, a kind gift from Prof.
93
Yoshinori Oshumi (Tokyo Institute of Technology)], SNCA-GFP (pRS 306, a gift
94
from Prof. Paulo Ludovico) GFP-SNCA(Furlong et al., 2000) (a kind gift from Prof.
95
David Rubinzstein; Addgene, 40822).
96
From HiMedia we purchased dextrose (GRM077), galactose (RM101) peptone
97
(RM667), yeast extract (RM027), and amino acids [uracil (RM264), histidine
98
(RM051), leucine (GRM054), lysine (L5501) and methionine (GRM200)]. From
99
Sigma-Aldrich we purchased 3-MA (M9281), AGK2 (A8231), DMEM F-12
100
(D8900), DMEM (D5648), penicillin and streptomycin (P4333), DAB (3, 3′-
101
Diaminobenzidine, D3939), trypsin EDTA (59418C) and Atto 663 (41176).
102
From Cell Signaling Technology purchased, total P70S6K antibody (9202), Anti-p-
103
P70S6K T389 antibody (9862), anti-rabbit IgG horseradish peroxidase (HRP; 7074)
104
and total 4EBP1 antibody (9452) were purchased. From Sigma-Aldrich, anti-LC3B
105
antibody (L7543) was purchased. From Thermo Scientific, anti β-Tubulin (MA5-
106
16308) antibody was purchased. From Bio-Rad, anti-mouse IgG, HRP (172-1011)
107
antibody was purchased. CMAC-Blue (C2110) was purchased from Life
108
Technologies. Bafilomycin A1 (11038) was purchased from Cayman chemical.
109 110
2.2. Yeast culture
111
To culture WT GFP and autophagy mutant strains, YPD (yeast extract, peptone,
112
dextrose) media was used. To culture SNCA-EGFP and EGFP-Atg8 strains,
113
SD-Ura [synthetic dextrose without uracil] medium was used. To induce SNCA-
114
EGFP protein aggregates, cells were grown in SG-Ura (synthetic galactose without
115
uracil) medium.
116
All the above-mentioned strains were incubated at 250 g and 30°C.
117
2.3. Mammalian cell culture
118
HeLa cells were grown in DMEM medium containing 10% FBS (fetal bovine serum,
119
Pan-Biotech, P03-6510). We cultured and maintained undifferentiated neuroblastoma
120
SH-SY5Y cells in DMEM-F12 containing 10% FBS (fetal bovine serum, Life
121
Technologies, 12500062). All the cell lines were maintained at CO2 (5%) and 37°C.
122 123
2.4. Growth assays
124
Growth assays were performed using a multiplate reader in a high-throughput format.
125
Yeast strains (A600~0.06) were seeded in a 384-well plate and incubated (30°C, 420 g
126
and 80 µl) in a multiplate reader (Varioskan Flash, Thermo Scientific, USA) that
127
recorded absorbance (A600) automatically every 30 min for 72 h. Using GraphPad
128
Prism, the data were analysed and plotted the appropriate growth curves.
129 130
2.5. α-synuclein-EGFP protein induction
131
SNCA-EGFP strains were inoculated in a SD-Ura medium. From this, secondary
132
culture was inoculated (30°C, 250 g) till the absorbance (A600) reaches 0.6 - 0.8/ml.
133
Then, the cells were washed with autoclaved water and then incubated them (30°C,
134
250 g) with SG-Ura medium for 16 h for the induction of SNCA-EGFP protein
135
aggregates.
136 137
2.6. Yeast lysate preparation
138
The yeast strains (A600=3) were resuspended in a trichloroacetic acid (12.5%) and then
139
stored at -80°C for minimum of 30 min. Samples were thawed on ice and then
140
centrifuged (16,000 x g, 15 min). The pellets were washed twice using ice-cold
141
acetone (80%). Pellets were air dried and then resuspended in lysis (0.1 N NaOH and
142
1% SDS) solution, followed by the addition of Laemmli buffer and boiled it for 15
143
min.
144 145
2.7. Mammalian lysate preparation
146
The mammalian cells were collected in a Laemmli buffer (1X) to perform the LC3B
147
processing assay and other autophagy related signaling immunoblotting. For EGFP-
148
SNCA clearance assay, we scraped the cells in a growth medium. Cells were washed
149
twice with PBS (1X, phosphate buffer saline, 4°C, 2000 g) and lysed them using
150
Laemmli buffer and boiled for 15 min.
151 152
2.8. Immunoblotting
153
The appropriated yeast lysates were electrophoresed on SDS-PAGE (8-15%) and
154
transfered the proteins to PVDF membrane (Bio-Rad, 162-0177) using Transblot
155
turbo (Bio-Rad). Membranes were probed with appropriate primary antibodies
156
overnight at 4°C and then incubated with HRP-conjugated secondary antibody at
157
room temperature for 2 h. The signals from blots were developed using enhanced
158
chemiluminescence substrate (Clarity, Bio-Rad) and image were captured using a gel
159
documentation system (G-Box, Syngene, UK). The bands were quantified using
160
ImageJ software (NIH).
161 162 163 164
2.9. Microscopy To image the yeast cultures, after appropriate treatments, the cells were washed with autoclaved water and mounted on an agarose pad (2%).
165
To image the mammalian cells, after appropriate treatments, the cells in
166
coverslips were fixed using paraformaldehyde (4%, PFA; Sigma, 158127),
167
permeabilized using triton X-100 (0.2%; HiMedia, MB031) and mounted using
168
Vectashield (Vector laboratories, H-1000). For immunofluorescence, coverslips were
169
incubated with appropriate primary antibody [in 5% BSA (Sigma, RM105)] at 4°C
170
for overnight. Then, the coverslips were incubated with fluorescent-conjugated
171
antibody room temperature for 2 h. Then, the coverslips were mounted using
172
Vectashield (Vector laboratories, H-1000).
173
The images were acquired using DeltaVision Elite widefield microscope (API,
174
GE, USA) with following filters: Cy5 (632/22 and 676/34), TRITC (542/27 and
175
594/45), FITC (490/20 and 529/38) and DAPI (390/18 and 435/48). The images were
176
processed using DV SoftWoRX or ImageJ software for further analysis.
177 178
2.10. EGFP-Atg8 processing assay
179
Yeast strain expressing EGFP-Atg8 plasmid was grown in SD-U medium at 30°C
180
and 250 g. From this, the secondary culture inoculated and grown under the above-
181
mentioned conditions till their absorbance (A600) reaches 0.6-0.8. Cells were washed
182
twice and incubated in starvation medium with or without AGK2. Samples were
183
collected for 0, 2, 4 and 6 h time points. The yeast lysates were prepared as mentioned
184
above and electrophoresed with SDS-PAGE (10%) and immunoblotting was
185
performed.
186 187
2.11. α-synuclein-EGFP degradation assay
188
SNCA-EGFP aggregates were induced by incubating the cells with galactose for 16 h.
189
The aggregate induction was turned-off by addition of dextrose medium and then
190
treated with AGK2 for 24 h. We analyze the SNCA-EGFP levels using
191
immunoblotting.
192 193
2.12. Tandem RFP-EGFP-LC3 processing assay
194
HeLa cells were seeded in 60-mm dishes, transfected them with tandem RFP-GFP-
195
LC3B plasmid construct and allowed the protein to express for 24 h. Then, the cells
196
were trypsinized and seeded them on cover slips placed either in 12-well or 24 well
197
plates. Cells were treated with AGK2 for 2 h and processed the cover slips for
198
imaging.
199 200
2.13. LC3 processing and autophagy related signaling assays
201
To perform these assays, equal numbers of HeLa cells were seeded in 6-well plates
202
and allowed to attach overnight. Cells were treated with AGK2 and/or bafA1 (100
203
nM), EBSS and LiCl (25 mM) in growth medium for 2 h. EBSS induced mTOR
204
dependent autophagy and LiCl induced mTOR independent autophagy were used as
205
controls for the same. Mammalian lysates were prepared as mentioned above and
206
analysed the LC3 processing, levels of mTOR substrates using SDS-PAGE (8-15%)
207
electrophoresis and immunoblotting.
208 209
2.14. Cell viability assay
210
SH-SY5Y cells were seeded on a 96-well plate and transfected them with a EGFP-
211
SNCA plasmid. Cells were treated with AGK2 and/or 3-MA (5 mM) for 24 h after 48
212
h of transfection. Then, the cell viability was measured using the CellTitre-Glo®
213
(Promega, G7570) by measuring luminescence using a multiplate reader (Varioskan
214
Flash, Thermo Scientific).
215 216
2.15. Statistics
217
The unpaired Student t test and ANOVA (one-way or two-way) followed by the post-
218
hoc Bonferroni test in GraphPad Prism were used for statistical analyses. Error bars
219
represent mean ± S.E.M.
220 221
3. Results
222
3.1. Cytoprotection potential of AGK2 is dependent on autophagy in a yeast
223
model of α-synuclein proteotoxicity
224
In an α-synuclein overexpressing wild-type yeast strain, we observed a growth lag
225
(WT-EGFP versus WT α-syn-EGFP, P < 0.001, Fig. 2B). Upon AGK2 treatment to
226
wild-type α-synuclein overexpressing strain, growth was significantly enhanced than
227
untreated (P < 0.01, versus untreated, Fig. 2A). In addition, AGK2 (50 μM) did not
228
perturb the growth of wild-type yeast cells and was not cytotoxic (Fig. S1).
229
Autophagy is one of the cellular defense mechanism to combat the aggregate
230
mediated toxicity (Nixon, 2013). To examine the dependency of AGK2 on autophagy,
231
we performed the growth assay in an α-synuclein overexpressing, core autophagy
232
mutant (atg1∆) strain.
233
When α-synuclein was overexpressed in atg1∆ strain, its growth was significantly
234
affected as observed in WT cells. Upon treatment of AGK2 to atg1∆ cells
235
overexpressing α-synuclein, its growth was not significantly changed than untreated
236
(untreated versus AGK2 treated, P > 0.05, Fig. 3A). The ability of AGK2 to
237
ameliorate α-synuclein toxicity is lost in an autophagy mutant strain indicating the
238
essentiality of autophagy for its mechanism of action.
239
These results show that AGK2 cytoprotects yeast cells from the α-synuclein mediated
240
toxicity in an autophagy dependent manner.
241
3.2. AGK2 is an inducer of autophagy in yeast
242
In the yeast system, the EGFP-Atg8 processing assay is employed to assess the
243
autophagy status of cells (Klionsky et al., 2016). In starvation conditions, we noted
244
significant increase in free EGFP accumulation in untreated cells over time,
245
confirming that the nitrogen starvation induced autophagy. AGK2 treatment
246
significantly increased release of free EGFP temporally than that of untreated (2, 4
247
and 6 h time points, P < 0.001 versus untreated; Fig. 1). This result demonstrates that
248
AGK2 augments starvation-induced autophagy.
249
3.3. AGK2 induces autophagy in mammalian cells
250
To understand if AGK2 regulates autophagy in mammalian cells, we undertook two
251
assays: 1) tandem RFP-EGFP-LC3 assay (fluorescence based) and 2) LC3 processing
252
immunoblotting experiment (Kimura et al., 2007).
253
RFP-EGFP tandemly tagged LC3 allowed autophagosomes to visualize as yellow and
254
autolysosomes as red, as lysosomal acidic pH quenches EGFP fluorescence (Klionsky
255
et al., 2016). AGK2 (5 µM) treated HeLa cells showed increased number of
256
autophagosomes (~2 fold, P < 0.001, compared to control; Fig. 4A) and
257
autolysosomes (~4 fold, P < 0.001, compared to control; Fig. 4A) than that of
258
untreated cells. The high numbers of autolysosomes suggested that AGK2 promoted
259
autophagy flux.
260
AGK2 treatment to HeLa cells enhanced the processing of LC3-I to LC3-II
261
significantly than untreated (P < 0.001, versus untreated, Fig. 4B). Upon co-addition
262
of bafilomycin A1 (flux inhibitor) and AGK2, LC3-II levels were significantly more
263
than either bafilomycin A1 or AGK2 only treatments (P < 0.001, versus untreated,
264
Fig. 4B). Notably, treatment of AGK2 to HeLa cells was not toxic (Fig. S3). These
265
results confirm that AGK2 is indeed an autophagy enhancer.
266
3.4. AGK2 induces autophagy in an mTOR independent manner
267
Autophagy modulators can induce autophagy by either mTOR dependent or
268
independent signaling pathways (Suresh et al., 2018a). We tested if AGK2 regulates
269
autophagy by modulating mTOR by analyzing its substrate levels such as P70S6K
270
and 4EBP1. When mTOR is active, its phosphorylated substrates levels will be
271
enhanced (Suresh et al., 2018a). Upon AGK2 treatment to HeLa cells, we observed
272
the presence of phosphorylated substrates with concomitant increase in LC3-II
273
accumulation (Fig. 5A). Also, it was noted that AGK2 was not toxic to cells at 5 μM
274
(Fig. S1). This result indicates that AGK2 is an mTOR independent autophagy
275
enhancer.
276
3.5. AGK2 degrades alpha-synuclein in an autophagy dependent manner
277
One of the cellular defense mechanisms to ameliorate the aggregate mediated toxicity
278
is by degrading the toxic α-synuclein protein aggregates through autophagy to elicit
279
cyto/neuroprotection (Sarkar et al., 2007). We tested the efficacy of AGK2 in clearing
280
α-synuclein protein aggregates by performing immunoblotting based α-synuclein-
281
EGFP degradation assays.
282
Upon AGK2 treatment to wild-type α-synuclein-EGFP overexpressing yeast strain,
283
the level of α-synuclein-EGFP protein (P < 0.001, versus untreated, Fig. 3A) was
284
significantly lesser than untreated. Also, the fluorescence microscopy showed that
285
AGK2 significantly cleared α-synuclein-EGFP protein that resulted in the increased
286
presence of free EGFP in vacuole (P < 0.001, versus untreated, Fig. S2).
287
Does α-synuclein clearance potential of AGK2 is autophagy dependent? To answer
288
this question, we performed the immunoblotting based α-synuclein-EGFP degradation
289
assays in an α-synuclein-GFP overexpressing atg1∆ cells.
290
Upon AGK2 treatment to α-synuclein-EGFP overexpressing atg1∆ cells, the level of
291
α-synuclein-EGFP protein level was not significantly different from that of untreated
292
(P > 0.05, versus untreated, Fig. 3B).
293
These results confirm that AGK2 clears toxic α-synuclein-EGFP protein levels in an
294
autophagy dependent manner.
295
3.6. In mammalian cells, cytoprotection against α-synuclein toxicity by AGK2 is
296
autophagy-dependent
297
We analysed the ability of AGK2 in eliciting cytoprotection against α-synuclein
298
toxicity model of SH-SY5Y (the human neuroblastoma) and HeLa cells.
299
Upon EGFP-α-synuclein overexpression, the cellular viability was affected
300
significantly than either untransfected or vector control cells. AGK2 treatment to
301
EGFP-α-synuclein overexpressing cells significantly increased the viability of cells
302
than untreated (P < 0.001, versus untreated, Fig. 5B and Fig. S4). The cell viability
303
in AGK2 and 3-methyladenine (a pharmacological autophagy inhibitor) co-treatment
304
in EGFP-α-synuclein overexpressing cells was significantly lesser compared to
305
AGK2 treatment (P > 0.5, versus 3-MA, Fig. 5B and Fig. S4). Thus, we demonstrate
306
that AGK2 cytoprotects neuronal cells from EGFP-α-synuclein toxicity in an
307
autophagy dependent mechanism.
308
4. Discussion
309
We identified and characterized the AGK2 as an aggrephagy modulator in diverse
310
models such as yeast and mammalian cells. In yeast, small molecules enhanced the
311
starvation-induced autophagy and also cleared α-synuclein aggregates in an
312
autophagy dependent manner. In mammalian cells, AGK2 induced autophagy
313
precisely by enhancing the autolysosome formation. AGK2 cytoprotects neuronal
314
cells from α-synuclein mediated toxicity that was autophagy-dependent.
315
Under cellular steady state conditions, the α-synuclein is acetylated to prevent it from
316
attaining the toxic oligomer conformation (de Oliveira et al., 2017). Upon various
317
factors such as ageing and pathological conditions, sirtuin2 activity is upregulated to
318
generate the deacetylated forms of α-synuclein (de Oliveira et al., 2017). AGK2, the
319
sirtuin2 inhibitor has been shown to be neuroprotective in a Drosophila model of
320
Parkinson’s disease (PD) (Outeiro et al., 2007). Sirtuin2 is a NAD+ dependent
321
deacetylase that is predominantly expressed in brain and its levels are known increase
322
with ageing (de Oliveira et al., 2012). In PD, increased sirtuin2 activity aggravates
323
proteotoxicity by deacetylating α-synuclein at various lysine residues (Singh et al.,
324
2017). Acetylation of α-synuclein prevents its aggregation and thus is shown to be
325
neuroprotective in primary cortical neurons (de Oliveira et al., 2017). On the other
326
hand, dopaminergic neuronal loss is observed when acetylation of α-synuclein is
327
blocked. Genetic down regulation of sirtuin2 suppresses the α-synuclein aggregation
328
and its toxicity. Transgenic sirtuin2 knock out mice are protected from either α-
329
synuclein or MPTP mediated toxicities. In addition, sirtuin2 knock down cells show
330
increased accumulation of LC3-II with concomitant degradation of p62 suggesting
331
enhanced autophagic activity (de Oliveira et al., 2017). In addition to the post-
332
translational aspects of this protein, we investigated how sirtuin2 inhibition using a
333
small molecule (AGK2) regulates autophagy and we also tested its cytoprotection
334
potential. Our results, in particular show that in mammalian cells, the AGK2
335
enhanced autophagosome lysosome fusion.
336
α-synuclein is an intrinsically disordered protein (IDP) and upon overexpression
337
forms aggregates (Ghosh et al., 2017). These aggregates a) sequester essential cellular
338
proteins, b) get glued on to the endocytic vesicles perturbing their function, when
339
misfolded to impart cytotoxicity (Ghosh et al., 2017; Lautenschlager et al., 2017).
340
Thus, we and others demonstrated that degrading the toxic α-synuclein protein
341
aggregates exerts neuroprotection in various models such as yeast, mammalian cells
342
and mice. This clearance potential is dependent on autophagy as we demonstrated by
343
both pharmacological and genetic means.
344
AGK2 induces autophagy in an mTOR independent manner. mTOR is an essential
345
player that regulates vital cellular survival pathways and inhibiting it would result in
346
evident side effects such as immune suppression and so on (Ruiz-Torres et al., 2018).
347
So, pharmacologically mTOR independent autophagy enhancers are preferred to
348
conduct the clinical trials.
349
In our study, we showed that small molecule AGK2 cleared toxic α-synuclein protein
350
aggregates in an autophagy dependent manner to exert cytoprotection potential in two
351
model systems such as yeast and mammalian cell lines such as HeLa and SH-SY5Y.
352 353
Acknowledgements
354
We thank David Rubinzstein, Tamotsu Yoshimori and Y. Ohsumi for the kind gift of
355
plasmids. This work was supported by the Wellcome Trust/DBT India Alliance
356
Intermediate Fellowship (500159-Z-09-Z), DBT (BT/INF/22/SP27679/2018), DST-
357
SERB Grant (EMR/2015/001946), JNCASR intramural funds to RM.
358 359
References
360
de Oliveira, R.M., Sarkander, J., Kazantsev, A.G., Outeiro, T.F., 2012. SIRT2 as a
361
Therapeutic Target for Age-Related Disorders. Front Pharmacol 3, 82.
362
de Oliveira, R.M., Vicente Miranda, H., Francelle, L., Pinho, R., Szego, E.M.,
363
Martinho, R., Munari, F., Lazaro, D.F., Moniot, S., Guerreiro, P., Fonseca-Ornelas,
364
L., Marijanovic, Z., Antas, P., Gerhardt, E., Enguita, F.J., Fauvet, B., Penque, D.,
365
Pais, T.F., Tong, Q., Becker, S., Kugler, S., Lashuel, H.A., Steegborn, C.,
366
Zweckstetter, M., Outeiro, T.F., 2017. The mechanism of sirtuin 2-mediated
367
exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS
368
biology 15, e2000374.
369
Fernandez, A.F., Sebti, S., Wei, Y., Zou, Z., Shi, M., McMillan, K.L., He, C., Ting,
370
T., Liu, Y., Chiang, W.C., Marciano, D.K., Schiattarella, G.G., Bhagat, G., Moe,
371
O.W., Hu, M.C., Levine, B., 2018. Disruption of the beclin 1-BCL2 autophagy
372
regulatory complex promotes longevity in mice. Nature 558, 136-140.
373
Furlong, R.A., Narain, Y., Rankin, J., Wyttenbach, A., Rubinsztein, D.C., 2000.
374
Alpha-synuclein overexpression promotes aggregation of mutant huntingtin. Biochem
375
J 346 Pt 3, 577-581.
376
Ghosh, D., Mehra, S., Sahay, S., Singh, P.K., Maji, S.K., 2017. alpha-synuclein
377
aggregation and its modulation. International journal of biological macromolecules
378
100, 37-54.
379
Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-
380
Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., Mizushima, N.,
381
2006. Suppression of basal autophagy in neural cells causes neurodegenerative
382
disease in mice. Nature 441, 885-889.
383
Khurana, V., Lindquist, S., 2010. Modelling neurodegeneration in Saccharomyces
384
cerevisiae: why cook with baker's yeast? Nat Rev Neurosci 11, 436-449.
385
Kimura, S., Noda, T., Yoshimori, T., 2007. Dissection of the autophagosome
386
maturation process by a novel reporter protein, tandem fluorescent-tagged LC3.
387
Autophagy 3, 452-460.
388
Klaips, C.L., Jayaraj, G.G., Hartl, F.U., 2018. Pathways of cellular proteostasis in
389
aging and disease. The Journal of cell biology 217, 51-63.
390
Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo
391
Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., Adhihetty, P.J.,
392
Adler, S.G., Agam, G., Agarwal, R., Aghi, M.K., Agnello, M., Agostinis, P., Aguilar,
393
P.V., Aguirre-Ghiso, J., Airoldi, E.M., Ait-Si-Ali, S., Akematsu, T., Akporiaye, E.T.,
394
Al-Rubeai, M., Albaiceta, G.M., Albanese, C., Albani, D., Albert, M.L., Aldudo, J.,
395
Algul, H., Alirezaei, M., Alloza, I., Almasan, A., Almonte-Beceril, M., Alnemri, E.S.,
396
Alonso, C., Altan-Bonnet, N., Altieri, D.C., Alvarez, S., Alvarez-Erviti, L., Alves, S.,
397
Amadoro, G., Amano, A., Amantini, C., Ambrosio, S., Amelio, I., Amer, A.O.,
398
Amessou, M., Amon, A., An, Z., Anania, F.A., Andersen, S.U., Andley, U.P.,
399
Andreadi, C.K., Andrieu-Abadie, N., Anel, A., Ann, D.K., Anoopkumar-Dukie, S.,
400
Antonioli, M., Aoki, H., Apostolova, N., Aquila, S., Aquilano, K., Araki, K., Arama,
401
E., Aranda, A., Araya, J., Arcaro, A., Arias, E., Arimoto, H., Ariosa, A.R.,
402
Armstrong, J.L., Arnould, T., Arsov, I., Asanuma, K., Askanas, V., Asselin, E.,
403
Atarashi, R., Atherton, S.S., Atkin, J.D., Attardi, L.D., Auberger, P., Auburger, G.,
404
Aurelian, L., Autelli, R., Avagliano, L., Avantaggiati, M.L., Avrahami, L., Awale, S.,
405
Azad, N., Bachetti, T., Backer, J.M., Bae, D.H., Bae, J.S., Bae, O.N., Bae, S.H.,
406
Baehrecke, E.H., Baek, S.H., Baghdiguian, S., Bagniewska-Zadworna, A., Bai, H.,
407
Bai, J., Bai, X.Y., Bailly, Y., Balaji, K.N., Balduini, W., Ballabio, A., Balzan, R.,
408
Banerjee, R., Banhegyi, G., Bao, H., Barbeau, B., Barrachina, M.D., Barreiro, E.,
409
Bartel, B., Bartolome, A., Bassham, D.C., Bassi, M.T., Bast, R.C., Jr., Basu, A.,
410
Batista, M.T., Batoko, H., Battino, M., Bauckman, K., Baumgarner, B.L., Bayer,
411
K.U., Beale, R., Beaulieu, J.F., Beck, G.R., Jr., Becker, C., Beckham, J.D., Bedard,
412
P.A., Bednarski, P.J., Begley, T.J., Behl, C., Behrends, C., Behrens, G.M., Behrns,
413
K.E., Bejarano, E., Belaid, A., Belleudi, F., Benard, G., Berchem, G., Bergamaschi,
414
D., Bergami, M., Berkhout, B., Berliocchi, L., Bernard, A., Bernard, M., Bernassola,
415
F., Bertolotti, A., Bess, A.S., Besteiro, S., Bettuzzi, S., Bhalla, S., Bhattacharyya, S.,
416
Bhutia, S.K., Biagosch, C., Bianchi, M.W., Biard-Piechaczyk, M., Billes, V.,
417
Bincoletto, C., Bingol, B., Bird, S.W., Bitoun, M., Bjedov, I., Blackstone, C., Blanc,
418
L., Blanco, G.A., Blomhoff, H.K., Boada-Romero, E., Bockler, S., Boes, M., Boesze-
419
Battaglia, K., Boise, L.H., Bolino, A., Boman, A., Bonaldo, P., Bordi, M., Bosch, J.,
420
Botana, L.M., Botti, J., Bou, G., Bouche, M., Bouchecareilh, M., Boucher, M.J.,
421
Boulton, M.E., Bouret, S.G., Boya, P., Boyer-Guittaut, M., Bozhkov, P.V., Brady, N.,
422
Braga, V.M., Brancolini, C., Braus, G.H., Bravo-San Pedro, J.M., Brennan, L.A.,
423
Bresnick, E.H., Brest, P., Bridges, D., Bringer, M.A., Brini, M., Brito, G.C., Brodin,
424
B., Brookes, P.S., Brown, E.J., Brown, K., Broxmeyer, H.E., Bruhat, A., Brum, P.C.,
425
Brumell, J.H., Brunetti-Pierri, N., Bryson-Richardson, R.J., Buch, S., Buchan, A.M.,
426
Budak, H., Bulavin, D.V., Bultman, S.J., Bultynck, G., Bumbasirevic, V., Burelle, Y.,
427
Burke, R.E., Burmeister, M., Butikofer, P., Caberlotto, L., Cadwell, K., Cahova, M.,
428
Cai, D., Cai, J., Cai, Q., Calatayud, S., Camougrand, N., Campanella, M., Campbell,
429
G.R., Campbell, M., Campello, S., Candau, R., Caniggia, I., Cantoni, L., Cao, L.,
430
Caplan, A.B., Caraglia, M., Cardinali, C., Cardoso, S.M., Carew, J.S., Carleton, L.A.,
431
Carlin, C.R., Carloni, S., Carlsson, S.R., Carmona-Gutierrez, D., Carneiro, L.A.,
432
Carnevali, O., Carra, S., Carrier, A., Carroll, B., Casas, C., Casas, J., Cassinelli, G.,
433
Castets, P., Castro-Obregon, S., Cavallini, G., Ceccherini, I., Cecconi, F., Cederbaum,
434
A.I., Cena, V., Cenci, S., Cerella, C., Cervia, D., Cetrullo, S., Chaachouay, H., Chae,
435
H.J., Chagin, A.S., Chai, C.Y., Chakrabarti, G., Chamilos, G., Chan, E.Y., Chan,
436
M.T., Chandra, D., Chandra, P., Chang, C.P., Chang, R.C., Chang, T.Y., Chatham,
437
J.C., Chatterjee, S., Chauhan, S., Che, Y., Cheetham, M.E., Cheluvappa, R., Chen,
438
C.J., Chen, G., Chen, G.C., Chen, G., Chen, H., Chen, J.W., Chen, J.K., Chen, M.,
439
Chen, M., Chen, P., Chen, Q., Chen, Q., Chen, S.D., Chen, S., Chen, S.S., Chen, W.,
440
Chen, W.J., Chen, W.Q., Chen, W., Chen, X., Chen, Y.H., Chen, Y.G., Chen, Y.,
441
Chen, Y., Chen, Y., Chen, Y.J., Chen, Y.Q., Chen, Y., Chen, Z., Chen, Z., Cheng, A.,
442
Cheng, C.H., Cheng, H., Cheong, H., Cherry, S., Chesney, J., Cheung, C.H., Chevet,
443
E., Chi, H.C., Chi, S.G., Chiacchiera, F., Chiang, H.L., Chiarelli, R., Chiariello, M.,
444
Chieppa, M., Chin, L.S., Chiong, M., Chiu, G.N., Cho, D.H., Cho, S.G., Cho, W.C.,
445
Cho, Y.Y., Cho, Y.S., Choi, A.M., Choi, E.J., Choi, E.K., Choi, J., Choi, M.E., Choi,
446
S.I., Chou, T.F., Chouaib, S., Choubey, D., Choubey, V., Chow, K.C., Chowdhury,
447
K., Chu, C.T., Chuang, T.H., Chun, T., Chung, H., Chung, T., Chung, Y.L., Chwae,
448
Y.J., Cianfanelli, V., Ciarcia, R., Ciechomska, I.A., Ciriolo, M.R., Cirone, M.,
449
Claerhout, S., Clague, M.J., Claria, J., Clarke, P.G., Clarke, R., Clementi, E., Cleyrat,
450
C., Cnop, M., Coccia, E.M., Cocco, T., Codogno, P., Coers, J., Cohen, E.E.,
451
Colecchia, D., Coletto, L., Coll, N.S., Colucci-Guyon, E., Comincini, S., Condello,
452
M., Cook, K.L., Coombs, G.H., Cooper, C.D., Cooper, J.M., Coppens, I., Corasaniti,
453
M.T., Corazzari, M., Corbalan, R., Corcelle-Termeau, E., Cordero, M.D., Corral-
454
Ramos, C., Corti, O., Cossarizza, A., Costelli, P., Costes, S., Cotman, S.L., Coto-
455
Montes, A., Cottet, S., Couve, E., Covey, L.R., Cowart, L.A., Cox, J.S., Coxon, F.P.,
456
Coyne, C.B., Cragg, M.S., Craven, R.J., Crepaldi, T., Crespo, J.L., Criollo, A.,
457
Crippa, V., Cruz, M.T., Cuervo, A.M., Cuezva, J.M., Cui, T., Cutillas, P.R., Czaja,
458
M.J., Czyzyk-Krzeska, M.F., Dagda, R.K., Dahmen, U., Dai, C., Dai, W., Dai, Y.,
459
Dalby, K.N., Dalla Valle, L., Dalmasso, G., D'Amelio, M., Damme, M., Darfeuille-
460
Michaud, A., Dargemont, C., Darley-Usmar, V.M., Dasarathy, S., Dasgupta, B.,
461
Dash, S., Dass, C.R., Davey, H.M., Davids, L.M., Davila, D., Davis, R.J., Dawson,
462
T.M., Dawson, V.L., Daza, P., de Belleroche, J., de Figueiredo, P., de Figueiredo,
463
R.C., de la Fuente, J., De Martino, L., De Matteis, A., De Meyer, G.R., De Milito, A.,
464
De Santi, M., de Souza, W., De Tata, V., De Zio, D., Debnath, J., Dechant, R.,
465
Decuypere, J.P., Deegan, S., Dehay, B., Del Bello, B., Del Re, D.P., Delage-
466
Mourroux, R., Delbridge, L.M., Deldicque, L., Delorme-Axford, E., Deng, Y.,
467
Dengjel, J., Denizot, M., Dent, P., Der, C.J., Deretic, V., Derrien, B., Deutsch, E.,
468
Devarenne, T.P., Devenish, R.J., Di Bartolomeo, S., Di Daniele, N., Di Domenico, F.,
469
Di Nardo, A., Di Paola, S., Di Pietro, A., Di Renzo, L., DiAntonio, A., Diaz-Araya,
470
G., Diaz-Laviada, I., Diaz-Meco, M.T., Diaz-Nido, J., Dickey, C.A., Dickson, R.C.,
471
Diederich, M., Digard, P., Dikic, I., Dinesh-Kumar, S.P., Ding, C., Ding, W.X., Ding,
472
Z., Dini, L., Distler, J.H., Diwan, A., Djavaheri-Mergny, M., Dmytruk, K., Dobson,
473
R.C., Doetsch, V., Dokladny, K., Dokudovskaya, S., Donadelli, M., Dong, X.C.,
474
Dong, X., Dong, Z., Donohue, T.M., Jr., Doran, K.S., D'Orazi, G., Dorn, G.W., 2nd,
475
Dosenko, V., Dridi, S., Drucker, L., Du, J., Du, L.L., Du, L., du Toit, A., Dua, P.,
476
Duan, L., Duann, P., Dubey, V.K., Duchen, M.R., Duchosal, M.A., Duez, H., Dugail,
477
I., Dumit, V.I., Duncan, M.C., Dunlop, E.A., Dunn, W.A., Jr., Dupont, N., Dupuis, L.,
478
Duran, R.V., Durcan, T.M., Duvezin-Caubet, S., Duvvuri, U., Eapen, V., Ebrahimi-
479
Fakhari, D., Echard, A., Eckhart, L., Edelstein, C.L., Edinger, A.L., Eichinger, L.,
480
Eisenberg, T., Eisenberg-Lerner, A., Eissa, N.T., El-Deiry, W.S., El-Khoury, V.,
481
Elazar, Z., Eldar-Finkelman, H., Elliott, C.J., Emanuele, E., Emmenegger, U.,
482
Engedal, N., Engelbrecht, A.M., Engelender, S., Enserink, J.M., Erdmann, R.,
483
Erenpreisa, J., Eri, R., Eriksen, J.L., Erman, A., Escalante, R., Eskelinen, E.L., Espert,
484
L., Esteban-Martinez, L., Evans, T.J., Fabri, M., Fabrias, G., Fabrizi, C., Facchiano,
485
A., Faergeman, N.J., Faggioni, A., Fairlie, W.D., Fan, C., Fan, D., Fan, J., Fang, S.,
486
Fanto, M., Fanzani, A., Farkas, T., Faure, M., Favier, F.B., Fearnhead, H., Federici,
487
M., Fei, E., Felizardo, T.C., Feng, H., Feng, Y., Feng, Y., Ferguson, T.A., Fernandez,
488
A.F., Fernandez-Barrena, M.G., Fernandez-Checa, J.C., Fernandez-Lopez, A.,
489
Fernandez-Zapico, M.E., Feron, O., Ferraro, E., Ferreira-Halder, C.V., Fesus, L.,
490
Feuer, R., Fiesel, F.C., Filippi-Chiela, E.C., Filomeni, G., Fimia, G.M., Fingert, J.H.,
491
Finkbeiner, S., Finkel, T., Fiorito, F., Fisher, P.B., Flajolet, M., Flamigni, F., Florey,
492
O., Florio, S., Floto, R.A., Folini, M., Follo, C., Fon, E.A., Fornai, F., Fortunato, F.,
493
Fraldi, A., Franco, R., Francois, A., Francois, A., Frankel, L.B., Fraser, I.D., Frey, N.,
494
Freyssenet, D.G., Frezza, C., Friedman, S.L., Frigo, D.E., Fu, D., Fuentes, J.M.,
495
Fueyo, J., Fujitani, Y., Fujiwara, Y., Fujiya, M., Fukuda, M., Fulda, S., Fusco, C.,
496
Gabryel, B., Gaestel, M., Gailly, P., Gajewska, M., Galadari, S., Galili, G., Galindo,
497
I., Galindo, M.F., Galliciotti, G., Galluzzi, L., Galluzzi, L., Galy, V., Gammoh, N.,
498
Gandy, S., Ganesan, A.K., Ganesan, S., Ganley, I.G., Gannage, M., Gao, F.B., Gao,
499
F., Gao, J.X., Garcia Nannig, L., Garcia Vescovi, E., Garcia-Macia, M., Garcia-Ruiz,
500
C., Garg, A.D., Garg, P.K., Gargini, R., Gassen, N.C., Gatica, D., Gatti, E., Gavard,
501
J., Gavathiotis, E., Ge, L., Ge, P., Ge, S., Gean, P.W., Gelmetti, V., Genazzani, A.A.,
502
Geng, J., Genschik, P., Gerner, L., Gestwicki, J.E., Gewirtz, D.A., Ghavami, S.,
503
Ghigo, E., Ghosh, D., Giammarioli, A.M., Giampieri, F., Giampietri, C.,
504
Giatromanolaki, A., Gibbings, D.J., Gibellini, L., Gibson, S.B., Ginet, V., Giordano,
505
A., Giorgini, F., Giovannetti, E., Girardin, S.E., Gispert, S., Giuliano, S., Gladson,
506
C.L., Glavic, A., Gleave, M., Godefroy, N., Gogal, R.M., Jr., Gokulan, K., Goldman,
507
G.H., Goletti, D., Goligorsky, M.S., Gomes, A.V., Gomes, L.C., Gomez, H., Gomez-
508
Manzano, C., Gomez-Sanchez, R., Goncalves, D.A., Goncu, E., Gong, Q., Gongora,
509
C., Gonzalez, C.B., Gonzalez-Alegre, P., Gonzalez-Cabo, P., Gonzalez-Polo, R.A.,
510
Goping, I.S., Gorbea, C., Gorbunov, N.V., Goring, D.R., Gorman, A.M., Gorski,
511
S.M., Goruppi, S., Goto-Yamada, S., Gotor, C., Gottlieb, R.A., Gozes, I., Gozuacik,
512
D., Graba, Y., Graef, M., Granato, G.E., Grant, G.D., Grant, S., Gravina, G.L., Green,
513
D.R., Greenhough, A., Greenwood, M.T., Grimaldi, B., Gros, F., Grose, C., Groulx,
514
J.F., Gruber, F., Grumati, P., Grune, T., Guan, J.L., Guan, K.L., Guerra, B., Guillen,
515
C., Gulshan, K., Gunst, J., Guo, C., Guo, L., Guo, M., Guo, W., Guo, X.G., Gust,
516
A.A., Gustafsson, A.B., Gutierrez, E., Gutierrez, M.G., Gwak, H.S., Haas, A., Haber,
517
J.E., Hadano, S., Hagedorn, M., Hahn, D.R., Halayko, A.J., Hamacher-Brady, A.,
518
Hamada, K., Hamai, A., Hamann, A., Hamasaki, M., Hamer, I., Hamid, Q.,
519
Hammond, E.M., Han, F., Han, W., Handa, J.T., Hanover, J.A., Hansen, M., Harada,
520
M., Harhaji-Trajkovic, L., Harper, J.W., Harrath, A.H., Harris, A.L., Harris, J.,
521
Hasler, U., Hasselblatt, P., Hasui, K., Hawley, R.G., Hawley, T.S., He, C., He, C.Y.,
522
He, F., He, G., He, R.R., He, X.H., He, Y.W., He, Y.Y., Heath, J.K., Hebert, M.J.,
523
Heinzen, R.A., Helgason, G.V., Hensel, M., Henske, E.P., Her, C., Herman, P.K.,
524
Hernandez, A., Hernandez, C., Hernandez-Tiedra, S., Hetz, C., Hiesinger, P.R.,
525
Higaki, K., Hilfiker, S., Hill, B.G., Hill, J.A., Hill, W.D., Hino, K., Hofius, D.,
526
Hofman, P., Hoglinger, G.U., Hohfeld, J., Holz, M.K., Hong, Y., Hood, D.A.,
527
Hoozemans, J.J., Hoppe, T., Hsu, C., Hsu, C.Y., Hsu, L.C., Hu, D., Hu, G., Hu, H.M.,
528
Hu, H., Hu, M.C., Hu, Y.C., Hu, Z.W., Hua, F., Hua, Y., Huang, C., Huang, H.L.,
529
Huang, K.H., Huang, K.Y., Huang, S., Huang, S., Huang, W.P., Huang, Y.R., Huang,
530
Y., Huang, Y., Huber, T.B., Huebbe, P., Huh, W.K., Hulmi, J.J., Hur, G.M., Hurley,
531
J.H., Husak, Z., Hussain, S.N., Hussain, S., Hwang, J.J., Hwang, S., Hwang, T.I.,
532
Ichihara, A., Imai, Y., Imbriano, C., Inomata, M., Into, T., Iovane, V., Iovanna, J.L.,
533
Iozzo, R.V., Ip, N.Y., Irazoqui, J.E., Iribarren, P., Isaka, Y., Isakovic, A.J.,
534
Ischiropoulos, H., Isenberg, J.S., Ishaq, M., Ishida, H., Ishii, I., Ishmael, J.E., Isidoro,
535
C., Isobe, K., Isono, E., Issazadeh-Navikas, S., Itahana, K., Itakura, E., Ivanov, A.I.,
536
Iyer, A.K., Izquierdo, J.M., Izumi, Y., Izzo, V., Jaattela, M., Jaber, N., Jackson, D.J.,
537
Jackson, W.T., Jacob, T.G., Jacques, T.S., Jagannath, C., Jain, A., Jana, N.R., Jang,
538
B.K., Jani, A., Janji, B., Jannig, P.R., Jansson, P.J., Jean, S., Jendrach, M., Jeon, J.H.,
539
Jessen, N., Jeung, E.B., Jia, K., Jia, L., Jiang, H., Jiang, H., Jiang, L., Jiang, T., Jiang,
540
X., Jiang, X., Jiang, X., Jiang, Y., Jiang, Y., Jimenez, A., Jin, C., Jin, H., Jin, L., Jin,
541
M., Jin, S., Jinwal, U.K., Jo, E.K., Johansen, T., Johnson, D.E., Johnson, G.V.,
542
Johnson, J.D., Jonasch, E., Jones, C., Joosten, L.A., Jordan, J., Joseph, A.M., Joseph,
543
B., Joubert, A.M., Ju, D., Ju, J., Juan, H.F., Juenemann, K., Juhasz, G., Jung, H.S.,
544
Jung, J.U., Jung, Y.K., Jungbluth, H., Justice, M.J., Jutten, B., Kaakoush, N.O.,
545
Kaarniranta, K., Kaasik, A., Kabuta, T., Kaeffer, B., Kagedal, K., Kahana, A.,
546
Kajimura, S., Kakhlon, O., Kalia, M., Kalvakolanu, D.V., Kamada, Y., Kambas, K.,
547
Kaminskyy, V.O., Kampinga, H.H., Kandouz, M., Kang, C., Kang, R., Kang, T.C.,
548
Kanki, T., Kanneganti, T.D., Kanno, H., Kanthasamy, A.G., Kantorow, M.,
549
Kaparakis-Liaskos, M., Kapuy, O., Karantza, V., Karim, M.R., Karmakar, P., Kaser,
550
A., Kaushik, S., Kawula, T., Kaynar, A.M., Ke, P.Y., Ke, Z.J., Kehrl, J.H., Keller,
551
K.E., Kemper, J.K., Kenworthy, A.K., Kepp, O., Kern, A., Kesari, S., Kessel, D.,
552
Ketteler, R., Kettelhut Ido, C., Khambu, B., Khan, M.M., Khandelwal, V.K., Khare,
553
S., Kiang, J.G., Kiger, A.A., Kihara, A., Kim, A.L., Kim, C.H., Kim, D.R., Kim,
554
D.H., Kim, E.K., Kim, H.Y., Kim, H.R., Kim, J.S., Kim, J.H., Kim, J.C., Kim, J.H.,
555
Kim, K.W., Kim, M.D., Kim, M.M., Kim, P.K., Kim, S.W., Kim, S.Y., Kim, Y.S.,
556
Kim, Y., Kimchi, A., Kimmelman, A.C., Kimura, T., King, J.S., Kirkegaard, K.,
557
Kirkin, V., Kirshenbaum, L.A., Kishi, S., Kitajima, Y., Kitamoto, K., Kitaoka, Y.,
558
Kitazato, K., Kley, R.A., Klimecki, W.T., Klinkenberg, M., Klucken, J., Knaevelsrud,
559
H., Knecht, E., Knuppertz, L., Ko, J.L., Kobayashi, S., Koch, J.C., Koechlin-
560
Ramonatxo, C., Koenig, U., Koh, Y.H., Kohler, K., Kohlwein, S.D., Koike, M.,
561
Komatsu, M., Kominami, E., Kong, D., Kong, H.J., Konstantakou, E.G., Kopp, B.T.,
562
Korcsmaros, T., Korhonen, L., Korolchuk, V.I., Koshkina, N.V., Kou, Y.,
563
Koukourakis, M.I., Koumenis, C., Kovacs, A.L., Kovacs, T., Kovacs, W.J., Koya, D.,
564
Kraft, C., Krainc, D., Kramer, H., Kravic-Stevovic, T., Krek, W., Kretz-Remy, C.,
565
Krick, R., Krishnamurthy, M., Kriston-Vizi, J., Kroemer, G., Kruer, M.C., Kruger, R.,
566
Ktistakis, N.T., Kuchitsu, K., Kuhn, C., Kumar, A.P., Kumar, A., Kumar, A., Kumar,
567
D., Kumar, D., Kumar, R., Kumar, S., Kundu, M., Kung, H.J., Kuno, A., Kuo, S.H.,
568
Kuret, J., Kurz, T., Kwok, T., Kwon, T.K., Kwon, Y.T., Kyrmizi, I., La Spada, A.R.,
569
Lafont, F., Lahm, T., Lakkaraju, A., Lam, T., Lamark, T., Lancel, S., Landowski,
570
T.H., Lane, D.J., Lane, J.D., Lanzi, C., Lapaquette, P., Lapierre, L.R., Laporte, J.,
571
Laukkarinen, J., Laurie, G.W., Lavandero, S., Lavie, L., LaVoie, M.J., Law, B.Y.,
572
Law, H.K., Law, K.B., Layfield, R., Lazo, P.A., Le Cam, L., Le Roch, K.G., Le
573
Stunff, H., Leardkamolkarn, V., Lecuit, M., Lee, B.H., Lee, C.H., Lee, E.F., Lee,
574
G.M., Lee, H.J., Lee, H., Lee, J.K., Lee, J., Lee, J.H., Lee, J.H., Lee, M., Lee, M.S.,
575
Lee, P.J., Lee, S.W., Lee, S.J., Lee, S.J., Lee, S.Y., Lee, S.H., Lee, S.S., Lee, S.J.,
576
Lee, S., Lee, Y.R., Lee, Y.J., Lee, Y.H., Leeuwenburgh, C., Lefort, S., Legouis, R.,
577
Lei, J., Lei, Q.Y., Leib, D.A., Leibowitz, G., Lekli, I., Lemaire, S.D., Lemasters, J.J.,
578
Lemberg, M.K., Lemoine, A., Leng, S., Lenz, G., Lenzi, P., Lerman, L.O., Lettieri
579
Barbato, D., Leu, J.I., Leung, H.Y., Levine, B., Lewis, P.A., Lezoualc'h, F., Li, C., Li,
580
F., Li, F.J., Li, J., Li, K., Li, L., Li, M., Li, M., Li, Q., Li, R., Li, S., Li, W., Li, W., Li,
581
X., Li, Y., Lian, J., Liang, C., Liang, Q., Liao, Y., Liberal, J., Liberski, P.P., Lie, P.,
582
Lieberman, A.P., Lim, H.J., Lim, K.L., Lim, K., Lima, R.T., Lin, C.S., Lin, C.F., Lin,
583
F., Lin, F., Lin, F.C., Lin, K., Lin, K.H., Lin, P.H., Lin, T., Lin, W.W., Lin, Y.S., Lin,
584
Y., Linden, R., Lindholm, D., Lindqvist, L.M., Lingor, P., Linkermann, A., Liotta,
585
L.A., Lipinski, M.M., Lira, V.A., Lisanti, M.P., Liton, P.B., Liu, B., Liu, C., Liu,
586
C.F., Liu, F., Liu, H.J., Liu, J., Liu, J.J., Liu, J.L., Liu, K., Liu, L., Liu, L., Liu, Q.,
587
Liu, R.Y., Liu, S., Liu, S., Liu, W., Liu, X.D., Liu, X., Liu, X.H., Liu, X., Liu, X.,
588
Liu, X., Liu, Y., Liu, Y., Liu, Z., Liu, Z., Liuzzi, J.P., Lizard, G., Ljujic, M., Lodhi,
589
I.J., Logue, S.E., Lokeshwar, B.L., Long, Y.C., Lonial, S., Loos, B., Lopez-Otin, C.,
590
Lopez-Vicario, C., Lorente, M., Lorenzi, P.L., Lorincz, P., Los, M., Lotze, M.T.,
591
Lovat, P.E., Lu, B., Lu, B., Lu, J., Lu, Q., Lu, S.M., Lu, S., Lu, Y., Luciano, F.,
592
Luckhart, S., Lucocq, J.M., Ludovico, P., Lugea, A., Lukacs, N.W., Lum, J.J., Lund,
593
A.H., Luo, H., Luo, J., Luo, S., Luparello, C., Lyons, T., Ma, J., Ma, Y., Ma, Y., Ma,
594
Z., Machado, J., Machado-Santelli, G.M., Macian, F., MacIntosh, G.C., MacKeigan,
595
J.P., Macleod, K.F., MacMicking, J.D., MacMillan-Crow, L.A., Madeo, F., Madesh,
596
M., Madrigal-Matute, J., Maeda, A., Maeda, T., Maegawa, G., Maellaro, E., Maes,
597
H., Magarinos, M., Maiese, K., Maiti, T.K., Maiuri, L., Maiuri, M.C., Maki, C.G.,
598
Malli, R., Malorni, W., Maloyan, A., Mami-Chouaib, F., Man, N., Mancias, J.D.,
599
Mandelkow, E.M., Mandell, M.A., Manfredi, A.A., Manie, S.N., Manzoni, C., Mao,
600
K., Mao, Z., Mao, Z.W., Marambaud, P., Marconi, A.M., Marelja, Z., Marfe, G.,
601
Margeta, M., Margittai, E., Mari, M., Mariani, F.V., Marin, C., Marinelli, S., Marino,
602
G., Markovic, I., Marquez, R., Martelli, A.M., Martens, S., Martin, K.R., Martin, S.J.,
603
Martin, S., Martin-Acebes, M.A., Martin-Sanz, P., Martinand-Mari, C., Martinet, W.,
604
Martinez, J., Martinez-Lopez, N., Martinez-Outschoorn, U., Martinez-Velazquez, M.,
605
Martinez-Vicente, M., Martins, W.K., Mashima, H., Mastrianni, J.A., Matarese, G.,
606
Matarrese, P., Mateo, R., Matoba, S., Matsumoto, N., Matsushita, T., Matsuura, A.,
607
Matsuzawa, T., Mattson, M.P., Matus, S., Maugeri, N., Mauvezin, C., Mayer, A.,
608
Maysinger, D., Mazzolini, G.D., McBrayer, M.K., McCall, K., McCormick, C.,
609
McInerney, G.M., McIver, S.C., McKenna, S., McMahon, J.J., McNeish, I.A.,
610
Mechta-Grigoriou, F., Medema, J.P., Medina, D.L., Megyeri, K., Mehrpour, M.,
611
Mehta, J.L., Mei, Y., Meier, U.C., Meijer, A.J., Melendez, A., Melino, G., Melino, S.,
612
de Melo, E.J., Mena, M.A., Meneghini, M.D., Menendez, J.A., Menezes, R., Meng,
613
L., Meng, L.H., Meng, S., Menghini, R., Menko, A.S., Menna-Barreto, R.F., Menon,
614
M.B., Meraz-Rios, M.A., Merla, G., Merlini, L., Merlot, A.M., Meryk, A., Meschini,
615
S., Meyer, J.N., Mi, M.T., Miao, C.Y., Micale, L., Michaeli, S., Michiels, C.,
616
Migliaccio, A.R., Mihailidou, A.S., Mijaljica, D., Mikoshiba, K., Milan, E., Miller-
617
Fleming, L., Mills, G.B., Mills, I.G., Minakaki, G., Minassian, B.A., Ming, X.F.,
618
Minibayeva, F., Minina, E.A., Mintern, J.D., Minucci, S., Miranda-Vizuete, A.,
619
Mitchell, C.H., Miyamoto, S., Miyazawa, K., Mizushima, N., Mnich, K., Mograbi, B.,
620
Mohseni, S., Moita, L.F., Molinari, M., Molinari, M., Moller, A.B., Mollereau, B.,
621
Mollinedo, F., Mongillo, M., Monick, M.M., Montagnaro, S., Montell, C., Moore,
622
D.J., Moore, M.N., Mora-Rodriguez, R., Moreira, P.I., Morel, E., Morelli, M.B.,
623
Moreno, S., Morgan, M.J., Moris, A., Moriyasu, Y., Morrison, J.L., Morrison, L.A.,
624
Morselli, E., Moscat, J., Moseley, P.L., Mostowy, S., Motori, E., Mottet, D., Mottram,
625
J.C., Moussa, C.E., Mpakou, V.E., Mukhtar, H., Mulcahy Levy, J.M., Muller, S.,
626
Munoz-Moreno, R., Munoz-Pinedo, C., Munz, C., Murphy, M.E., Murray, J.T.,
627
Murthy, A., Mysorekar, I.U., Nabi, I.R., Nabissi, M., Nader, G.A., Nagahara, Y.,
628
Nagai, Y., Nagata, K., Nagelkerke, A., Nagy, P., Naidu, S.R., Nair, S., Nakano, H.,
629
Nakatogawa, H., Nanjundan, M., Napolitano, G., Naqvi, N.I., Nardacci, R., Narendra,
630
D.P., Narita, M., Nascimbeni, A.C., Natarajan, R., Navegantes, L.C., Nawrocki, S.T.,
631
Nazarko, T.Y., Nazarko, V.Y., Neill, T., Neri, L.M., Netea, M.G., Netea-Maier, R.T.,
632
Neves, B.M., Ney, P.A., Nezis, I.P., Nguyen, H.T., Nguyen, H.P., Nicot, A.S., Nilsen,
633
H., Nilsson, P., Nishimura, M., Nishino, I., Niso-Santano, M., Niu, H., Nixon, R.A.,
634
Njar, V.C., Noda, T., Noegel, A.A., Nolte, E.M., Norberg, E., Norga, K.K., Noureini,
635
S.K., Notomi, S., Notterpek, L., Nowikovsky, K., Nukina, N., Nurnberger, T.,
636
O'Donnell, V.B., O'Donovan, T., O'Dwyer, P.J., Oehme, I., Oeste, C.L., Ogawa, M.,
637
Ogretmen, B., Ogura, Y., Oh, Y.J., Ohmuraya, M., Ohshima, T., Ojha, R., Okamoto,
638
K., Okazaki, T., Oliver, F.J., Ollinger, K., Olsson, S., Orban, D.P., Ordonez, P.,
639
Orhon, I., Orosz, L., O'Rourke, E.J., Orozco, H., Ortega, A.L., Ortona, E., Osellame,
640
L.D., Oshima, J., Oshima, S., Osiewacz, H.D., Otomo, T., Otsu, K., Ou, J.H., Outeiro,
641
T.F., Ouyang, D.Y., Ouyang, H., Overholtzer, M., Ozbun, M.A., Ozdinler, P.H.,
642
Ozpolat, B., Pacelli, C., Paganetti, P., Page, G., Pages, G., Pagnini, U., Pajak, B., Pak,
643
S.C., Pakos-Zebrucka, K., Pakpour, N., Palkova, Z., Palladino, F., Pallauf, K., Pallet,
644
N., Palmieri, M., Paludan, S.R., Palumbo, C., Palumbo, S., Pampliega, O., Pan, H.,
645
Pan, W., Panaretakis, T., Pandey, A., Pantazopoulou, A., Papackova, Z.,
646
Papademetrio, D.L., Papassideri, I., Papini, A., Parajuli, N., Pardo, J., Parekh, V.V.,
647
Parenti, G., Park, J.I., Park, J., Park, O.K., Parker, R., Parlato, R., Parys, J.B.,
648
Parzych, K.R., Pasquet, J.M., Pasquier, B., Pasumarthi, K.B., Patschan, D., Patterson,
649
C., Pattingre, S., Pattison, S., Pause, A., Pavenstadt, H., Pavone, F., Pedrozo, Z., Pena,
650
F.J., Penalva, M.A., Pende, M., Peng, J., Penna, F., Penninger, J.M., Pensalfini, A.,
651
Pepe, S., Pereira, G.J., Pereira, P.C., Perez-de la Cruz, V., Perez-Perez, M.E., Perez-
652
Rodriguez, D., Perez-Sala, D., Perier, C., Perl, A., Perlmutter, D.H., Perrotta, I.,
653
Pervaiz, S., Pesonen, M., Pessin, J.E., Peters, G.J., Petersen, M., Petrache, I., Petrof,
654
B.J., Petrovski, G., Phang, J.M., Piacentini, M., Pierdominici, M., Pierre, P.,
655
Pierrefite-Carle, V., Pietrocola, F., Pimentel-Muinos, F.X., Pinar, M., Pineda, B.,
656
Pinkas-Kramarski, R., Pinti, M., Pinton, P., Piperdi, B., Piret, J.M., Platanias, L.C.,
657
Platta, H.W., Plowey, E.D., Poggeler, S., Poirot, M., Polcic, P., Poletti, A., Poon,
658
A.H., Popelka, H., Popova, B., Poprawa, I., Poulose, S.M., Poulton, J., Powers, S.K.,
659
Powers, T., Pozuelo-Rubio, M., Prak, K., Prange, R., Prescott, M., Priault, M., Prince,
660
S., Proia, R.L., Proikas-Cezanne, T., Prokisch, H., Promponas, V.J., Przyklenk, K.,
661
Puertollano, R., Pugazhenthi, S., Puglielli, L., Pujol, A., Puyal, J., Pyeon, D., Qi, X.,
662
Qian, W.B., Qin, Z.H., Qiu, Y., Qu, Z., Quadrilatero, J., Quinn, F., Raben, N.,
663
Rabinowich, H., Radogna, F., Ragusa, M.J., Rahmani, M., Raina, K., Ramanadham,
664
S., Ramesh, R., Rami, A., Randall-Demllo, S., Randow, F., Rao, H., Rao, V.A.,
665
Rasmussen, B.B., Rasse, T.M., Ratovitski, E.A., Rautou, P.E., Ray, S.K., Razani, B.,
666
Reed, B.H., Reggiori, F., Rehm, M., Reichert, A.S., Rein, T., Reiner, D.J., Reits, E.,
667
Ren, J., Ren, X., Renna, M., Reusch, J.E., Revuelta, J.L., Reyes, L., Rezaie, A.R.,
668
Richards, R.I., Richardson, D.R., Richetta, C., Riehle, M.A., Rihn, B.H., Rikihisa, Y.,
669
Riley, B.E., Rimbach, G., Rippo, M.R., Ritis, K., Rizzi, F., Rizzo, E., Roach, P.J.,
670
Robbins, J., Roberge, M., Roca, G., Roccheri, M.C., Rocha, S., Rodrigues, C.M.,
671
Rodriguez, C.I., de Cordoba, S.R., Rodriguez-Muela, N., Roelofs, J., Rogov, V.V.,
672
Rohn, T.T., Rohrer, B., Romanelli, D., Romani, L., Romano, P.S., Roncero, M.I.,
673
Rosa, J.L., Rosello, A., Rosen, K.V., Rosenstiel, P., Rost-Roszkowska, M., Roth,
674
K.A., Roue, G., Rouis, M., Rouschop, K.M., Ruan, D.T., Ruano, D., Rubinsztein,
675
D.C., Rucker, E.B., 3rd, Rudich, A., Rudolf, E., Rudolf, R., Ruegg, M.A., Ruiz-
676
Roldan, C., Ruparelia, A.A., Rusmini, P., Russ, D.W., Russo, G.L., Russo, G., Russo,
677
R., Rusten, T.E., Ryabovol, V., Ryan, K.M., Ryter, S.W., Sabatini, D.M., Sacher, M.,
678
Sachse, C., Sack, M.N., Sadoshima, J., Saftig, P., Sagi-Eisenberg, R., Sahni, S.,
679
Saikumar, P., Saito, T., Saitoh, T., Sakakura, K., Sakoh-Nakatogawa, M., Sakuraba,
680
Y., Salazar-Roa, M., Salomoni, P., Saluja, A.K., Salvaterra, P.M., Salvioli, R.,
681
Samali, A., Sanchez, A.M., Sanchez-Alcazar, J.A., Sanchez-Prieto, R., Sandri, M.,
682
Sanjuan, M.A., Santaguida, S., Santambrogio, L., Santoni, G., Dos Santos, C.N.,
683
Saran, S., Sardiello, M., Sargent, G., Sarkar, P., Sarkar, S., Sarrias, M.R., Sarwal,
684
M.M., Sasakawa, C., Sasaki, M., Sass, M., Sato, K., Sato, M., Satriano, J., Savaraj,
685
N., Saveljeva, S., Schaefer, L., Schaible, U.E., Scharl, M., Schatzl, H.M., Schekman,
686
R., Scheper, W., Schiavi, A., Schipper, H.M., Schmeisser, H., Schmidt, J., Schmitz, I.,
687
Schneider, B.E., Schneider, E.M., Schneider, J.L., Schon, E.A., Schonenberger, M.J.,
688
Schonthal, A.H., Schorderet, D.F., Schroder, B., Schuck, S., Schulze, R.J., Schwarten,
689
M., Schwarz, T.L., Sciarretta, S., Scotto, K., Scovassi, A.I., Screaton, R.A., Screen,
690
M., Seca, H., Sedej, S., Segatori, L., Segev, N., Seglen, P.O., Segui-Simarro, J.M.,
691
Segura-Aguilar, J., Seki, E., Sell, C., Seiliez, I., Semenkovich, C.F., Semenza, G.L.,
692
Sen, U., Serra, A.L., Serrano-Puebla, A., Sesaki, H., Setoguchi, T., Settembre, C.,
693
Shacka, J.J., Shajahan-Haq, A.N., Shapiro, I.M., Sharma, S., She, H., Shen, C.K.,
694
Shen, C.C., Shen, H.M., Shen, S., Shen, W., Sheng, R., Sheng, X., Sheng, Z.H.,
695
Shepherd, T.G., Shi, J., Shi, Q., Shi, Q., Shi, Y., Shibutani, S., Shibuya, K., Shidoji,
696
Y., Shieh, J.J., Shih, C.M., Shimada, Y., Shimizu, S., Shin, D.W., Shinohara, M.L.,
697
Shintani, M., Shintani, T., Shioi, T., Shirabe, K., Shiri-Sverdlov, R., Shirihai, O.,
698
Shore, G.C., Shu, C.W., Shukla, D., Sibirny, A.A., Sica, V., Sigurdson, C.J.,
699
Sigurdsson, E.M., Sijwali, P.S., Sikorska, B., Silveira, W.A., Silvente-Poirot, S.,
700
Silverman, G.A., Simak, J., Simmet, T., Simon, A.K., Simon, H.U., Simone, C.,
701
Simons, M., Simonsen, A., Singh, R., Singh, S.V., Singh, S.K., Sinha, D., Sinha, S.,
702
Sinicrope, F.A., Sirko, A., Sirohi, K., Sishi, B.J., Sittler, A., Siu, P.M., Sivridis, E.,
703
Skwarska, A., Slack, R., Slaninova, I., Slavov, N., Smaili, S.S., Smalley, K.S., Smith,
704
D.R., Soenen, S.J., Soleimanpour, S.A., Solhaug, A., Somasundaram, K., Son, J.H.,
705
Sonawane, A., Song, C., Song, F., Song, H.K., Song, J.X., Song, W., Soo, K.Y.,
706
Sood, A.K., Soong, T.W., Soontornniyomkij, V., Sorice, M., Sotgia, F., Soto-Pantoja,
707
D.R., Sotthibundhu, A., Sousa, M.J., Spaink, H.P., Span, P.N., Spang, A., Sparks,
708
J.D., Speck, P.G., Spector, S.A., Spies, C.D., Springer, W., Clair, D.S., Stacchiotti,
709
A., Staels, B., Stang, M.T., Starczynowski, D.T., Starokadomskyy, P., Steegborn, C.,
710
Steele, J.W., Stefanis, L., Steffan, J., Stellrecht, C.M., Stenmark, H., Stepkowski,
711
T.M., Stern, S.T., Stevens, C., Stockwell, B.R., Stoka, V., Storchova, Z., Stork, B.,
712
Stratoulias, V., Stravopodis, D.J., Strnad, P., Strohecker, A.M., Strom, A.L.,
713
Stromhaug, P., Stulik, J., Su, Y.X., Su, Z., Subauste, C.S., Subramaniam, S., Sue,
714
C.M., Suh, S.W., Sui, X., Sukseree, S., Sulzer, D., Sun, F.L., Sun, J., Sun, J., Sun,
715
S.Y., Sun, Y., Sun, Y., Sun, Y., Sundaramoorthy, V., Sung, J., Suzuki, H., Suzuki, K.,
716
Suzuki, N., Suzuki, T., Suzuki, Y.J., Swanson, M.S., Swanton, C., Sward, K.,
717
Swarup, G., Sweeney, S.T., Sylvester, P.W., Szatmari, Z., Szegezdi, E., Szlosarek,
718
P.W., Taegtmeyer, H., Tafani, M., Taillebourg, E., Tait, S.W., Takacs-Vellai, K.,
719
Takahashi, Y., Takats, S., Takemura, G., Takigawa, N., Talbot, N.J., Tamagno, E.,
720
Tamburini, J., Tan, C.P., Tan, L., Tan, M.L., Tan, M., Tan, Y.J., Tanaka, K., Tanaka,
721
M., Tang, D., Tang, D., Tang, G., Tanida, I., Tanji, K., Tannous, B.A., Tapia, J.A.,
722
Tasset-Cuevas, I., Tatar, M., Tavassoly, I., Tavernarakis, N., Taylor, A., Taylor, G.S.,
723
Taylor, G.A., Taylor, J.P., Taylor, M.J., Tchetina, E.V., Tee, A.R., Teixeira-Clerc, F.,
724
Telang, S., Tencomnao, T., Teng, B.B., Teng, R.J., Terro, F., Tettamanti, G., Theiss,
725
A.L., Theron, A.E., Thomas, K.J., Thome, M.P., Thomes, P.G., Thorburn, A.,
726
Thorner, J., Thum, T., Thumm, M., Thurston, T.L., Tian, L., Till, A., Ting, J.P.,
727
Titorenko, V.I., Toker, L., Toldo, S., Tooze, S.A., Topisirovic, I., Torgersen, M.L.,
728
Torosantucci, L., Torriglia, A., Torrisi, M.R., Tournier, C., Towns, R., Trajkovic, V.,
729
Travassos, L.H., Triola, G., Tripathi, D.N., Trisciuoglio, D., Troncoso, R., Trougakos,
730
I.P., Truttmann, A.C., Tsai, K.J., Tschan, M.P., Tseng, Y.H., Tsukuba, T., Tsung, A.,
731
Tsvetkov, A.S., Tu, S., Tuan, H.Y., Tucci, M., Tumbarello, D.A., Turk, B., Turk, V.,
732
Turner, R.F., Tveita, A.A., Tyagi, S.C., Ubukata, M., Uchiyama, Y., Udelnow, A.,
733
Ueno, T., Umekawa, M., Umemiya-Shirafuji, R., Underwood, B.R., Ungermann, C.,
734
Ureshino, R.P., Ushioda, R., Uversky, V.N., Uzcategui, N.L., Vaccari, T., Vaccaro,
735
M.I., Vachova, L., Vakifahmetoglu-Norberg, H., Valdor, R., Valente, E.M., Vallette,
736
F., Valverde, A.M., Van den Berghe, G., Van Den Bosch, L., van den Brink, G.R.,
737
van der Goot, F.G., van der Klei, I.J., van der Laan, L.J., van Doorn, W.G., van
738
Egmond, M., van Golen, K.L., Van Kaer, L., van Lookeren Campagne, M.,
739
Vandenabeele, P., Vandenberghe, W., Vanhorebeek, I., Varela-Nieto, I., Vasconcelos,
740
M.H., Vasko, R., Vavvas, D.G., Vega-Naredo, I., Velasco, G., Velentzas, A.D.,
741
Velentzas, P.D., Vellai, T., Vellenga, E., Vendelbo, M.H., Venkatachalam, K.,
742
Ventura, N., Ventura, S., Veras, P.S., Verdier, M., Vertessy, B.G., Viale, A., Vidal,
743
M., Vieira, H.L., Vierstra, R.D., Vigneswaran, N., Vij, N., Vila, M., Villar, M., Villar,
744
V.H., Villarroya, J., Vindis, C., Viola, G., Viscomi, M.T., Vitale, G., Vogl, D.T.,
745
Voitsekhovskaja, O.V., von Haefen, C., von Schwarzenberg, K., Voth, D.E., Vouret-
746
Craviari, V., Vuori, K., Vyas, J.M., Waeber, C., Walker, C.L., Walker, M.J., Walter,
747
J., Wan, L., Wan, X., Wang, B., Wang, C., Wang, C.Y., Wang, C., Wang, C., Wang,
748
C., Wang, D., Wang, F., Wang, F., Wang, G., Wang, H.J., Wang, H., Wang, H.G.,
749
Wang, H., Wang, H.D., Wang, J., Wang, J., Wang, M., Wang, M.Q., Wang, P.Y.,
750
Wang, P., Wang, R.C., Wang, S., Wang, T.F., Wang, X., Wang, X.J., Wang, X.W.,
751
Wang, X., Wang, X., Wang, Y., Wang, Y., Wang, Y., Wang, Y.J., Wang, Y., Wang,
752
Y., Wang, Y.T., Wang, Y., Wang, Z.N., Wappner, P., Ward, C., Ward, D.M., Warnes,
753
G., Watada, H., Watanabe, Y., Watase, K., Weaver, T.E., Weekes, C.D., Wei, J.,
754
Weide, T., Weihl, C.C., Weindl, G., Weis, S.N., Wen, L., Wen, X., Wen, Y.,
755
Westermann, B., Weyand, C.M., White, A.R., White, E., Whitton, J.L., Whitworth,
756
A.J., Wiels, J., Wild, F., Wildenberg, M.E., Wileman, T., Wilkinson, D.S., Wilkinson,
757
S., Willbold, D., Williams, C., Williams, K., Williamson, P.R., Winklhofer, K.F.,
758
Witkin, S.S., Wohlgemuth, S.E., Wollert, T., Wolvetang, E.J., Wong, E., Wong,
759
G.W., Wong, R.W., Wong, V.K., Woodcock, E.A., Wright, K.L., Wu, C., Wu, D.,
760
Wu, G.S., Wu, J., Wu, J., Wu, M., Wu, M., Wu, S., Wu, W.K., Wu, Y., Wu, Z.,
761
Xavier, C.P., Xavier, R.J., Xia, G.X., Xia, T., Xia, W., Xia, Y., Xiao, H., Xiao, J.,
762
Xiao, S., Xiao, W., Xie, C.M., Xie, Z., Xie, Z., Xilouri, M., Xiong, Y., Xu, C., Xu, C.,
763
Xu, F., Xu, H., Xu, H., Xu, J., Xu, J., Xu, J., Xu, L., Xu, X., Xu, Y., Xu, Y., Xu, Z.X.,
764
Xu, Z., Xue, Y., Yamada, T., Yamamoto, A., Yamanaka, K., Yamashina, S.,
765
Yamashiro, S., Yan, B., Yan, B., Yan, X., Yan, Z., Yanagi, Y., Yang, D.S., Yang,
766
J.M., Yang, L., Yang, M., Yang, P.M., Yang, P., Yang, Q., Yang, W., Yang, W.Y.,
767
Yang, X., Yang, Y., Yang, Y., Yang, Z., Yang, Z., Yao, M.C., Yao, P.J., Yao, X.,
768
Yao, Z., Yao, Z., Yasui, L.S., Ye, M., Yedvobnick, B., Yeganeh, B., Yeh, E.S.,
769
Yeyati, P.L., Yi, F., Yi, L., Yin, X.M., Yip, C.K., Yoo, Y.M., Yoo, Y.H., Yoon, S.Y.,
770
Yoshida, K., Yoshimori, T., Young, K.H., Yu, H., Yu, J.J., Yu, J.T., Yu, J., Yu, L.,
771
Yu, W.H., Yu, X.F., Yu, Z., Yuan, J., Yuan, Z.M., Yue, B.Y., Yue, J., Yue, Z., Zacks,
772
D.N., Zacksenhaus, E., Zaffaroni, N., Zaglia, T., Zakeri, Z., Zecchini, V., Zeng, J.,
773
Zeng, M., Zeng, Q., Zervos, A.S., Zhang, D.D., Zhang, F., Zhang, G., Zhang, G.C.,
774
Zhang, H., Zhang, H., Zhang, H., Zhang, H., Zhang, J., Zhang, J., Zhang, J., Zhang,
775
J., Zhang, J.P., Zhang, L., Zhang, L., Zhang, L., Zhang, L., Zhang, M.Y., Zhang, X.,
776
Zhang, X.D., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Y., Zhao, M.,
777
Zhao, W.L., Zhao, X., Zhao, Y.G., Zhao, Y., Zhao, Y., Zhao, Y.X., Zhao, Z., Zhao,
778
Z.J., Zheng, D., Zheng, X.L., Zheng, X., Zhivotovsky, B., Zhong, Q., Zhou, G.Z.,
779
Zhou, G., Zhou, H., Zhou, S.F., Zhou, X.J., Zhu, H., Zhu, H., Zhu, W.G., Zhu, W.,
780
Zhu, X.F., Zhu, Y., Zhuang, S.M., Zhuang, X., Ziparo, E., Zois, C.E., Zoladek, T.,
781
Zong, W.X., Zorzano, A., Zughaier, S.M., 2016. Guidelines for the use and
782
interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222.
783
Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike,
784
M., Uchiyama, Y., Kominami, E., Tanaka, K., 2006. Loss of autophagy in the central
785
nervous system causes neurodegeneration in mice. Nature 441, 880-884.
786
Labbadia, J., Morimoto, R.I., 2015. The biology of proteostasis in aging and disease.
787
Annual review of biochemistry 84, 435-464.
788
Lautenschlager, J., Kaminski, C.F., Kaminski Schierle, G.S., 2017. alpha-Synuclein -
789
Regulator of Exocytosis, Endocytosis, or Both? Trends in cell biology 27, 468-479.
790
Nixon, R.A., 2013. The role of autophagy in neurodegenerative disease. Nat Med 19,
791
983-997.
792
Outeiro, T.F., Kontopoulos, E., Altmann, S.M., Kufareva, I., Strathearn, K.E., Amore,
793
A.M., Volk, C.B., Maxwell, M.M., Rochet, J.C., McLean, P.J., Young, A.B.,
794
Abagyan, R., Feany, M.B., Hyman, B.T., Kazantsev, A.G., 2007. Sirtuin 2 inhibitors
795
rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science
796
317, 516-519.
797
Pyo, J.O., Yoo, S.M., Ahn, H.H., Nah, J., Hong, S.H., Kam, T.I., Jung, S., Jung, Y.K.,
798
2013. Overexpression of Atg5 in mice activates autophagy and extends lifespan.
799
Nature communications 4, 2300.
800
Rajasekhar, K., Suresh, S.N., Manjithaya, R., Govindaraju, T., 2015. Rationally
801
designed peptidomimetic modulators of abeta toxicity in Alzheimer's disease.
802
Scientific reports 5, 8139.
803
Ruiz-Torres, V., Losada-Echeberria, M., Herranz-Lopez, M., Barrajon-Catalan, E.,
804
Galiano, V., Micol, V., Encinar, J.A., 2018. New Mammalian Target of Rapamycin
805
(mTOR) Modulators Derived from Natural Product Databases and Marine Extracts by
806
Using Molecular Docking Techniques. Marine drugs 16.
807
Sarkar, S., Perlstein, E.O., Imarisio, S., Pineau, S., Cordenier, A., Maglathlin, R.L.,
808
Webster, J.A., Lewis, T.A., O'Kane, C.J., Schreiber, S.L., Rubinsztein, D.C., 2007.
809
Small molecules enhance autophagy and reduce toxicity in Huntington's disease
810
models. Nature chemical biology 3, 331-338.
811
Singh, P., Hanson, P.S., Morris, C.M., 2017. Sirtuin-2 Protects Neural Cells from
812
Oxidative Stress and Is Elevated in Neurodegeneration. Parkinsons Dis 2017,
813
2643587.
814
Stefani, M., Dobson, C.M., 2003. Protein aggregation and aggregate toxicity: new
815
insights into protein folding, misfolding diseases and biological evolution. Journal of
816
molecular medicine 81, 678-699.
817
Suresh, S.N., Chavalmane, A.K., Dj, V., Yarreiphang, H., Rai, S., Paul, A., Clement,
818
J.P., Alladi, P.A., Manjithaya, R., 2017. A novel autophagy modulator 6-Bio
819
ameliorates SNCA/alpha-synuclein toxicity. Autophagy 13, 1221-1234.
820
Suresh, S.N., Chavalmane, A.K., Pillai, M., Ammanathan, V., Vidyadhara, D.J.,
821
Yarreiphang, H., Rai, S., Paul, A., Clement, J.P., Alladi, P.A., Manjithaya, R., 2018a.
822
Modulation of Autophagy by a Small Molecule Inverse Agonist of ERRalpha Is
823
Neuroprotective. Front Mol Neurosci 11, 109.
824
Suresh, S.N., Verma, V., Sateesh, S., Clement, J.P., Manjithaya, R., 2018b.
825
Neurodegenerative diseases: model organisms, pathology and autophagy. J Genet 97,
826
679-701.
827 828 829 830 831 832 833 834 835 836 837 838 839 840
841
Figure legends
842
Figure 1: AGK2 enhances starvation induced autophagy. A) Representative
843
immunoblots (n=3) of EGFP-Atg8 processing assay. Wild type cells expressing
844
EGFP-Atg8 were treated with AGK2 and samples were collected at various time
845
points (0,2,4 and 6 h) to analyse the autophagy flux. B) Quantitation indicating the
846
fold change of autophagy flux measured by the release of free EGFP from EGFP-
847
Atg8 protein. Statistical analysis was performed using one-way ANOVA and the
848
post-hoc Bonferroni test. Error bars, mean ± S.E.M. ***-P < 0.001.
849
Figure 2: AGK2 cytoprotects yeast cells against α-synuclein mediated toxicity.
850
Growth curves of α-synuclein overexpressing wild-type (A) and autophagy mutant
851
(B) yeast strains treated with or without AGK2. Statistical analysis was performed
852
using one-way ANOVA and the post-hoc Bonferroni test. n=6, Error bars, mean ±
853
S.E.M. ns-non significant, **-P < 0.01, ***-P < 0.001.
854
Figure 3: AGK2 clears α-synuclein-EGFP in an autophagy dependent manner.
855
Both wild type (A) and autophagy mutant (B) strains overexpressing α-synuclein-
856
EGFP treated with AGK2 and analysed for total α-synuclein-EGFP protein levels.
857
Statistical analysis was performed using one-way ANOVA and the post-hoc
858
Bonferroni test. n=6, Error bars, mean ± S.E.M. ns-non significant, ***-P < 0.001.
859
Figure 4: AGK2 induces autophagy in mammalian cells. (A) Microscopy images
860
of HeLa cells transiently expressing RFP-EGFP-LC3 were treated with AGK2 for 2 h.
861
Graphs indicating the fold change or number of puncta per cell of autophagosomes
862
and autolysosomes upon appropriate small molecule treatments. n=75 cells, three
863
independent experiments. Statistical analysis was performed using one-way ANOVA
864
and the post-hoc Bonferroni test. (B) Blots indicating LC3 processing upon AGK2
865
treatment with or without bafilomycin A1. LC3-II protein levels were quantified
866
(n=3). Statistical analysis was performed using one-way ANOVA and the post-hoc
867
Bonferroni test. Error bars, mean ± S.E.M. *-P < 0.05, ***-P < 0.001.
868
Figure 5: AGK2 is an mTOR independent autophagy inducer and cytoprotects
869
neuronal cells from α-synuclein mediated toxicity. (A) Western blots of autophagy
870
related protein levels such as LC3, phospho and total P70S6K and 4EBP1. (B) SH-
871
SY5Y cells were transiently overexpressed with α-synuclein for 48 h. We then treated
872
them with autophagy enhancer such as AGK2 with or without autophagy inhibitor (3-
873
MA) for 24 h. After 72 h, the cell viability was measured of all treatments and plotted
874
the same. Three independent experiments were carried out. Statistical analysis was
875
performed using one-way ANOVA and the post-hoc Bonferroni test. Error bars, mean
876
± S.E.M. ns-non significant, ***-P < 0.001.
877 878
Supplementary figure legends
879
Figure S1: AGK2 is not toxic to yeast cells. WT cells were treated with and without
880
AGK2 (50 µM) and absorbance (A600) was recorded at 72 h. Statistical analysis was
881
performed unpaired Student t-test. Error bars, mean ± S.E.M. ns-non significant.
882 883
Figure S2: α-synuclein clearance assay. Microscopic images of yeast expressing α-
884
synuclein-EGFP treated with and without AGK2 (50 µM). The cells with free EGFP
885
were quantitated (the measure of free EGFP in vacuole indicate the vacuole mediated
886
clearance of α-synuclein-EGFP). Statistical analysis was performed unpaired Student
887
t-test (n=75 cells). Error bars, mean ± S.E.M. ***-P < 0.001.
888
Figure S3: AGK2 is not toxic to mammalian cells. HeLa cells were treated with
889
AGK2 (5 µM) for 72 h and cell viability was measured (n=3). Statistical analysis was
890
performed unpaired Student t-test. Error bars, mean ± S.E.M. ns-non significant.
891
Figure S4: α-synuclein toxicity assay. HeLa cells were overexpressed with α-
892
synuclein for 48 h transiently. Cells were treated with AGK2 with or without 3-MA
893
for 24 h. After 72 h, the cell viability was assayed and plotted the same. Statistical
894
analysis was performed using one-way ANOVA and the post-hoc Bonferroni test
895
(Three independent experiments). Error bars, mean ± S.E.M. ns-non significant, ***-
896
P < 0.001.
897 898 899 900 901 902 903 904 905 906 907
Figure 1 A Starvation (h))
0
Untreated 2 4
6
AGK2 2 4
0
EGFP-Atg8
Free EGFP
Gapdh
Fold change
B
60
909 910 911 912 913 914 915 916
*** ***
40 ***
20 0
908
Control AGK2
0
2
4
Time (h)
6
6
Figure 2 A 1.0
***
0.8
A
A600
** 0.6 0.4 0.2 0.0
WT EGFP
WT α -syn-EGFP WT α -syn-EGFP + AGK2
B *** 1.0 0.8
A600
ns 0.6 0.4 0.2 0.0
917 918 919 920 921
atg1∆ ∆ EGFP
∆ α -syn-EGFP atg1∆ ∆ α -syn-EGFP atg1∆ + AGK2
A
Fold (α -syn-EGFP/Gapdh)
Figure 3 ***
1.5
*** 1.0
0.5
0.0
AGK2
0
24
24
-
-
+
α-syn EGFP Gapdh
Fold (α -syn-EGFP/Gapdh)
B ns 1.0
0.5
0.0
AGK2
α-syn EGFP Gapdh 922 923 924 925 926
ns
1.5
0
24
24
-
-
+
Figure 4 A MERGE
No. of puncta/cell
AGK2
Control
RFP LC3 EGFP LC3
AGK2
B
927 928 929 930 931 932 933 934
Autophagosomes Autolysosomes
120 100
***
80
***
60 40 20 0
-
+
-
+
Figure 5 A GM
EBSS AGK2
LC3-I LC3-II p-P70S6K t-P70S6K t- 4EBP1 β-tubulin
B ***
935
***
***
936 937
Figure S1 ns
1.0
A600
0.8 0.6 0.4 0.2 0.0
Control
938 939 940 941 942 943 944 945 946 947 948 949 950
AGK2
951 952
Figure S2 Control
AGK2
Fold change (cells with free EGFP)
8
*** 6 4 2 0
Control
953 954 955 956 957 958 959 960 961 962
AGK2
963 964
Figure S3
800000
ns
RLU
600000
400000
200000
0 Control
965 966 967 968 969 970 971 972 973
AGK2
974 975
Figure S4 ***
800000.0
***
***
RLU
600000.0
400000.0
200000.0
0.0
Vector control α -synuclein AGK2 3-MA
976 977 978 979 980 981 982 983 984
-
+ -
+ + -
+ +
+ -
+ +
+ + -
+ + +
Jawaharlal Nehru Center for Advanced Scientific Research (Autonomous Body under the Department of Science & Technology, Government of India)
Jakkur Campus, Jakkur Post Bengaluru 560 064, INDIA Email:
[email protected]
Office Tel: +91 (80) 2208 2924 Office Fax: +91 (80) 2208 2766 +91 (80) 2208 2767
19th Aug 2019 The author contributions for this manuscript: SNS - Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Roles/Writing - original draft. RM - Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing.
Best regards, Dr. Ravi Manjithaya Associate Professor Molecular Biology and Genetics Unit NeuroScience Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore 560 064 INDIA Office 91 80 2208 2924